Welcome to mirror list, hosted at ThFree Co, Russian Federation.

RotatingMagnetFilamentMonitor.cpp « FilamentMonitors « src - github.com/Duet3D/RepRapFirmware.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 9a0dfc2b33000e516a284ff402649a76e8abd007 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
/*
 * RotatingMagnetFilamentMonitor.cpp
 *
 *  Created on: 9 Jan 2018
 *      Author: David
 */

#include "RotatingMagnetFilamentMonitor.h"
#include "GCodes/GCodeBuffer/GCodeBuffer.h"
#include "Platform.h"
#include "RepRap.h"
#include "Movement/Move.h"

// Unless we set the option to compare filament on all type of move, we reject readings if the last retract or reprime move wasn't completed
// well before the start bit was received. This is because those moves have high accelerations and decelerations, so the measurement delay
// is more likely to cause errors. This constant sets the delay required after a retract or reprime move before we accept the measurement.
const int32_t SyncDelayMillis = 10;

RotatingMagnetFilamentMonitor::RotatingMagnetFilamentMonitor(unsigned int extruder, unsigned int type)
	: Duet3DFilamentMonitor(extruder, type),
	  mmPerRev(DefaultMmPerRev),
	  minMovementAllowed(DefaultMinMovementAllowed), maxMovementAllowed(DefaultMaxMovementAllowed),
	  minimumExtrusionCheckLength(DefaultMinimumExtrusionCheckLength), comparisonEnabled(false), checkNonPrintingMoves(false)
{
	switchOpenMask = (type == 4) ? TypeMagnetV1SwitchOpenMask : 0;
	Init();
}

void RotatingMagnetFilamentMonitor::Init()
{
	dataReceived = false;
	sensorValue = 0;
	parityErrorCount = framingErrorCount = overrunErrorCount = polarityErrorCount = overdueCount = 0;
	lastMeasurementTime = 0;
	lastErrorCode = 0;
	version = 1;
	magnitude = 0;
	agc = 0;
	backwards = false;
	sensorError = false;
	InitReceiveBuffer();
	Reset();
}

void RotatingMagnetFilamentMonitor::Reset()
{
	extrusionCommandedThisSegment = extrusionCommandedSinceLastSync = movementMeasuredThisSegment = movementMeasuredSinceLastSync = 0.0;
	magneticMonitorState = MagneticMonitorState::idle;
	haveStartBitData = false;
	synced = false;							// force a resync
}

// Configure this sensor, returning true if error and setting 'seen' if we processed any configuration parameters
bool RotatingMagnetFilamentMonitor::Configure(GCodeBuffer& gb, const StringRef& reply, bool& seen)
{
	if (ConfigurePin(gb, reply, INTERRUPT_MODE_CHANGE, seen))
	{
		return true;
	}

	gb.TryGetFValue('L', mmPerRev, seen);
	gb.TryGetFValue('E', minimumExtrusionCheckLength, seen);

	if (gb.Seen('R'))
	{
		seen = true;
		size_t numValues = 2;
		uint32_t minMax[2];
		gb.GetUnsignedArray(minMax, numValues, false);
		if (numValues > 0)
		{
			minMovementAllowed = (float)minMax[0] * 0.01;
		}
		if (numValues > 1)
		{
			maxMovementAllowed = (float)minMax[1] * 0.01;
		}
	}

	if (gb.Seen('S'))
	{
		seen = true;
		comparisonEnabled = (gb.GetIValue() > 0);
	}

	if (gb.Seen('A'))
	{
		seen = true;
		checkNonPrintingMoves = (gb.GetIValue() > 0);
	}

	if (seen)
	{
		Init();
	}
	else
	{
		reply.printf("Duet3D rotating magnet filament monitor v%u%s on pin ", version, (switchOpenMask != 0) ? " with switch" : "");
		GetPort().AppendPinName(reply);
		reply.catf(", %s, sensitivity %.2fmm/rev, allow %ld%% to %ld%%, check every %.1fmm, ",
					(comparisonEnabled) ? "enabled" : "disabled",
					(double)mmPerRev,
					lrintf(minMovementAllowed * 100.0),
					lrintf(maxMovementAllowed * 100.0),
					(double)minimumExtrusionCheckLength);

		if (!dataReceived)
		{
			reply.cat("no data received");
		}
		else
		{
			reply.catf("version %u, ", version);
			if (version >= 3)
			{
				reply.catf("mag %u agc %u, ", magnitude, agc);
			}
			if (sensorError)
			{
				reply.cat("error");
				if (lastErrorCode != 0)
				{
					reply.catf(" %u", lastErrorCode);
				}
			}
			else if (magneticMonitorState != MagneticMonitorState::calibrating && totalExtrusionCommanded > 10.0)
			{
				const float measuredMmPerRev = totalExtrusionCommanded/totalMovementMeasured;
				reply.catf("measured sensitivity %.2fmm/rev, min %ld%% max %ld%% over %.1fmm\n",
					(double)measuredMmPerRev,
					lrintf(100 * minMovementRatio * measuredMmPerRev),
					lrintf(100 * maxMovementRatio * measuredMmPerRev),
					(double)totalExtrusionCommanded);
			}
			else
			{
				reply.cat("no calibration data");
			}
		}
	}

	return false;
}

// Return the current wheel angle
float RotatingMagnetFilamentMonitor::GetCurrentPosition() const
{
	return (sensorValue & TypeMagnetAngleMask) * (360.0/1024.0);
}

// Deal with any received data
void RotatingMagnetFilamentMonitor::HandleIncomingData()
{
	uint16_t val;
	PollResult res;
	while ((res = PollReceiveBuffer(val)) != PollResult::incomplete)
	{
		// We have either received a report or there has been a framing error
		bool receivedPositionReport = false;
		if (res == PollResult::complete)
		{
			// We have a completed a position report. Check the parity.
			uint8_t data8 = (uint8_t)((val >> 8) ^ val);
			data8 ^= (data8 >> 4);
			data8 ^= (data8 >> 2);
			data8 ^= (data8 >> 1);

			// Version 1 sensor:
			//  Data word:			0S00 00pp pppppppp		S = switch open, pppppppppp = 10-bit filament position
			//  Error word:			1000 0000 00000000
			//
			// Version 2 sensor (this firmware):
			//  Data word:			P00S 10pp pppppppp		S = switch open, ppppppppppp = 10-bit filament position
			//  Error word:			P010 0000 0000eeee		eeee = error code
			//	Version word:		P110 0000 vvvvvvvv		vvvvvvvv = sensor/firmware version, at least 2
			//
			// Version 3 firmware:
			//  Data word:			P00S 10pp pppppppp		S = switch open, ppppppppppp = 10-bit filament position
			//  Error word:			P010 0000 0000eeee		eeee = error code
			//	Version word:		P110 0000 vvvvvvvv		vvvvvvvv = sensor/firmware version, at least 2
			//  Magnitude word		P110 0010 mmmmmmmm		mmmmmmmm = highest 8 bits of magnitude (cf. brightness of laser sensor)
			//  AGC word			P110 0011 aaaaaaaa		aaaaaaaa = AGC setting (cf. shutter of laser sensor)
			if (version == 1)
			{
				if ((data8 & 1) == 0 && (val & 0x7F00) == 0x6000 && (val & 0x00FF) >= 2)
				{
					// Received a version word with the correct parity, so must be version 2 or later
					version = val & 0x00FF;
					if (switchOpenMask != 0)
					{
						switchOpenMask = TypeMagnetV2SwitchOpenMask;
					}
				}
				else if (val == TypeMagnetV1ErrorMask)
				{
					sensorError = true;
					lastErrorCode = 0;
				}
				else if ((val & 0xBC00) == 0)
				{
					receivedPositionReport = true;
					dataReceived = true;
					sensorError = false;
				}
			}
			else if ((data8 & 1) != 0)
			{
				++parityErrorCount;
			}
			else
			{
				switch (val & TypeMagnetV2MessageTypeMask)
				{
				case TypeMagnetV2MessageTypePosition:
					receivedPositionReport = true;
					dataReceived = true;
					sensorError = false;
					break;

				case TypeMagnetV2MessageTypeError:
					lastErrorCode = val & 0x00FF;
					sensorError = (lastErrorCode != 0);
					break;

				case TypeMagnetV2MessageTypeInfo:
					switch (val & TypeMagnetV2InfoTypeMask)
					{
					case TypeMagnetV2InfoTypeVersion:
						version = val & 0x00FF;
						break;

					case TypeMagnetV3InfoTypeMagnitude:
						magnitude = val & 0x00FF;
						break;

					case TypeMagnetV3InfoTypeAgc:
						agc = val & 0x00FF;
						break;

					default:
						break;
					}
					break;

				default:
					break;
				}
			}
		}
		else
		{
			// A receive error occurred. Any start bit data we stored is wrong.
			++framingErrorCount;
		}

		if (receivedPositionReport)
		{
			// We have a completed a position report
			const uint16_t angleChange = (val - sensorValue) & TypeMagnetAngleMask;			// angle change in range 0..1023
			const int32_t movement = (angleChange <= 512) ? (int32_t)angleChange : (int32_t)angleChange - 1024;
			movementMeasuredSinceLastSync += (float)movement/1024;
			sensorValue = val;
			lastMeasurementTime = millis();

			if (haveStartBitData)					// if we have a synchronised value for the amount of extrusion commanded
			{
				if (synced)
				{
					if (   checkNonPrintingMoves
						|| (wasPrintingAtStartBit && (int32_t)(lastSyncTime - reprap.GetMove().ExtruderPrintingSince()) >= SyncDelayMillis)
					   )
					{
						// We can use this measurement
						extrusionCommandedThisSegment += extrusionCommandedAtCandidateStartBit;
						movementMeasuredThisSegment += movementMeasuredSinceLastSync;
					}
				}
				lastSyncTime = candidateStartBitTime;
				extrusionCommandedSinceLastSync -= extrusionCommandedAtCandidateStartBit;
				movementMeasuredSinceLastSync = 0.0;
				synced = checkNonPrintingMoves || wasPrintingAtStartBit;
			}
		}
		haveStartBitData = false;
	}
}

// Call the following at intervals to check the status. This is only called when printing is in progress.
// 'filamentConsumed' is the net amount of extrusion commanded since the last call to this function.
// 'hadNonPrintingMove' is true if filamentConsumed includes extruder movement from non-printing moves.
// 'fromIsr' is true if this measurement was taken at the end of the ISR because a potential start bit was seen
FilamentSensorStatus RotatingMagnetFilamentMonitor::Check(bool isPrinting, bool fromIsr, uint32_t isrMillis, float filamentConsumed)
{
	// 1. Update the extrusion commanded and whether we have had an extruding but non-printing move
	extrusionCommandedSinceLastSync += filamentConsumed;

	// 2. If this call passes values synced to the start bit, save the data for the next completed measurement.
	if (fromIsr && IsWaitingForStartBit())
	{
		extrusionCommandedAtCandidateStartBit = extrusionCommandedSinceLastSync;
		wasPrintingAtStartBit = isPrinting;
		candidateStartBitTime = isrMillis;
		haveStartBitData = true;
	}

	// 3. Process the receive buffer and update everything if we have received anything or had a receive error
	HandleIncomingData();

	// 4. Decide whether it is time to do a comparison, and return the status
	FilamentSensorStatus ret = FilamentSensorStatus::ok;
	if (sensorError)
	{
		ret = FilamentSensorStatus::sensorError;
	}
	else if ((sensorValue & switchOpenMask) != 0)
	{
		ret = FilamentSensorStatus::noFilament;
	}
	else if (extrusionCommandedThisSegment >= minimumExtrusionCheckLength)
	{
		ret = CheckFilament(extrusionCommandedThisSegment, movementMeasuredThisSegment, false);
		extrusionCommandedThisSegment = movementMeasuredThisSegment = 0.0;
	}
	else if (   extrusionCommandedThisSegment + extrusionCommandedSinceLastSync >= minimumExtrusionCheckLength * 3
			 && millis() - lastMeasurementTime > 500
			 && !IsReceiving()
			)
	{
		// A sync is overdue
		ret = CheckFilament(extrusionCommandedThisSegment + extrusionCommandedSinceLastSync, movementMeasuredThisSegment + movementMeasuredSinceLastSync, true);
		extrusionCommandedThisSegment = extrusionCommandedSinceLastSync = movementMeasuredThisSegment = movementMeasuredSinceLastSync = 0.0;
	}

	return ret;
}

// Compare the amount commanded with the amount of extrusion measured, and set up for the next comparison
FilamentSensorStatus RotatingMagnetFilamentMonitor::CheckFilament(float amountCommanded, float amountMeasured, bool overdue)
{
	if (reprap.Debug(moduleFilamentSensors))
	{
		debugPrintf("Extr req %.3f meas %.3f%s\n", (double)amountCommanded, (double)amountMeasured, (overdue) ? " overdue" : "");
	}

	FilamentSensorStatus ret = FilamentSensorStatus::ok;

	switch (magneticMonitorState)
	{
	case MagneticMonitorState::idle:
		magneticMonitorState = MagneticMonitorState::calibrating;
		totalExtrusionCommanded = amountCommanded;
		totalMovementMeasured = amountMeasured;
		break;

	case MagneticMonitorState::calibrating:
		totalExtrusionCommanded += amountCommanded;
		totalMovementMeasured += amountMeasured;
		if (totalExtrusionCommanded >= 10.0)
		{
			backwards = (totalMovementMeasured < 0.0);
			if (backwards)
			{
				totalMovementMeasured = -totalMovementMeasured;
			}
			float ratio = totalMovementMeasured/totalExtrusionCommanded;
			minMovementRatio = maxMovementRatio = ratio;

			if (comparisonEnabled)
			{
				ratio *= mmPerRev;
				if (ratio < minMovementAllowed)
				{
					ret = FilamentSensorStatus::tooLittleMovement;
				}
				else if (ratio > maxMovementAllowed)
				{
					ret = FilamentSensorStatus::tooMuchMovement;
				}
			}
			magneticMonitorState = MagneticMonitorState::comparing;
		}
		break;

	case MagneticMonitorState::comparing:
		{
			totalExtrusionCommanded += amountCommanded;
			if (backwards)
			{
				amountMeasured = -amountMeasured;
			}
			totalMovementMeasured += amountMeasured;
			float ratio = amountMeasured/amountCommanded;
			if (ratio > maxMovementRatio)
			{
				maxMovementRatio = ratio;
			}
			else if (ratio < minMovementRatio)
			{
				minMovementRatio = ratio;
			}

			if (comparisonEnabled)
			{
				ratio *= mmPerRev;
				if (ratio < minMovementAllowed)
				{
					ret = FilamentSensorStatus::tooLittleMovement;
				}
				else if (ratio > maxMovementAllowed)
				{
					ret = FilamentSensorStatus::tooMuchMovement;
				}
			}
		}
		break;
	}

	return ret;
}

// Clear the measurement state. Called when we are not printing a file. Return the present/not present status if available.
FilamentSensorStatus RotatingMagnetFilamentMonitor::Clear()
{
	Reset();											// call this first so that haveStartBitData and synced are false when we call HandleIncomingData
	HandleIncomingData();								// to keep the diagnostics up to date

	return (sensorError) ? FilamentSensorStatus::sensorError
			: ((sensorValue & switchOpenMask) != 0) ? FilamentSensorStatus::noFilament
				: FilamentSensorStatus::ok;
}

// Print diagnostic info for this sensor
void RotatingMagnetFilamentMonitor::Diagnostics(MessageType mtype, unsigned int extruder)
{
	String<FormatStringLength> buf;
	buf.printf("Extruder %u: ", extruder);
	if (dataReceived)
	{
		buf.catf("pos %.2f, errs: frame %" PRIu32 " parity %" PRIu32 " ovrun %" PRIu32 " pol %" PRIu32 " ovdue %" PRIu32 "\n",
					(double)GetCurrentPosition(), framingErrorCount, parityErrorCount, overrunErrorCount, polarityErrorCount, overdueCount);
	}
	else
	{
		buf.cat("no data received\n");
	}
	reprap.GetPlatform().Message(mtype, buf.c_str());
}

// End