#define FASTLED_INTERNAL #include "FastLED.h" FASTLED_USING_NAMESPACE #if 0 #if defined(FASTLED_AVR) && !defined(TEENSYDUINO) && !defined(LIB8_ATTINY) extern "C" { // the prescaler is set so that timer0 ticks every 64 clock cycles, and the // the overflow handler is called every 256 ticks. #define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256)) typedef union { unsigned long _long; uint8_t raw[4]; } tBytesForLong; // tBytesForLong FastLED_timer0_overflow_count; volatile unsigned long FastLED_timer0_overflow_count=0; volatile unsigned long FastLED_timer0_millis = 0; LIB8STATIC void __attribute__((always_inline)) fastinc32 (volatile uint32_t & _long) { uint8_t b = ++((tBytesForLong&)_long).raw[0]; if(!b) { b = ++((tBytesForLong&)_long).raw[1]; if(!b) { b = ++((tBytesForLong&)_long).raw[2]; if(!b) { ++((tBytesForLong&)_long).raw[3]; } } } } #if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__) ISR(TIM0_OVF_vect) #else ISR(TIMER0_OVF_vect) #endif { fastinc32(FastLED_timer0_overflow_count); // FastLED_timer0_overflow_count++; } // there are 1024 microseconds per overflow counter tick. unsigned long millis() { unsigned long m; uint8_t oldSREG = SREG; // disable interrupts while we read FastLED_timer0_millis or we might get an // inconsistent value (e.g. in the middle of a write to FastLED_timer0_millis) cli(); m = FastLED_timer0_overflow_count; //._long; SREG = oldSREG; return (m*(MICROSECONDS_PER_TIMER0_OVERFLOW/8))/(1000/8); } unsigned long micros() { unsigned long m; uint8_t oldSREG = SREG, t; cli(); m = FastLED_timer0_overflow_count; // ._long; #if defined(TCNT0) t = TCNT0; #elif defined(TCNT0L) t = TCNT0L; #else #error TIMER 0 not defined #endif #ifdef TIFR0 if ((TIFR0 & _BV(TOV0)) && (t < 255)) m++; #else if ((TIFR & _BV(TOV0)) && (t < 255)) m++; #endif SREG = oldSREG; return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond()); } void delay(unsigned long ms) { uint16_t start = (uint16_t)micros(); while (ms > 0) { if (((uint16_t)micros() - start) >= 1000) { ms--; start += 1000; } } } #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) void init() { // this needs to be called before setup() or some functions won't // work there sei(); // on the ATmega168, timer 0 is also used for fast hardware pwm // (using phase-correct PWM would mean that timer 0 overflowed half as often // resulting in different millis() behavior on the ATmega8 and ATmega168) #if defined(TCCR0A) && defined(WGM01) sbi(TCCR0A, WGM01); sbi(TCCR0A, WGM00); #endif // set timer 0 prescale factor to 64 #if defined(__AVR_ATmega128__) // CPU specific: different values for the ATmega128 sbi(TCCR0, CS02); #elif defined(TCCR0) && defined(CS01) && defined(CS00) // this combination is for the standard atmega8 sbi(TCCR0, CS01); sbi(TCCR0, CS00); #elif defined(TCCR0B) && defined(CS01) && defined(CS00) // this combination is for the standard 168/328/1280/2560 sbi(TCCR0B, CS01); sbi(TCCR0B, CS00); #elif defined(TCCR0A) && defined(CS01) && defined(CS00) // this combination is for the __AVR_ATmega645__ series sbi(TCCR0A, CS01); sbi(TCCR0A, CS00); #else #error Timer 0 prescale factor 64 not set correctly #endif // enable timer 0 overflow interrupt #if defined(TIMSK) && defined(TOIE0) sbi(TIMSK, TOIE0); #elif defined(TIMSK0) && defined(TOIE0) sbi(TIMSK0, TOIE0); #else #error Timer 0 overflow interrupt not set correctly #endif // timers 1 and 2 are used for phase-correct hardware pwm // this is better for motors as it ensures an even waveform // note, however, that fast pwm mode can achieve a frequency of up // 8 MHz (with a 16 MHz clock) at 50% duty cycle #if defined(TCCR1B) && defined(CS11) && defined(CS10) TCCR1B = 0; // set timer 1 prescale factor to 64 sbi(TCCR1B, CS11); #if F_CPU >= 8000000L sbi(TCCR1B, CS10); #endif #elif defined(TCCR1) && defined(CS11) && defined(CS10) sbi(TCCR1, CS11); #if F_CPU >= 8000000L sbi(TCCR1, CS10); #endif #endif // put timer 1 in 8-bit phase correct pwm mode #if defined(TCCR1A) && defined(WGM10) sbi(TCCR1A, WGM10); #elif defined(TCCR1) #warning this needs to be finished #endif // set timer 2 prescale factor to 64 #if defined(TCCR2) && defined(CS22) sbi(TCCR2, CS22); #elif defined(TCCR2B) && defined(CS22) sbi(TCCR2B, CS22); #else #warning Timer 2 not finished (may not be present on this CPU) #endif // configure timer 2 for phase correct pwm (8-bit) #if defined(TCCR2) && defined(WGM20) sbi(TCCR2, WGM20); #elif defined(TCCR2A) && defined(WGM20) sbi(TCCR2A, WGM20); #else #warning Timer 2 not finished (may not be present on this CPU) #endif #if defined(TCCR3B) && defined(CS31) && defined(WGM30) sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64 sbi(TCCR3B, CS30); sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode #endif #if defined(TCCR4A) && defined(TCCR4B) && defined(TCCR4D) /* beginning of timer4 block for 32U4 and similar */ sbi(TCCR4B, CS42); // set timer4 prescale factor to 64 sbi(TCCR4B, CS41); sbi(TCCR4B, CS40); sbi(TCCR4D, WGM40); // put timer 4 in phase- and frequency-correct PWM mode sbi(TCCR4A, PWM4A); // enable PWM mode for comparator OCR4A sbi(TCCR4C, PWM4D); // enable PWM mode for comparator OCR4D #else /* beginning of timer4 block for ATMEGA1280 and ATMEGA2560 */ #if defined(TCCR4B) && defined(CS41) && defined(WGM40) sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64 sbi(TCCR4B, CS40); sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode #endif #endif /* end timer4 block for ATMEGA1280/2560 and similar */ #if defined(TCCR5B) && defined(CS51) && defined(WGM50) sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64 sbi(TCCR5B, CS50); sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode #endif #if defined(ADCSRA) // set a2d prescale factor to 128 // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range. // XXX: this will not work properly for other clock speeds, and // this code should use F_CPU to determine the prescale factor. sbi(ADCSRA, ADPS2); sbi(ADCSRA, ADPS1); sbi(ADCSRA, ADPS0); // enable a2d conversions sbi(ADCSRA, ADEN); #endif // the bootloader connects pins 0 and 1 to the USART; disconnect them // here so they can be used as normal digital i/o; they will be // reconnected in Serial.begin() #if defined(UCSRB) UCSRB = 0; #elif defined(UCSR0B) UCSR0B = 0; #endif } }; #endif #endif