/* * DriveMovement.h * * Created on: 17 Jan 2015 * Author: David */ #ifndef DRIVEMOVEMENT_H_ #define DRIVEMOVEMENT_H_ #include #include class LinearDeltaKinematics; #define DM_USE_FPU (__FPU_USED) #define EVEN_STEPS (1) // 1 to generate steps at even intervals when doing double/quad/octal stepping #define ROUND_TO_NEAREST (0) // 1 for round to nearest (as used in 1.20beta10), 0 for round down (as used prior to 1.20beta10) // Rounding functions, to improve code clarity. Also allows a quick switch between round-to-nearest and round down in the movement code. inline uint32_t roundU32(float f) noexcept { #if ROUND_TO_NEAREST return (uint32_t)lrintf(f); #else return (uint32_t)f; #endif } inline uint32_t roundU32(double d) noexcept { #if ROUND_TO_NEAREST return lrint(d); #else return (uint32_t)d; #endif } inline int32_t roundS32(float f) noexcept { #if ROUND_TO_NEAREST return lrintf(f); #else return (int32_t)f; #endif } inline int32_t roundS32(double d) noexcept { #if ROUND_TO_NEAREST return lrint(d); #else return (int32_t)d; #endif } inline uint64_t roundU64(float f) noexcept { #if ROUND_TO_NEAREST return (uint64_t)llrintf(f); #else return (uint64_t)f; #endif } inline uint64_t roundU64(double d) noexcept { #if ROUND_TO_NEAREST return (uint64_t)llrint(d); #else return (uint64_t)d; #endif } inline int64_t roundS64(float f) noexcept { #if ROUND_TO_NEAREST return llrintf(f); #else return (int64_t)f; #endif } inline int64_t roundS64(double d) noexcept { #if ROUND_TO_NEAREST return llrint(d); #else return (int64_t)d; #endif } // Struct for passing parameters to the DriveMovement Prepare methods struct PrepParams { // Parameters used for all types of motion float totalDistance; float accelDistance; float decelDistance; float acceleration; float deceleration; float decelStartDistance; #if DM_USE_FPU float fTopSpeedTimesCdivD; #else uint32_t topSpeedTimesCdivD; #endif // Parameters used only for extruders float accelCompFactor; #if SUPPORT_CAN_EXPANSION // Parameters used by CAN expansion float accelTime, steadyTime, decelTime; float initialSpeedFraction, finalSpeedFraction; #endif // Parameters used only for delta moves float initialX, initialY; #if SUPPORT_CAN_EXPANSION float finalX, finalY; float zMovement; #endif const LinearDeltaKinematics *dparams; float a2plusb2; // sum of the squares of the X and Y movement fractions }; enum class DMState : uint8_t { idle = 0, stepError = 1, // All higher values are various states of motion accel0 = 2, accel1, accel2, accel3, accel4, accel5, accel6, accel7, steady, decel0, decel1, decel2, decel3, decel4, decel5, decel6, decel7, reversing, reverse }; // This class describes a single movement of one drive class DriveMovement { public: friend class DDA; DriveMovement(DriveMovement *next) noexcept; void* operator new(size_t count) { return Tasks::AllocPermanent(count); } void* operator new(size_t count, std::align_val_t align) { return Tasks::AllocPermanent(count, align); } void operator delete(void* ptr) noexcept {} void operator delete(void* ptr, std::align_val_t align) noexcept {} bool CalcNextStepTime(const DDA &dda) noexcept SPEED_CRITICAL; bool PrepareCartesianAxis(const DDA& dda, const PrepParams& params) noexcept SPEED_CRITICAL; bool PrepareDeltaAxis(const DDA& dda, const PrepParams& params) noexcept SPEED_CRITICAL; bool PrepareExtruder(const DDA& dda, const PrepParams& params, float& extrusionPending, float speedChange, bool doCompensation) noexcept SPEED_CRITICAL; #if SUPPORT_REMOTE_COMMANDS bool PrepareRemoteExtruder(const DDA& dda, const PrepParams& params) noexcept; #endif void DebugPrint() const noexcept; int32_t GetNetStepsLeft() const noexcept; int32_t GetNetStepsTaken() const noexcept; #if HAS_SMART_DRIVERS uint32_t GetStepInterval(uint32_t microstepShift) const noexcept; // Get the current full step interval for this axis or extruder #endif #if SUPPORT_CAN_EXPANSION int32_t GetSteps() const noexcept { return (direction) ? totalSteps : -totalSteps; } #endif static void InitialAllocate(unsigned int num) noexcept; static unsigned int NumCreated() noexcept { return numCreated; } static DriveMovement *Allocate(size_t p_drive, DMState st) noexcept; static void Release(DriveMovement *item) noexcept; private: bool CalcNextStepTimeCartesianFull(const DDA &dda) noexcept SPEED_CRITICAL; bool CalcNextStepTimeDeltaFull(const DDA &dda) noexcept SPEED_CRITICAL; static DriveMovement *freeList; static unsigned int numCreated; // Parameters common to Cartesian, delta and extruder moves DriveMovement *nextDM; // link to next DM that needs a step DMState state; // whether this is active or not uint8_t drive; // the drive that this DM controls uint8_t direction : 1, // true=forwards, false=backwards directionChanged : 1, // set by CalcNextStepTime if the direction is changed fullCurrent : 1, // true if the drivers are set to the full current, false if they are set to the standstill current isDelta : 1; // true if this DM uses segment-free delta kinematics uint8_t stepsTillRecalc; // how soon we need to recalculate uint32_t totalSteps; // total number of steps for this move // These values change as the step is executed, except for reverseStartStep uint32_t nextStep; // number of steps already done uint32_t reverseStartStep; // the step number for which we need to reverse direction due to pressure advance or delta movement uint32_t nextStepTime; // how many clocks after the start of this move the next step is due uint32_t stepInterval; // how many clocks between steps #if DM_USE_FPU float fMmPerStepTimesCdivtopSpeed; #else uint32_t mmPerStepTimesCKdivtopSpeed; #endif // At this point we are 64-bit aligned // The following only needs to be stored per-drive if we are supporting pressure advance #if DM_USE_FPU float fTwoDistanceToStopTimesCsquaredDivD; #else uint64_t twoDistanceToStopTimesCsquaredDivD; #endif #if DM_USE_FPU float fTwoCsquaredTimesMmPerStepDivA; // 2 * clock^2 * mmPerStepInHyperCuboidSpace / acceleration float fTwoCsquaredTimesMmPerStepDivD; // 2 * clock^2 * mmPerStepInHyperCuboidSpace / deceleration #else uint64_t twoCsquaredTimesMmPerStepDivA; // 2 * clock^2 * mmPerStepInHyperCuboidSpace / acceleration uint64_t twoCsquaredTimesMmPerStepDivD; // 2 * clock^2 * mmPerStepInHyperCuboidSpace / deceleration #endif // Parameters unique to a style of move (Cartesian, delta or extruder). Currently, extruders and Cartesian moves use the same parameters. union MoveParams { struct CartesianParameters // Parameters for Cartesian and extruder movement, including extruder pressure advance { // The following depend on how the move is executed, so they must be set up in Prepare() #if DM_USE_FPU float fFourMaxStepDistanceMinusTwoDistanceToStopTimesCsquaredDivD; #else int64_t fourMaxStepDistanceMinusTwoDistanceToStopTimesCsquaredDivD; // this one can be negative #endif uint32_t accelStopStep; // the first step number at which we are no longer accelerating uint32_t decelStartStep; // the first step number at which we are decelerating uint32_t compensationClocks; // the pressure advance time in clocks uint32_t accelCompensationClocks; // compensationClocks * (1 - startSpeed/topSpeed) } cart; struct DeltaParameters // Parameters for delta movement { #if DM_USE_FPU // The following don't depend on how the move is executed, so they could be set up in Init() if we use fixed acceleration/deceleration float fDSquaredMinusAsquaredMinusBsquaredTimesSsquared; float fHmz0s; // the starting step position less the starting Z height, multiplied by the Z movement fraction and K (can go negative) float fMinusAaPlusBbTimesS; // The following depend on how the move is executed, so they must be set up in Prepare() float fAccelStopDs; float fDecelStartDs; #else // The following don't depend on how the move is executed, so they could be set up in Init() if we use fixed acceleration/deceleration int64_t dSquaredMinusAsquaredMinusBsquaredTimesKsquaredSsquared; int32_t hmz0sK; // the starting step position less the starting Z height, multiplied by the Z movement fraction and K (can go negative) int32_t minusAaPlusBbTimesKs; // The following depend on how the move is executed, so they must be set up in Prepare() uint32_t accelStopDsK; uint32_t decelStartDsK; #endif } delta; } mp; static constexpr uint32_t NoStepTime = 0xFFFFFFFF; // value to indicate that no further steps are needed when calculating the next step time #if !DM_USE_FPU static constexpr uint32_t K1 = 1024; // a power of 2 used to multiply the value mmPerStepTimesCdivtopSpeed to reduce rounding errors static constexpr uint32_t K2 = 512; // a power of 2 used in delta calculations to reduce rounding errors (but too large makes things worse) static constexpr int32_t Kc = 1024 * 1024; // a power of 2 for scaling the Z movement fraction #endif }; // Calculate and store the time since the start of the move when the next step for the specified DriveMovement is due. // Return true if there are more steps to do. When finished, leave nextStep == totalSteps + 1. // This is also used for extruders on delta machines. // We inline this part to speed things up when we are doing double/quad/octal stepping. inline bool DriveMovement::CalcNextStepTime(const DDA &dda) noexcept { ++nextStep; if (nextStep <= totalSteps) { if (stepsTillRecalc != 0) { --stepsTillRecalc; // we are doing double/quad/octal stepping #if EVEN_STEPS nextStepTime += stepInterval; #endif #if SAME70 asm volatile("nop"); asm volatile("nop"); asm volatile("nop"); asm volatile("nop"); asm volatile("nop"); asm volatile("nop"); #endif return true; } return (isDelta) ? CalcNextStepTimeDeltaFull(dda) : CalcNextStepTimeCartesianFull(dda); } state = DMState::idle; #if SAME70 asm volatile("nop"); asm volatile("nop"); asm volatile("nop"); asm volatile("nop"); asm volatile("nop"); asm volatile("nop"); #endif return false; } // Return the number of net steps left for the move in the forwards direction. // We have already taken nextSteps - 1 steps, unless nextStep is zero. inline int32_t DriveMovement::GetNetStepsLeft() const noexcept { int32_t netStepsLeft; if (reverseStartStep > totalSteps) // if no reverse phase { netStepsLeft = (nextStep == 0) ? (int32_t)totalSteps : (int32_t)totalSteps - (int32_t)nextStep + 1; } else if (nextStep >= reverseStartStep) { netStepsLeft = (int32_t)totalSteps - (int32_t)nextStep + 1; } else { const int32_t totalNetSteps = (int32_t)(2 * reverseStartStep) - (int32_t)totalSteps - 2; netStepsLeft = (nextStep == 0) ? totalNetSteps : totalNetSteps - (int32_t)nextStep + 1; } return (direction) ? netStepsLeft : -netStepsLeft; } // Return the number of net steps already taken for the move in the forwards direction. // We have already taken nextSteps - 1 steps, unless nextStep is zero. inline int32_t DriveMovement::GetNetStepsTaken() const noexcept { int32_t netStepsTaken; if (nextStep < reverseStartStep || reverseStartStep > totalSteps) // if no reverse phase, or not started it yet { netStepsTaken = (nextStep == 0) ? 0 : (int32_t)nextStep - 1; } else { netStepsTaken = (int32_t)nextStep - (int32_t)(2 * reverseStartStep) + 1; // allowing for direction having changed } return (direction) ? netStepsTaken : -netStepsTaken; } // This is inlined because it is only called from one place inline void DriveMovement::Release(DriveMovement *item) noexcept { item->nextDM = freeList; freeList = item; } #if HAS_SMART_DRIVERS // Get the current full step interval for this axis or extruder inline uint32_t DriveMovement::GetStepInterval(uint32_t microstepShift) const noexcept { return (nextStep < totalSteps && nextStep > (1u << microstepShift)) // if at least 1 full step done ? stepInterval << microstepShift // return the interval between steps converted to full steps : 0; } #endif #endif /* DRIVEMOVEMENT_H_ */