#include "testing/testing.h" // Keep first since utildefines defines AT which conflicts with fucking STL #include "intern/abc_util.h" extern "C" { #include "BLI_utildefines.h" #include "BLI_math.h" } TEST(abc_matrix, CreateRotationMatrixY_YfromZ) { // Input variables float rot_x_mat[3][3]; float rot_y_mat[3][3]; float rot_z_mat[3][3]; float euler[3] = {0.f, M_PI_4, 0.f}; // Construct expected matrices float unit[3][3]; float rot_z_min_quart_pi[3][3]; // rotation of -pi/4 radians over z-axis unit_m3(unit); unit_m3(rot_z_min_quart_pi); rot_z_min_quart_pi[0][0] = M_SQRT1_2; rot_z_min_quart_pi[0][1] = -M_SQRT1_2; rot_z_min_quart_pi[1][0] = M_SQRT1_2; rot_z_min_quart_pi[1][1] = M_SQRT1_2; // Run tests create_swapped_rotation_matrix(rot_x_mat, rot_y_mat, rot_z_mat, euler, ABC_YUP_FROM_ZUP); EXPECT_M3_NEAR(rot_x_mat, unit, 1e-5f); EXPECT_M3_NEAR(rot_y_mat, unit, 1e-5f); EXPECT_M3_NEAR(rot_z_mat, rot_z_min_quart_pi, 1e-5f); } TEST(abc_matrix, CreateRotationMatrixZ_YfromZ) { // Input variables float rot_x_mat[3][3]; float rot_y_mat[3][3]; float rot_z_mat[3][3]; float euler[3] = {0.f, 0.f, M_PI_4}; // Construct expected matrices float unit[3][3]; float rot_y_quart_pi[3][3]; // rotation of pi/4 radians over y-axis unit_m3(unit); unit_m3(rot_y_quart_pi); rot_y_quart_pi[0][0] = M_SQRT1_2; rot_y_quart_pi[0][2] = -M_SQRT1_2; rot_y_quart_pi[2][0] = M_SQRT1_2; rot_y_quart_pi[2][2] = M_SQRT1_2; // Run tests create_swapped_rotation_matrix(rot_x_mat, rot_y_mat, rot_z_mat, euler, ABC_YUP_FROM_ZUP); EXPECT_M3_NEAR(rot_x_mat, unit, 1e-5f); EXPECT_M3_NEAR(rot_y_mat, rot_y_quart_pi, 1e-5f); EXPECT_M3_NEAR(rot_z_mat, unit, 1e-5f); } TEST(abc_matrix, CreateRotationMatrixXYZ_YfromZ) { // Input variables float rot_x_mat[3][3]; float rot_y_mat[3][3]; float rot_z_mat[3][3]; // in degrees: X=10, Y=20, Z=30 float euler[3] = {0.17453292012214f, 0.34906581044197f, 0.52359879016876f}; // Construct expected matrices float rot_x_p10[3][3]; // rotation of +10 degrees over x-axis float rot_y_p30[3][3]; // rotation of +30 degrees over y-axis float rot_z_m20[3][3]; // rotation of -20 degrees over z-axis unit_m3(rot_x_p10); rot_x_p10[1][1] = 0.9848077297210693f; rot_x_p10[1][2] = 0.1736481785774231f; rot_x_p10[2][1] = -0.1736481785774231f; rot_x_p10[2][2] = 0.9848077297210693f; unit_m3(rot_y_p30); rot_y_p30[0][0] = 0.8660253882408142f; rot_y_p30[0][2] = -0.5f; rot_y_p30[2][0] = 0.5f; rot_y_p30[2][2] = 0.8660253882408142f; unit_m3(rot_z_m20); rot_z_m20[0][0] = 0.9396926164627075f; rot_z_m20[0][1] = -0.3420201241970062f; rot_z_m20[1][0] = 0.3420201241970062f; rot_z_m20[1][1] = 0.9396926164627075f; // Run tests create_swapped_rotation_matrix(rot_x_mat, rot_y_mat, rot_z_mat, euler, ABC_YUP_FROM_ZUP); EXPECT_M3_NEAR(rot_x_mat, rot_x_p10, 1e-5f); EXPECT_M3_NEAR(rot_y_mat, rot_y_p30, 1e-5f); EXPECT_M3_NEAR(rot_z_mat, rot_z_m20, 1e-5f); } TEST(abc_matrix, CreateRotationMatrixXYZ_ZfromY) { // Input variables float rot_x_mat[3][3]; float rot_y_mat[3][3]; float rot_z_mat[3][3]; // in degrees: X=10, Y=20, Z=30 float euler[3] = {0.1745329201221466f, 0.3490658104419708f, 0.5235987901687622f}; // Construct expected matrices float rot_x_p10[3][3]; // rotation of +10 degrees over x-axis float rot_y_m30[3][3]; // rotation of -30 degrees over y-axis float rot_z_p20[3][3]; // rotation of +20 degrees over z-axis unit_m3(rot_x_p10); rot_x_p10[1][1] = 0.9848077297210693f; rot_x_p10[1][2] = 0.1736481785774231f; rot_x_p10[2][1] = -0.1736481785774231f; rot_x_p10[2][2] = 0.9848077297210693f; unit_m3(rot_y_m30); rot_y_m30[0][0] = 0.8660253882408142f; rot_y_m30[0][2] = 0.5f; rot_y_m30[2][0] = -0.5f; rot_y_m30[2][2] = 0.8660253882408142f; unit_m3(rot_z_p20); rot_z_p20[0][0] = 0.9396926164627075f; rot_z_p20[0][1] = 0.3420201241970062f; rot_z_p20[1][0] = -0.3420201241970062f; rot_z_p20[1][1] = 0.9396926164627075f; // Run tests create_swapped_rotation_matrix(rot_x_mat, rot_y_mat, rot_z_mat, euler, ABC_ZUP_FROM_YUP); EXPECT_M3_NEAR(rot_x_mat, rot_x_p10, 1e-5f); EXPECT_M3_NEAR(rot_y_mat, rot_y_m30, 1e-5f); EXPECT_M3_NEAR(rot_z_mat, rot_z_p20, 1e-5f); } TEST(abc_matrix, CopyM44AxisSwap_YfromZ) { float result[4][4]; /* Construct an input matrix that performs a rotation like the tests * above. This matrix was created by rotating a cube in Blender over * (X=10, Y=20, Z=30 degrees in XYZ order) and translating over (1, 2, 3) */ float input[4][4] = { { 0.81379765272f, 0.4698463380336f, -0.342020124197f, 0.f}, {-0.44096961617f, 0.8825641274452f, 0.163175910711f, 0.f}, { 0.37852230668f, 0.0180283170193f, 0.925416588783f, 0.f}, {1.f, 2.f, 3.f, 1.f}, }; copy_m44_axis_swap(result, input, ABC_YUP_FROM_ZUP); /* Check the resulting rotation & translation. */ float trans[4] = {1.f, 3.f, -2.f, 1.f}; EXPECT_V4_NEAR(trans, result[3], 1e-5f); /* This matrix was created by rotating a cube in Blender over * (X=10, Y=30, Z=-20 degrees in XZY order) and translating over (1, 3, -2) */ float expect[4][4] = { {0.813797652721f, -0.342020124197f, -0.469846338033f, 0.f}, {0.378522306680f, 0.925416588783f, -0.018028317019f, 0.f}, {0.440969616174f, -0.163175910711f, 0.882564127445f, 0.f}, {1.f, 3.f, -2.f, 1.f}, }; EXPECT_M4_NEAR(expect, result, 1e-5f); } TEST(abc_matrix, CopyM44AxisSwapWithScale_YfromZ) { float result[4][4]; /* Construct an input matrix that performs a rotation like the tests * above. This matrix was created by rotating a cube in Blender over * (X=10, Y=20, Z=30 degrees in XYZ order), translating over (1, 2, 3), * and scaling by (4, 5, 6). */ float input[4][4] = { { 3.25519061088f, 1.8793853521347f, -1.368080496788f, 0.f}, {-2.20484805107f, 4.4128208160400f, 0.815879583358f, 0.f}, { 2.27113389968f, 0.1081698983907f, 5.552499771118f, 0.f}, {1.f, 2.f, 3.f, 1.f}, }; copy_m44_axis_swap(result, input, ABC_YUP_FROM_ZUP); /* This matrix was created by rotating a cube in Blender over * (X=10, Y=30, Z=-20 degrees in XZY order), translating over (1, 3, -2) * and scaling over (4, 6, 5). */ float expect[4][4] = { {3.255190610885f, -1.368080496788f, -1.879385352134f, 0.f}, {2.271133899688f, 5.552499771118f, -0.108169898390f, 0.f}, {2.204848051071f, -0.815879583358f, 4.412820816040f, 0.f}, {1.f, 3.f, -2.f, 1.f}, }; EXPECT_M4_NEAR(expect, result, 1e-5f); } TEST(abc_matrix, CopyM44AxisSwap_ZfromY) { float result[4][4]; /* This matrix was created by rotating a cube in Blender over * (X=10, Y=30, Z=-20 degrees in XZY order) and translating over (1, 3, -2) */ float input[4][4] = { {0.813797652721f, -0.342020124197f, -0.469846338033f, 0.f}, {0.378522306680f, 0.925416588783f, -0.018028317019f, 0.f}, {0.440969616174f, -0.163175910711f, 0.882564127445f, 0.f}, {1.f, 3.f, -2.f, 1.f}, }; copy_m44_axis_swap(result, input, ABC_ZUP_FROM_YUP); /* This matrix was created by rotating a cube in Blender over * (X=10, Y=20, Z=30 degrees in XYZ order) and translating over (1, 2, 3) */ float expect[4][4] = { {0.813797652721f, 0.469846338033f, -0.342020124197f, 0.f}, {-0.44096961617f, 0.882564127445f, 0.163175910711f, 0.f}, {0.378522306680f, 0.018028317019f, 0.925416588783f, 0.f}, {1.f, 2.f, 3.f, 1.f}, }; EXPECT_M4_NEAR(expect, result, 1e-5f); } TEST(abc_matrix, CopyM44AxisSwapWithScale_ZfromY) { float result[4][4]; /* This matrix was created by rotating a cube in Blender over * (X=10, Y=30, Z=-20 degrees in XZY order), translating over (1, 3, -2) * and scaling over (4, 6, 5). */ float input[4][4] = { {3.2551906108f, -1.36808049678f, -1.879385352134f, 0.f}, {2.2711338996f, 5.55249977111f, -0.108169898390f, 0.f}, {2.2048480510f, -0.81587958335f, 4.412820816040f, 0.f}, {1.f, 3.f, -2.f, 1.f}, }; copy_m44_axis_swap(result, input, ABC_ZUP_FROM_YUP); /* This matrix was created by rotating a cube in Blender over * (X=10, Y=20, Z=30 degrees in XYZ order), translating over (1, 2, 3), * and scaling by (4, 5, 6). */ float expect[4][4] = { {3.25519061088f, 1.879385352134f, -1.36808049678f, 0.f}, {-2.2048480510f, 4.412820816040f, 0.81587958335f, 0.f}, {2.27113389968f, 0.108169898390f, 5.55249977111f, 0.f}, {1.f, 2.f, 3.f, 1.f}, }; EXPECT_M4_NEAR(expect, result, 1e-5f); } TEST(abc_matrix, CopyM44AxisSwapWithScale_gimbal_ZfromY) { float result[4][4]; /* This matrix represents a rotation over (-90, -0, -0) degrees, * and a translation over (-0, -0.1, -0). It is in Y=up. */ float input[4][4] = { { 1.000f, 0.000f, 0.000f, 0.000f}, { 0.000f, 0.000f,-1.000f, 0.000f}, { 0.000f, 1.000f, 0.000f, 0.000f}, {-0.000f,-0.100f,-0.000f, 1.000f}, }; copy_m44_axis_swap(result, input, ABC_ZUP_FROM_YUP); /* Since the rotation is only over the X-axis, it should not change. * The translation does change. */ float expect[4][4] = { { 1.000f, 0.000f, 0.000f, 0.000f}, { 0.000f, 0.000f,-1.000f, 0.000f}, { 0.000f, 1.000f, 0.000f, 0.000f}, {-0.000f, 0.000f,-0.100f, 1.000f}, }; EXPECT_M4_NEAR(expect, result, 1e-5f); }