/* * DDA.h * * Created on: 7 Dec 2014 * Author: David */ #ifndef DDA_H_ #define DDA_H_ #include "RepRapFirmware.h" #include "DriveMovement.h" #include "GCodes/GCodes.h" // for class RawMove #ifdef DUET_NG #define DDA_LOG_PROBE_CHANGES 1 #else #define DDA_LOG_PROBE_CHANGES 0 // save memory on the wired Duet #endif /** * This defines a single linear movement of the print head */ class DDA { friend class DriveMovement; public: enum DDAState : unsigned char { empty, // empty or being filled in provisional, // ready, but could be subject to modifications frozen, // ready, no further modifications allowed executing, // steps are currently being generated for this DDA completed // move has been completed or aborted }; DDA(DDA* n); bool Init(const GCodes::RawMove &nextMove, bool doMotorMapping); // Set up a new move, returning true if it represents real movement void Init(); // Set up initial positions for machine startup bool Start(uint32_t tim); // Start executing the DDA, i.e. move the move. bool Step(); // Take one step of the DDA, called by timed interrupt. void SetNext(DDA *n) { next = n; } void SetPrevious(DDA *p) { prev = p; } void Complete() { state = completed; } bool Free(); void Prepare(); // Calculate all the values and freeze this DDA float CalcTime() const; // Calculate the time needed for this move (used for simulation) bool HasStepError() const; bool CanPauseAfter() const { return canPauseAfter; } bool IsPrintingMove() const { return isPrintingMove; } // Return true if this involves both XY movement and extrusion DDAState GetState() const { return state; } DDA* GetNext() const { return next; } DDA* GetPrevious() const { return prev; } int32_t GetTimeLeft() const; const int32_t *DriveCoordinates() const { return endPoint; } // Get endpoints of a move in machine coordinates void SetDriveCoordinate(int32_t a, size_t drive); // Force an end point void SetFeedRate(float rate) { requestedSpeed = rate; } float GetEndCoordinate(size_t drive, bool disableDeltaMapping); bool FetchEndPosition(volatile int32_t ep[DRIVES], volatile float endCoords[DRIVES]); void SetPositions(const float move[], size_t numDrives); // Force the endpoints to be these FilePosition GetFilePosition() const { return filePos; } float GetRequestedSpeed() const { return requestedSpeed; } void DebugPrint() const; static const uint32_t stepClockRate = VARIANT_MCK/128; // the frequency of the clock used for stepper pulse timing (see Platform::InitialiseInterrupts) static const uint64_t stepClockRateSquared = (uint64_t)stepClockRate * stepClockRate; // Note on the following constant: // If we calculate the step interval on every clock, we reach a point where the calculation time exceeds the step interval. // The worst case is pure Z movement on a delta. On a Mini Kossel with 80 steps/mm with this firmware running on a Duet (84MHx SAM3X8 processor), // the calculation can just be managed in time at speeds of 15000mm/min (step interval 50us), but not at 20000mm/min (step interval 37.5us). // Therefore, where the step interval falls below 60us, we don't calculate on every step. // Note: the above measurements were taken some time ago, before some firmware optimisations. #ifdef DUET_NG static const int32_t MinCalcIntervalDelta = (40 * stepClockRate)/1000000; // the smallest sensible interval between calculations (40us) in step timer clocks static const int32_t MinCalcIntervalCartesian = (40 * stepClockRate)/1000000; // same as delta for now, but could be lower static const uint32_t minInterruptInterval = 6; // about 2us minimum interval between interrupts, in clocks #else static const int32_t MinCalcIntervalDelta = (60 * stepClockRate)/1000000; // the smallest sensible interval between calculations (60us) in step timer clocks static const int32_t MinCalcIntervalCartesian = (60 * stepClockRate)/1000000; // same as delta for now, but could be lower static const uint32_t minInterruptInterval = 6; // about 2us minimum interval between interrupts, in clocks #endif static void PrintMoves(); // print saved moves for debugging #if DDA_LOG_PROBE_CHANGES static const size_t MaxLoggedProbePositions = 40; static size_t numLoggedProbePositions; static int32_t loggedProbePositions[XYZ_AXES * MaxLoggedProbePositions]; #endif private: void RecalculateMove(); void CalcNewSpeeds(); void ReduceHomingSpeed(); // called to reduce homing speed when a near-endstop is triggered void StopDrive(size_t drive); // stop movement of a drive and recalculate the endpoint void MoveAborted(); void InsertDM(DriveMovement *dm); DriveMovement *RemoveDM(size_t drive); bool IsDecelerationMove() const; // return true if this move is or have been might have been intended to be a deceleration-only move void DebugPrintVector(const char *name, const float *vec, size_t len) const; void CheckEndstops(Platform& platform); void AdvanceBabyStepping(float amount); // Try to push babystepping earlier in the move queue float NormaliseXYZ(); // Make the direction vector unit-normal in XYZ static void DoLookahead(DDA *laDDA); // Try to smooth out moves in the queue static float Normalise(float v[], size_t dim1, size_t dim2); // Normalise a vector of dim1 dimensions to unit length in the first dim1 dimensions static void Absolute(float v[], size_t dimensions); // Put a vector in the positive hyperquadrant static float Magnitude(const float v[], size_t dimensions); // Return the length of a vector static void Scale(float v[], float scale, size_t dimensions); // Multiply a vector by a scalar static float VectorBoxIntersection(const float v[], // Compute the length that a vector would have to have to... const float box[], size_t dimensions); // ...just touch the surface of a hyperbox. DDA* next; // The next one in the ring DDA *prev; // The previous one in the ring volatile DDAState state; // What state this DDA is in uint8_t endCoordinatesValid : 1; // True if endCoordinates can be relied on uint8_t isDeltaMovement : 1; // True if this is a delta printer movement uint8_t canPauseAfter : 1; // True if we can pause at the end of this move uint8_t goingSlow : 1; // True if we have reduced speed during homing uint8_t isPrintingMove : 1; // True if this move includes XY movement and extrusion uint8_t usePressureAdvance : 1; // True if pressure advance should be applied to any forward extrusion uint8_t hadLookaheadUnderrun : 1; // True if the lookahead queue was not long enough to optimise this move uint8_t xyMoving : 1; // True if we have movement along an X axis or the Y axis EndstopChecks endStopsToCheck; // Which endstops we are checking on this move uint32_t xAxes; // Which axes are behaving as X axes FilePosition filePos; // The position in the SD card file after this move was read, or zero if not read from SD card int32_t endPoint[DRIVES]; // Machine coordinates of the endpoint float endCoordinates[DRIVES]; // The Cartesian coordinates at the end of the move plus extrusion amounts float directionVector[DRIVES]; // The normalised direction vector - first 3 are XYZ Cartesian coordinates even on a delta float totalDistance; // How long is the move in hypercuboid space float acceleration; // The acceleration to use float requestedSpeed; // The speed that the user asked for // These are used only in delta calculations float a2plusb2; // Sum of the squares of the X and Y movement fractions int32_t cKc; // The Z movement fraction multiplied by Kc and converted to integer // These vary depending on how we connect the move with its predecessor and successor, but remain constant while the move is being executed float startSpeed; float endSpeed; float topSpeed; float accelDistance; float decelDistance; // This is a temporary, used to keep track of the lookahead to avoid making recursive calls float targetNextSpeed; // The speed that the next move would like to start at // These are calculated from the above and used in the ISR, so they are set up by Prepare() uint32_t clocksNeeded; // in clocks uint32_t moveStartTime; // clock count at which the move was started #if DDA_LOG_PROBE_CHANGES static bool probeTriggered; void LogProbePosition(); #endif DriveMovement* firstDM; // list of contained DMs that need steps, in step time order DriveMovement ddm[DRIVES]; // These describe the state of each drive movement }; // Free up this DDA, returning true if the lookahead underrun flag was set inline bool DDA::Free() { state = empty; return hadLookaheadUnderrun; } // Force an end point inline void DDA::SetDriveCoordinate(int32_t a, size_t drive) { endPoint[drive] = a; endCoordinatesValid = false; } #endif /* DDA_H_ */