/* * Heater.cpp * * Created on: 24 Jul 2019 * Author: David */ #include "Heater.h" #include #include #include "Heat.h" #include "HeaterMonitor.h" #include "Sensors/TemperatureSensor.h" #include #include #include #if SUPPORT_OBJECT_MODEL // Object model table and functions // Note: if using GCC version 7.3.1 20180622 and lambda functions are used in this table, you must compile this file with option -std=gnu++17. // Otherwise the table will be allocated in RAM instead of flash, which wastes too much RAM. // Macro to build a standard lambda function that includes the necessary type conversions #define OBJECT_MODEL_FUNC(...) OBJECT_MODEL_FUNC_BODY(Heater, __VA_ARGS__) #define OBJECT_MODEL_FUNC_IF(...) OBJECT_MODEL_FUNC_IF_BODY(Heater, __VA_ARGS__) constexpr ObjectModelArrayDescriptor Heater::monitorsArrayDescriptor = { nullptr, [] (const ObjectModel *self, const ObjectExplorationContext&) noexcept -> size_t { return MaxMonitorsPerHeater; }, [] (const ObjectModel *self, ObjectExplorationContext& context) noexcept -> ExpressionValue { return ExpressionValue(self, 1); } }; constexpr ObjectModelTableEntry Heater::objectModelTable[] = { // Within each group, these entries must be in alphabetical order // 0. Heater members { "active", OBJECT_MODEL_FUNC(self->GetActiveTemperature(), 1), ObjectModelEntryFlags::live }, { "avgPwm", OBJECT_MODEL_FUNC(self->GetAveragePWM(), 3), ObjectModelEntryFlags::live }, { "current", OBJECT_MODEL_FUNC(self->GetTemperature(), 1), ObjectModelEntryFlags::live }, { "max", OBJECT_MODEL_FUNC(self->GetHighestTemperatureLimit(), 1), ObjectModelEntryFlags::none }, { "min", OBJECT_MODEL_FUNC(self->GetLowestTemperatureLimit(), 1), ObjectModelEntryFlags::none }, { "model", OBJECT_MODEL_FUNC((const FopDt *)&self->GetModel()), ObjectModelEntryFlags::none }, { "monitors", OBJECT_MODEL_FUNC_NOSELF(&monitorsArrayDescriptor), ObjectModelEntryFlags::none }, { "sensor", OBJECT_MODEL_FUNC((int32_t)self->GetSensorNumber()), ObjectModelEntryFlags::none }, { "standby", OBJECT_MODEL_FUNC(self->GetStandbyTemperature(), 1), ObjectModelEntryFlags::live }, { "state", OBJECT_MODEL_FUNC(self->GetStatus().ToString()), ObjectModelEntryFlags::live }, // 1. Heater.monitors[] members { "action", OBJECT_MODEL_FUNC_IF(self->monitors[context.GetLastIndex()].GetTrigger() != HeaterMonitorTrigger::Disabled, (int32_t)self->monitors[context.GetLastIndex()].GetAction()), ObjectModelEntryFlags::none }, { "condition", OBJECT_MODEL_FUNC(self->monitors[context.GetLastIndex()].GetTriggerName()), ObjectModelEntryFlags::none }, { "limit", OBJECT_MODEL_FUNC_IF(self->monitors[context.GetLastIndex()].GetTrigger() != HeaterMonitorTrigger::Disabled, self->monitors[context.GetLastIndex()].GetTemperatureLimit(), 1), ObjectModelEntryFlags::none }, }; constexpr uint8_t Heater::objectModelTableDescriptor[] = { 2, 10, 3 }; DEFINE_GET_OBJECT_MODEL_TABLE(Heater) #endif // Static members of class Heater float Heater::tuningPwm; // the PWM to use, 0..1 float Heater::tuningTargetTemp; // the target temperature float Heater::tuningHysteresis; float Heater::tuningFanPwm; DeviationAccumulator Heater::tuningStartTemp; // the temperature when we turned on the heater DeviationAccumulator Heater::dHigh; DeviationAccumulator Heater::dLow; DeviationAccumulator Heater::tOn; DeviationAccumulator Heater::tOff; DeviationAccumulator Heater::heatingRate; DeviationAccumulator Heater::coolingRate; DeviationAccumulator Heater::tuningVoltage; // sum of the voltage readings we take during the heating phase uint32_t Heater::tuningBeginTime; // when we started the tuning process uint32_t Heater::lastOffTime; uint32_t Heater::lastOnTime; float Heater::peakTemp; // max or min temperature uint32_t Heater::peakTime; // the time at which we recorded peakTemp float Heater::afterPeakTemp; // temperature after max from which we start timing the cooling rate uint32_t Heater::afterPeakTime; // the time at which we recorded afterPeakTemp float Heater::lastCoolingRate; FansBitmap Heater::tuningFans; unsigned int Heater::tuningPhase; uint8_t Heater::idleCyclesDone; Heater::HeaterParameters Heater::fanOffParams, Heater::fanOnParams; // Clear all the counters except tuning voltage and start temperature /*static*/ void Heater::ClearCounters() noexcept { dHigh.Clear(); dLow.Clear(); tOn.Clear(); tOff.Clear(); heatingRate.Clear(); coolingRate.Clear(); } Heater::Heater(unsigned int num) noexcept : tuned(false), heaterNumber(num), sensorNumber(-1), activeTemperature(0.0), standbyTemperature(0.0), maxTempExcursion(DefaultMaxTempExcursion), maxHeatingFaultTime(DefaultMaxHeatingFaultTime), active(false), modelSetByUser(false), monitorsSetByUser(false) { } Heater::~Heater() noexcept { for (HeaterMonitor& h : monitors) { h.Disable(); } } void Heater::SetSensorNumber(int sn) noexcept { if (sn != sensorNumber) { sensorNumber = sn; } } GCodeResult Heater::SetOrReportModel(unsigned int heater, GCodeBuffer& gb, const StringRef& reply) THROWS(GCodeException) { bool seen = false; float heatingRate = model.GetHeatingRate(); float td = model.GetDeadTime(), maxPwm = model.GetMaxPwm(), voltage = model.GetVoltage(), coolingRateExponent = model.GetCoolingRateExponent(), basicCoolingRate = model.GetBasicCoolingRate(), fanCoolingRate = model.GetFanCoolingRate(); int32_t dontUsePid = model.UsePid() ? 0 : 1; int32_t inversionParameter = 0; if (gb.Seen('K')) { // New style model parameters seen = true; float coolingRates[2]; size_t numValues = 2; gb.GetFloatArray(coolingRates, numValues, false); basicCoolingRate = coolingRates[0]; fanCoolingRate = (numValues == 2) ? coolingRates[1] : 0.0; if (gb.Seen('R')) { seen = true; heatingRate = gb.GetFValue(); } gb.TryGetFValue('E', coolingRateExponent, seen); } else if (gb.Seen('C')) { // Old style model parameters seen = true; float timeConstants[2]; size_t numValues = 2; gb.GetFloatArray(timeConstants, numValues, true); basicCoolingRate = 100.0/timeConstants[0]; fanCoolingRate = 100.0/timeConstants[1] - basicCoolingRate; coolingRateExponent = 1.0; } if (gb.TryGetFValue('R', heatingRate, seen)) { // We have the heating rate } else { float gain; if (gb.TryGetFValue('A', gain, seen)) { // Old style heating model. A = gain, C = cooling time constant seen = true; heatingRate = gain * basicCoolingRate * 0.01; } } gb.TryGetFValue('D', td, seen); gb.TryGetIValue('B', dontUsePid, seen); gb.TryGetFValue('S', maxPwm, seen); gb.TryGetFValue('V', voltage, seen); gb.TryGetIValue('I', inversionParameter, seen); if (seen) { // Set the model const bool inverseTemperatureControl = (inversionParameter == 1 || inversionParameter == 3); const GCodeResult rslt = SetModel(heatingRate, basicCoolingRate, fanCoolingRate, coolingRateExponent, td, maxPwm, voltage, dontUsePid == 0, inverseTemperatureControl, reply); if (rslt <= GCodeResult::warning) { modelSetByUser = true; } return rslt; } // Just report the model if (!model.IsEnabled()) { reply.printf("Heater %u is disabled because its model is undefined", heater); } else { model.AppendModelParameters(heater, reply, !reprap.GetHeat().IsBedOrChamberHeater(heater)); } return GCodeResult::ok; } // Set the process model returning true if successful GCodeResult Heater::SetModel(float hr, float bcr, float fcr, float coolingRateExponent, float td, float maxPwm, float voltage, bool usePid, bool inverted, const StringRef& reply) noexcept { GCodeResult rslt; if (model.SetParameters(hr, bcr, fcr, coolingRateExponent, td, maxPwm, GetHighestTemperatureLimit(), voltage, usePid, inverted)) { if (model.IsEnabled()) { rslt = UpdateModel(reply); if (rslt == GCodeResult::ok) { const float predictedMaxTemp = GetModel().EstimateMaxTemperatureRise() + NormalAmbientTemperature; const float noWarnTemp = (GetHighestTemperatureLimit() - NormalAmbientTemperature) * 1.5 + 50.0; // allow 50% extra power plus enough for an extra 50C if (predictedMaxTemp > noWarnTemp) { reply.printf("Heater %u predicted maximum temperature at full power is %d" DEGREE_SYMBOL "C", GetHeaterNumber(), (int)predictedMaxTemp); rslt = GCodeResult::warning; } } } else { ResetHeater(); tuned = false; rslt = GCodeResult::ok; } } else { reply.copy("bad model parameters"); rslt = GCodeResult::error; } reprap.HeatUpdated(); return rslt; } // Start an auto tune cycle for this heater GCodeResult Heater::StartAutoTune(GCodeBuffer& gb, const StringRef& reply, FansBitmap fans) THROWS(GCodeException) { // Get the target temperature (required) gb.MustSee('S'); const float targetTemp = gb.GetFValue(); if (!GetModel().IsEnabled()) { reply.printf("heater %u cannot be auto tuned while it is disabled", GetHeaterNumber()); return GCodeResult::error; } const float limit = GetHighestTemperatureLimit(); if (targetTemp >= limit) { reply.printf("heater %u target temperature must be below the temperature limit for this heater (%.1fC)", GetHeaterNumber(), (double)limit); return GCodeResult::error; } TemperatureError err; const float currentTemp = reprap.GetHeat().GetSensorTemperature(GetSensorNumber(), err); if (err != TemperatureError::success) { reply.printf("heater %u reported error '%s' at start of auto tuning", GetHeaterNumber(), TemperatureErrorString(err)); return GCodeResult::error; } const bool seenA = gb.Seen('A'); const float ambientTemp = (seenA) ? gb.GetFValue() : currentTemp; if (ambientTemp + 20 >= targetTemp) { reply.printf("Target temperature must be at least 20C above ambient temperature"); } // Get abd store the optional parameters tuningTargetTemp = targetTemp; tuningFans = fans; tuningPwm = (gb.Seen('P')) ? gb.GetLimitedFValue('P', 0.1, 1.0) : GetModel().GetMaxPwm(); tuningHysteresis = (gb.Seen('Y')) ? gb.GetLimitedFValue('Y', 1.0, 20.0) : DefaultTuningHysteresis; tuningFanPwm = (gb.Seen('F')) ? gb.GetLimitedFValue('F', 0.1, 1.0) : 1.0; const GCodeResult rslt = StartAutoTune(reply, seenA, ambientTemp); if (rslt == GCodeResult::ok) { reply.printf("Auto tuning heater %u using target temperature %.1f" DEGREE_SYMBOL "C and PWM %.2f - do not leave printer unattended", GetHeaterNumber(), (double)targetTemp, (double)tuningPwm); } return rslt; } const char *const Heater::TuningPhaseText[] = { "checking temperature is stable", "heating up", "settling", "measuring", #if TUNE_WITH_HALF_FAN "measuring with 50% fan", #endif "measuring with fan on" }; // Get the auto tune status or last result void Heater::GetAutoTuneStatus(const StringRef& reply) const noexcept { if (GetStatus() == HeaterStatus::tuning) { // Phases are: 1 = stabilising, 2 = heating, 3 = settling, 4 = cycling with fan off, 5 = cycling with fan on const unsigned int numPhases = (tuningFans.IsEmpty()) ? 4 : ARRAY_SIZE(TuningPhaseText); reply.printf("Heater %u is being tuned, phase %u of %u, %s", GetHeaterNumber(), tuningPhase + 1, numPhases, TuningPhaseText[tuningPhase]); } else if (tuned) { reply.printf("Heater %u tuning succeeded, use M307 H%u to see result", GetHeaterNumber(), GetHeaterNumber()); } else { reply.printf("Heater %u tuning failed", GetHeaterNumber()); } } // Tell the user what's happening, called after the tuning phase has been updated void Heater::ReportTuningUpdate() noexcept { if (tuningPhase < ARRAY_SIZE(TuningPhaseText)) { reprap.GetPlatform().MessageF(GenericMessage, "Auto tune starting phase %u, %s\n", tuningPhase, TuningPhaseText[tuningPhase]); } } void Heater::CalculateModel(HeaterParameters& params) noexcept { if (reprap.Debug(moduleHeat)) { #define PLUS_OR_MINUS "\xC2\xB1" reprap.GetPlatform().MessageF(GenericMessage, "tOn %ld" PLUS_OR_MINUS "%ld, tOff %ld" PLUS_OR_MINUS "%ld," " dHigh %ld" PLUS_OR_MINUS "%ld, dLow %ld" PLUS_OR_MINUS "%ld," " R %.3f" PLUS_OR_MINUS "%.3f, C %.3f" PLUS_OR_MINUS "%.3f," #if HAS_VOLTAGE_MONITOR " V %.1f" PLUS_OR_MINUS "%.1f," #endif " cycles %u\n", lrintf(tOn.GetMean()), lrintf(tOn.GetDeviation()), lrintf(tOff.GetMean()), lrintf(tOff.GetDeviation()), lrintf(dHigh.GetMean()), lrintf(dHigh.GetDeviation()), lrintf(dLow.GetMean()), lrintf(dLow.GetDeviation()), (double)heatingRate.GetMean(), (double)heatingRate.GetDeviation(), (double)coolingRate.GetMean(), (double)coolingRate.GetDeviation(), #if HAS_VOLTAGE_MONITOR (double)tuningVoltage.GetMean(), (double)tuningVoltage.GetDeviation(), #endif coolingRate.GetNumSamples() ); } const float cycleTime = tOn.GetMean() + tOff.GetMean(); // in milliseconds const float averageTemperatureRiseHeating = tuningTargetTemp - 0.5 * (tuningHysteresis - TuningPeakTempDrop) - tuningStartTemp.GetMean(); const float averageTemperatureRiseCooling = tuningTargetTemp - TuningPeakTempDrop - 0.5 * tuningHysteresis - tuningStartTemp.GetMean(); const float averageTemperatureRise = (averageTemperatureRiseHeating * tOn.GetMean() + averageTemperatureRiseCooling * tOff.GetMean()) / cycleTime; params.deadTime = (((dHigh.GetMean() * tOff.GetMean()) + (dLow.GetMean() * tOn.GetMean())) * MillisToSeconds)/cycleTime; // in seconds params.coolingRate = coolingRate.GetMean(); params.heatingRate = (heatingRate.GetMean() + (coolingRate.GetMean() * averageTemperatureRiseHeating/averageTemperatureRiseCooling)) / tuningPwm; params.gain = (tOn.GetMean() + tOff.GetMean()) * averageTemperatureRise/tOn.GetMean(); params.numCycles = dHigh.GetNumSamples(); } void Heater::SetAndReportModelAfterTuning(bool usingFans) noexcept { const float hRate = (usingFans) ? (fanOffParams.heatingRate + fanOnParams.heatingRate) * 0.5 : fanOffParams.heatingRate; const float deadTime = (usingFans) ? (fanOffParams.deadTime + fanOnParams.deadTime) * 0.5 : fanOffParams.deadTime; const float coolingRateExponent = (reprap.GetHeat().IsBedOrChamberHeater(GetHeaterNumber())) ? DefaultBedHeaterCoolingRateExponent : DefaultToolHeaterCoolingRateExponent; const float averageTemperatureRiseCooling = tuningTargetTemp - TuningPeakTempDrop - 0.5 * tuningHysteresis - tuningStartTemp.GetMean(); const float basicCoolingRate = fanOffParams.coolingRate/powf(averageTemperatureRiseCooling * 0.01, coolingRateExponent); float fanOnCoolingRate = 0.0; if (usingFans) { // Sometimes the print cooling fan makes no difference to the cooling rate. The SetModel call will fail if the rate with fan on is lower than the rate with fan off. if (fanOnParams.coolingRate > fanOffParams.coolingRate) { fanOnCoolingRate = ((fanOnParams.coolingRate - fanOffParams.coolingRate) * 100.0)/(averageTemperatureRiseCooling * tuningFanPwm); } else { reprap.GetPlatform().Message(WarningMessage, "Turning on the print cooling fan did not increase hot end cooling. Check that the correct fan has been configured.\n"); } } String str; const GCodeResult rslt = SetModel( hRate, basicCoolingRate, fanOnCoolingRate, coolingRateExponent, deadTime, tuningPwm, #if HAS_VOLTAGE_MONITOR tuningVoltage.GetMean(), #else 0.0, #endif true, false, str.GetRef()); if (rslt == GCodeResult::ok || rslt == GCodeResult::warning) { tuned = true; str.printf( "Auto tuning heater %u completed after %u idle and %u tuning cycles in %" PRIu32 " seconds. This heater needs the following M307 command:\n ", GetHeaterNumber(), idleCyclesDone, (usingFans) ? fanOffParams.numCycles + fanOnParams.numCycles : fanOffParams.numCycles, (millis() - tuningBeginTime)/(uint32_t)SecondsToMillis ); GetModel().AppendM307Command(GetHeaterNumber(), str.GetRef(), !reprap.GetHeat().IsBedOrChamberHeater(GetHeaterNumber())); reprap.GetPlatform().Message(LoggedGenericMessage, str.c_str()); if (reprap.Debug(moduleHeat)) { str.printf("Long term gain %.1f/%.1f", (double)fanOffParams.GetNormalGain(), (double)fanOffParams.gain); if (usingFans) { str.catf(" : %.1f/.1%f", (double)fanOnParams.GetNormalGain(), (double)fanOnParams.gain); } str.cat('\n'); reprap.GetPlatform().Message(GenericMessage, str.c_str()); } if (reprap.GetGCodes().SawM501InConfigFile()) { reprap.GetPlatform().Message(GenericMessage, "Send M500 to save this command in config-override.g\n"); } else { reprap.GetPlatform().MessageF(GenericMessage, "Edit the M307 H%u command in config.g to match this. Omit the V parameter if the heater is not powered from VIN.\n", GetHeaterNumber()); } } else { reprap.GetPlatform().MessageF(WarningMessage, "Auto tune of heater %u failed due to bad curve fit (R=%.3f K=%.3f:%.3f D=%.2f)\n", GetHeaterNumber(), (double)hRate, (double)basicCoolingRate, (double)fanOnCoolingRate, (double)deadTime); } } GCodeResult Heater::SetFaultDetectionParameters(float pMaxTempExcursion, float pMaxFaultTime, const StringRef& reply) noexcept { maxTempExcursion = pMaxTempExcursion; maxHeatingFaultTime = pMaxFaultTime; const GCodeResult rslt = UpdateFaultDetectionParameters(reply); reprap.HeatUpdated(); return rslt; } // Process M143 for this heater GCodeResult Heater::ConfigureMonitor(GCodeBuffer &gb, const StringRef &reply) THROWS(GCodeException) { // Get any parameters that have been provided uint32_t index = 0; bool seenP = false; gb.TryGetLimitedUIValue('P', index, seenP, MaxMonitorsPerHeater); bool seenSensor = false; uint32_t monitoringSensor = GetSensorNumber(); gb.TryGetLimitedUIValue('T', monitoringSensor, seenSensor, MaxSensors); const bool seenAction = gb.Seen('A'); const HeaterMonitorAction action = (seenAction) ? static_cast(gb.GetLimitedUIValue('A', (unsigned int)MaxHeaterMonitorAction + 1)) : HeaterMonitorAction::GenerateFault; const bool seenCondition = gb.Seen('C'); const HeaterMonitorTrigger trigger = (seenCondition) ? static_cast(gb.GetLimitedIValue('C', -1, (int)MaxHeaterMonitorTrigger)) : HeaterMonitorTrigger::TemperatureExceeded; const bool seenLimit = gb.Seen('S'); const float limit = (seenLimit) ? gb.GetFValue() : monitors[index].GetTemperatureLimit(); if (limit <= BadLowTemperature || limit >= BadErrorTemperature) { reply.copy("Invalid temperature limit"); return GCodeResult::error; } if (seenSensor || seenLimit || seenAction || seenCondition) { monitors[index].Set(monitoringSensor, limit, action, trigger); const GCodeResult rslt = UpdateHeaterMonitors(reply); if (rslt <= GCodeResult::warning) { monitorsSetByUser = true; } reprap.HeatUpdated(); return rslt; } // Else we are reporting on one or all of the monitors if (seenP) { monitors[index].Report(heaterNumber, index, reply); } else { for (size_t i = 0; i < MaxMonitorsPerHeater; ++i) { monitors[i].Report(heaterNumber, i, reply); } } return GCodeResult::ok; } float Heater::GetHighestTemperatureLimit() const noexcept { float limit = BadErrorTemperature; for (const HeaterMonitor& prot : monitors) { if (prot.GetTrigger() == HeaterMonitorTrigger::TemperatureExceeded) { const float t = prot.GetTemperatureLimit(); if (limit == BadErrorTemperature || t > limit) { limit = t; } } } return limit; } float Heater::GetLowestTemperatureLimit() const noexcept { float limit = ABS_ZERO; for (const HeaterMonitor& prot : monitors) { if (prot.GetTrigger() == HeaterMonitorTrigger::TemperatureTooLow) { const float t = prot.GetTemperatureLimit(); if (limit == ABS_ZERO || t < limit) { limit = t; } } } return limit; } HeaterStatus Heater::GetStatus() const noexcept { const HeaterMode mode = GetMode(); return (mode == HeaterMode::fault) ? HeaterStatus::fault : (mode == HeaterMode::offline) ? HeaterStatus::offline : (mode == HeaterMode::off) ? HeaterStatus::off : (mode >= HeaterMode::tuning0) ? HeaterStatus::tuning : (active) ? HeaterStatus::active : HeaterStatus::standby; } const char* Heater::GetSensorName() const noexcept { const auto sensor = reprap.GetHeat().FindSensor(sensorNumber); return (sensor.IsNotNull()) ? sensor->GetSensorName() : nullptr; } GCodeResult Heater::Activate(const StringRef& reply) noexcept { if (GetMode() != HeaterMode::fault) { active = true; return SwitchOn(reply); } reply.printf("Can't activate heater %u while in fault state", heaterNumber); return GCodeResult::error; } void Heater::Standby() noexcept { if (GetMode() != HeaterMode::fault) { active = false; String<1> dummy; (void)SwitchOn(dummy.GetRef()); } } void Heater::SetTemperature(float t, bool activeNotStandby) THROWS(GCodeException) { if (t > GetHighestTemperatureLimit()) { throw GCodeException(-1, -1, "Temperature too high for heater %" PRIu32, (uint32_t)GetHeaterNumber()); } else if (t < GetLowestTemperatureLimit()) { throw GCodeException(-1, -1, "Temperature too low for heater %" PRIu32, (uint32_t)GetHeaterNumber()); } else { ((activeNotStandby) ? activeTemperature : standbyTemperature) = t; if (GetMode() > HeaterMode::suspended && active == activeNotStandby) { String<1> dummy; (void)SwitchOn(dummy.GetRef()); } } } // This is called when config.g is about to be re-run void Heater::ClearModelAndMonitors() noexcept { model.Reset(); for (HeaterMonitor& hm : monitors) { hm.Disable(); } modelSetByUser = monitorsSetByUser = false; } // This is called when this heater is declared to be a bed or chamber heater using M140 or M141 void Heater::SetAsToolHeater() noexcept { if (!modelSetByUser) { model.SetDefaultToolParameters(); } if (!monitorsSetByUser && sensorNumber >= 0 && sensorNumber < (int)MaxSensors) { monitors[0].Set(sensorNumber, DefaultHotEndTemperatureLimit, HeaterMonitorAction::GenerateFault, HeaterMonitorTrigger::TemperatureExceeded); } } // This is called when a heater is declared to be a tool heater using M563 void Heater::SetAsBedOrChamberHeater() noexcept { if (!modelSetByUser) { model.SetDefaultBedOrChamberParameters(); } if (!monitorsSetByUser &&sensorNumber >= 0 && sensorNumber < (int)MaxSensors) { monitors[0].Set(sensorNumber, DefaultBedTemperatureLimit, HeaterMonitorAction::GenerateFault, HeaterMonitorTrigger::TemperatureExceeded); } } #if SUPPORT_REMOTE_COMMANDS GCodeResult Heater::SetHeaterMonitors(const CanMessageSetHeaterMonitors& msg, const StringRef& reply) noexcept { for (size_t i = 0; i < min(msg.numMonitors, MaxMonitorsPerHeater); ++i) { monitors[i].Set(msg.monitors[i].sensor, msg.monitors[i].limit, (HeaterMonitorAction)msg.monitors[i].action, (HeaterMonitorTrigger)msg.monitors[i].trigger); } return GCodeResult::ok; } GCodeResult Heater::SetModel(unsigned int heater, const CanMessageHeaterModelNewNew& msg, const StringRef& reply) noexcept { const float temperatureLimit = GetHighestTemperatureLimit(); const bool rslt = model.SetParameters(msg, temperatureLimit); if (rslt) { if (model.IsEnabled()) { return UpdateModel(reply); } else { ResetHeater(); } return GCodeResult::ok; } reply.copy("bad model parameters"); return GCodeResult::error; } GCodeResult Heater::SetTemperature(const CanMessageSetHeaterTemperature& msg, const StringRef& reply) noexcept { switch (msg.command) { case CanMessageSetHeaterTemperature::commandNone: activeTemperature = standbyTemperature = msg.setPoint; return GCodeResult::ok; case CanMessageSetHeaterTemperature::commandOff: activeTemperature = standbyTemperature = msg.setPoint; SwitchOff(); return GCodeResult::ok; case CanMessageSetHeaterTemperature::commandOn: activeTemperature = standbyTemperature = msg.setPoint; return SwitchOn(reply); case CanMessageSetHeaterTemperature::commandResetFault: activeTemperature = standbyTemperature = msg.setPoint; return ResetFault(reply); case CanMessageSetHeaterTemperature::commandSuspend: Suspend(true); return GCodeResult::ok; case CanMessageSetHeaterTemperature::commandUnsuspend: activeTemperature = standbyTemperature = msg.setPoint; Suspend(false); return GCodeResult::ok; case CanMessageSetHeaterTemperature::commandReset: ResetHeater(); return GCodeResult::ok; default: break; } reply.printf("Unknown command %u to heater %u", msg.command, heaterNumber); return GCodeResult::ok; } #endif // End