Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Heat.cpp « Heating « src - github.com/Duet3D/RepRapFirmware.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8362c3e12d9529ceb054ea3a43c52f1723449763 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
/****************************************************************************************************

RepRapFirmware - Heat

This is all the code to deal with heat and temperature.

-----------------------------------------------------------------------------------------------------

Version 0.1

18 November 2012

Adrian Bowyer
RepRap Professional Ltd
http://reprappro.com

Licence: GPL

****************************************************************************************************/

#include "Heat.h"
#include "HeaterProtection.h"
#include "Platform.h"
#include "RepRap.h"
#include "Sensors/TemperatureSensor.h"

#if SUPPORT_DHT_SENSOR
# include "Sensors/DhtSensor.h"
#endif

#ifdef RTOS

# include "Tasks.h"

constexpr uint32_t HeaterTaskStackWords = 400;			// task stack size in dwords, must be large enough for auto tuning
static Task<HeaterTaskStackWords> heaterTask;

extern "C" void HeaterTask(void * pvParameters)
{
	reprap.GetHeat().Task();
}

#endif

Heat::Heat(Platform& p)
	: platform(p),
#ifndef RTOS
	  active(false),
#endif
	  coldExtrude(false), heaterBeingTuned(-1), lastHeaterTuned(-1)
{
	ARRAY_INIT(bedHeaters, DefaultBedHeaters);
	ARRAY_INIT(chamberHeaters, DefaultChamberHeaters);

	for (size_t index : ARRAY_INDICES(heaterProtections))
	{
		heaterProtections[index] = new HeaterProtection(index);
	}

	for (size_t heater : ARRAY_INDICES(pids))
	{
		pids[heater] = new PID(platform, heater);
	}
}

// Reset all heater models to defaults. Called when running M502.
void Heat::ResetHeaterModels()
{
	for (size_t heater : ARRAY_INDICES(pids))
	{
		if (pids[heater]->IsHeaterEnabled())
		{
			if (IsBedOrChamberHeater(heater))
			{
				pids[heater]->SetModel(DefaultBedHeaterGain, DefaultBedHeaterTimeConstant, DefaultBedHeaterDeadTime, 1.0, 0.0, false, false, 0);
			}
			else
			{
				pids[heater]->SetModel(DefaultHotEndHeaterGain, DefaultHotEndHeaterTimeConstant, DefaultHotEndHeaterDeadTime, 1.0, 0.0, true, false, 0);
			}
		}
	}
}

void Heat::Init()
{
	// Initialise the heater protection items first
	for (size_t index : ARRAY_INDICES(heaterProtections))
	{
		HeaterProtection * const prot = heaterProtections[index];

		const float tempLimit = (IsBedOrChamberHeater(index)) ? DefaultBedTemperatureLimit : DefaultExtruderTemperatureLimit;
		prot->Init(tempLimit);

		if (index < NumHeaters)
		{
			pids[index]->SetHeaterProtection(prot);
		}
	}

	// Then set up the real heaters and the corresponding PIDs
	for (size_t heater : ARRAY_INDICES(pids))
	{
		heaterSensors[heater] = nullptr;			// no temperature sensor assigned yet
#ifdef PCCB
		// PCCB has no heaters by default, but we pretend that the LED outputs are heaters. So disable the PID controllers.
		pids[heater]->Init(-1.0, -1.0, -1.0, true, false);
#else
		if (IsBedOrChamberHeater(heater))
		{
			pids[heater]->Init(DefaultBedHeaterGain, DefaultBedHeaterTimeConstant, DefaultBedHeaterDeadTime, false, false);
		}
#if defined(DUET_06_085)
		else if (heater == NumHeaters - 1)
		{
			// On the Duet 085, the heater 6 pin is also the fan 1 pin. By default we support fan 1, so disable heater 6.
			pids[heater]->Init(-1.0, -1.0, -1.0, true, false);
		}
#endif
		else
		{
			pids[heater]->Init(DefaultHotEndHeaterGain, DefaultHotEndHeaterTimeConstant, DefaultHotEndHeaterDeadTime, true, false);
		}
#endif
		lastStandbyTools[heater] = nullptr;
	}

	// Set up the virtual heaters
	// Clear the user-defined virtual heaters
	for (TemperatureSensor* &v : virtualHeaterSensors)
	{
		v = nullptr;
	}

	// Set up default virtual heaters for MCU temperature and TMC driver overheat sensors
#if HAS_CPU_TEMP_SENSOR
	virtualHeaterSensors[0] = TemperatureSensor::Create(CpuTemperatureSenseChannel);
	virtualHeaterSensors[0]->SetHeaterName("MCU");				// name this virtual heater so that it appears in DWC
#endif
#if HAS_SMART_DRIVERS
	virtualHeaterSensors[1] = TemperatureSensor::Create(FirstTmcDriversSenseChannel);
#ifndef PCCB
	virtualHeaterSensors[2] = TemperatureSensor::Create(FirstTmcDriversSenseChannel + 1);
#endif
#endif

#if SUPPORT_DHT_SENSOR
	// Initialise static fields of the DHT sensor
	DhtSensorHardwareInterface::InitStatic();
#endif

	extrusionMinTemp = HOT_ENOUGH_TO_EXTRUDE;
	retractionMinTemp = HOT_ENOUGH_TO_RETRACT;
	coldExtrude = false;

#ifdef RTOS
	heaterTask.Create(HeaterTask, "HEAT", nullptr, TaskPriority::HeatPriority);
#else
	lastTime = millis() - HeatSampleIntervalMillis;		// flag the PIDS as due for spinning
	active = true;
#endif
}

void Heat::Exit()
{
	for (PID *pid : pids)
	{
		pid->SwitchOff();
	}

#ifdef RTOS
	heaterTask.Suspend();
#else
	active = false;
#endif
}

#ifdef RTOS

void Heat::Task()
{
	lastWakeTime = xTaskGetTickCount();
	for (;;)
	{
		for (PID *& p : pids)
		{
			p->Spin();
		}

		// See if we have finished tuning a PID
		if (heaterBeingTuned != -1 && !pids[heaterBeingTuned]->IsTuning())
		{
			lastHeaterTuned = heaterBeingTuned;
			heaterBeingTuned = -1;
		}

		reprap.KickHeatTaskWatchdog();

		// Delay until it is time again
		vTaskDelayUntil(&lastWakeTime, HeatSampleIntervalMillis);
	}
}

#else

void Heat::Spin()
{
	if (active)
	{
		// See if it is time to spin the PIDs
		const uint32_t now = millis();
		if (now - lastTime >= HeatSampleIntervalMillis)
		{
			lastTime = now;
			for (PID *& p : pids)
			{
				p->Spin();
			}

			// See if we have finished tuning a PID
			if (heaterBeingTuned != -1 && !pids[heaterBeingTuned]->IsTuning())
			{
				lastHeaterTuned = heaterBeingTuned;
				heaterBeingTuned = -1;
			}
		}

#if SUPPORT_DHT_SENSOR
		// If the DHT temperature sensor is active, it needs to be spinned too
		DhtSensor::Spin();
#endif
	}
}

#endif

void Heat::Diagnostics(MessageType mtype)
{
	platform.Message(mtype, "=== Heat ===\nBed heaters =");
	for (int8_t bedHeater : bedHeaters)
	{
		platform.MessageF(mtype, " %d", bedHeater);
	}
	platform.Message(mtype, ", chamberHeaters =");
	for (int8_t chamberHeater : chamberHeaters)
	{
		platform.MessageF(mtype, " %d", chamberHeater);
	}
	platform.Message(mtype, "\n");

	for (size_t heater : ARRAY_INDICES(pids))
	{
		if (pids[heater]->Active())
		{
			platform.MessageF(mtype, "Heater %d is on, I-accum = %.1f\n", heater, (double)(pids[heater]->GetAccumulator()));
		}
	}
}

bool Heat::AllHeatersAtSetTemperatures(bool includingBed, float tolerance) const
{
	for (size_t heater : ARRAY_INDICES(pids))
	{
		if (!HeaterAtSetTemperature(heater, true, tolerance) && (includingBed || !IsBedHeater(heater)))
		{
			return false;
		}
	}
	return true;
}

//query an individual heater
bool Heat::HeaterAtSetTemperature(int8_t heater, bool waitWhenCooling, float tolerance) const
{
	// If it hasn't anything to do, it must be right wherever it is...
	if (heater < 0 || heater >= (int)NumHeaters || pids[heater]->SwitchedOff() || pids[heater]->FaultOccurred())
	{
		return true;
	}

	const float dt = GetTemperature(heater);
	const float target = (pids[heater]->Active()) ? GetActiveTemperature(heater) : GetStandbyTemperature(heater);
	return (target < TEMPERATURE_LOW_SO_DONT_CARE)
		|| (fabsf(dt - target) <= tolerance)
		|| (target < dt && !waitWhenCooling);
}

Heat::HeaterStatus Heat::GetStatus(int8_t heater) const
{
	if (heater < 0 || heater >= (int)NumHeaters)
	{
		return HS_off;
	}

	return (pids[heater]->FaultOccurred()) ? HS_fault
			: (pids[heater]->SwitchedOff()) ? HS_off
				: (pids[heater]->IsTuning()) ? HS_tuning
					: (pids[heater]->Active()) ? HS_active
						: HS_standby;
}

void Heat::SetBedHeater(size_t index, int8_t heater)
{
	const int bedHeater = bedHeaters[index];
	if (bedHeater >= 0)
	{
		pids[bedHeater]->SwitchOff();
	}
	bedHeaters[index] = heater;
}

bool Heat::IsBedHeater(int8_t heater) const
{
	for (int8_t bedHeater : bedHeaters)
	{
		if (heater == bedHeater)
		{
			return true;
		}
	}
	return false;
}

void Heat::SetChamberHeater(size_t index, int8_t heater)
{
	const int chamberHeater = chamberHeaters[index];
	if (chamberHeater >= 0)
	{
		pids[chamberHeater]->SwitchOff();
	}
	chamberHeaters[index] = heater;
}

bool Heat::IsChamberHeater(int8_t heater) const
{
	for (int8_t chamberHeater : chamberHeaters)
	{
		if (heater == chamberHeater)
		{
			return true;
		}
	}
	return false;
}

void Heat::SetActiveTemperature(int8_t heater, float t)
{
	if (heater >= 0 && heater < (int)NumHeaters)
	{
		pids[heater]->SetActiveTemperature(t);
	}
}

float Heat::GetActiveTemperature(int8_t heater) const
{
	return (heater >= 0 && heater < (int)NumHeaters) ? pids[heater]->GetActiveTemperature() : ABS_ZERO;
}

void Heat::SetStandbyTemperature(int8_t heater, float t)
{
	if (heater >= 0 && heater < (int)NumHeaters)
	{
		pids[heater]->SetStandbyTemperature(t);
	}
}

float Heat::GetStandbyTemperature(int8_t heater) const
{
	return (heater >= 0 && heater < (int)NumHeaters) ? pids[heater]->GetStandbyTemperature() : ABS_ZERO;
}

float Heat::GetHighestTemperatureLimit(int8_t heater) const
{
	float limit = BadErrorTemperature;
	if (heater >= 0 && heater < (int)NumHeaters)
	{
		for (const HeaterProtection *prot : heaterProtections)
		{
			if (prot->GetSupervisedHeater() == heater && prot->GetTrigger() == HeaterProtectionTrigger::TemperatureExceeded)
			{
				const float t = prot->GetTemperatureLimit();
				if (limit == BadErrorTemperature || t > limit)
				{
					limit = t;
				}
			}
		}
	}
	return limit;
}

float Heat::GetLowestTemperatureLimit(int8_t heater) const
{
	float limit = ABS_ZERO;
	if (heater >= 0 && heater < (int)NumHeaters)
	{
		for (const HeaterProtection *prot : heaterProtections)
		{
			if (prot->GetSupervisedHeater() == heater && prot->GetTrigger() == HeaterProtectionTrigger::TemperatureTooLow)
			{
				const float t = prot->GetTemperatureLimit();
				if (limit == ABS_ZERO || t < limit)
				{
					limit = t;
				}
			}
		}
	}
	return limit;
}

// Get the current temperature of a heater
float Heat::GetTemperature(int8_t heater) const
{
	return (heater >= 0 && heater < (int)NumHeaters) ? pids[heater]->GetTemperature() : ABS_ZERO;
}

// Get the target temperature of a heater
float Heat::GetTargetTemperature(int8_t heater) const
{
	const Heat::HeaterStatus hs = GetStatus(heater);
	return (hs == HS_active) ? GetActiveTemperature(heater)
			: (hs == HS_standby) ? GetStandbyTemperature(heater)
				: 0.0;
}

void Heat::Activate(int8_t heater)
{
	if (heater >= 0 && heater < (int)NumHeaters)
	{
		pids[heater]->Activate();
	}
}

void Heat::SwitchOff(int8_t heater)
{
	if (heater >= 0 && heater < (int)NumHeaters)
	{
		pids[heater]->SwitchOff();
		lastStandbyTools[heater] = nullptr;
	}
}

void Heat::SwitchOffAll(bool includingChamberAndBed)
{
	for (int heater = 0; heater < (int)NumHeaters; ++heater)
	{
		if (includingChamberAndBed || !IsBedOrChamberHeater(heater))
		{
			pids[heater]->SwitchOff();
		}
	}
}

void Heat::Standby(int8_t heater, const Tool *tool)
{
	if (heater >= 0 && heater < (int)NumHeaters)
	{
		pids[heater]->Standby();
		lastStandbyTools[heater] = tool;
	}
}

void Heat::ResetFault(int8_t heater)
{
	if (heater >= 0 && heater < (int)NumHeaters)
	{
		pids[heater]->ResetFault();
	}
}

float Heat::GetAveragePWM(size_t heater) const
{
	return pids[heater]->GetAveragePWM();
}

uint32_t Heat::GetLastSampleTime(size_t heater) const
{
	return pids[heater]->GetLastSampleTime();
}

bool Heat::IsBedOrChamberHeater(int8_t heater) const
{
	return IsBedHeater(heater) || IsChamberHeater(heater);
}

// Auto tune a PID
void Heat::StartAutoTune(size_t heater, float temperature, float maxPwm, const StringRef& reply)
{
	if (heaterBeingTuned == -1)
	{
		heaterBeingTuned = (int8_t)heater;
		pids[heater]->StartAutoTune(temperature, maxPwm, reply);
	}
	else
	{
		// Trying to start a new auto tune, but we are already tuning a heater
		reply.printf("Error: cannot start auto tuning heater %u because heater %d is being tuned", heater, heaterBeingTuned);
	}
}

bool Heat::IsTuning(size_t heater) const
{
	return pids[heater]->IsTuning();
}

void Heat::GetAutoTuneStatus(const StringRef& reply) const
{
	int8_t whichPid = (heaterBeingTuned == -1) ? lastHeaterTuned : heaterBeingTuned;
	if (whichPid != -1)
	{
		pids[whichPid]->GetAutoTuneStatus(reply);
	}
	else
	{
		reply.copy("No heater has been tuned yet");
	}
}

// Get the highest temperature limit of any heater
float Heat::GetHighestTemperatureLimit() const
{
	float limit = ABS_ZERO;
	for (HeaterProtection *prot : heaterProtections)
	{
		if (prot->GetHeater() >= 0 && prot->GetTrigger() == HeaterProtectionTrigger::TemperatureExceeded)
		{
			const float t = prot->GetTemperatureLimit();
			if (t > limit)
			{
				limit = t;
			}
		}
	}
	return limit;
}

// Override the model-generated PID parameters
void Heat::SetM301PidParameters(size_t heater, const M301PidParameters& params)
{
	pids[heater]->SetM301PidParameters(params);
}

// Write heater model parameters to file returning true if no error
bool Heat::WriteModelParameters(FileStore *f) const
{
	bool ok = f->Write("; Heater model parameters\n");
	for (size_t h : ARRAY_INDICES(pids))
	{
		const FopDt& model = pids[h]->GetModel();
		if (model.IsEnabled())
		{
			ok = model.WriteParameters(f, h);
		}
	}
	return ok;
}

// Return the channel used by a particular heater, or -1 if not configured
int Heat::GetHeaterChannel(size_t heater) const
{
	const TemperatureSensor * const * const spp = GetSensor(heater);
	return (spp != nullptr && *spp != nullptr) ? (*spp)->GetSensorChannel() : -1;
}

// Set the channel used by a heater, returning true if bad heater or channel number
bool Heat::SetHeaterChannel(size_t heater, int channel)
{
	TemperatureSensor ** const spp = GetSensor(heater);
	if (spp == nullptr)
	{
		return true;		// bad heater number
	}

	TemperatureSensor *sp = TemperatureSensor::Create(channel);
	if (sp == nullptr)
	{
		return true;		// bad channel number
	}

	delete *spp;			// release the old sensor object, if any
	*spp = sp;
	return false;
}

// Configure the temperature sensor for a channel
GCodeResult Heat::ConfigureHeaterSensor(unsigned int mcode, size_t heater, GCodeBuffer& gb, const StringRef& reply)
{
	TemperatureSensor ** const spp = GetSensor(heater);
	if (spp == nullptr || *spp == nullptr)
	{
		reply.printf("heater %d is not configured", heater);
		return GCodeResult::error;
	}

	return (*spp)->Configure(mcode, heater, gb, reply);
}

// Get a pointer to the temperature sensor entry, or nullptr if the heater number is bad
TemperatureSensor **Heat::GetSensor(size_t heater)
{
	if (heater < NumHeaters)
	{
		return &heaterSensors[heater];
	}
	if (heater >= FirstVirtualHeater && heater < FirstVirtualHeater + ARRAY_SIZE(virtualHeaterSensors))
	{
		return &virtualHeaterSensors[heater - FirstVirtualHeater];
	}
	return nullptr;
}

// Get a pointer to the temperature sensor entry, or nullptr if the heater number is bad (const version of above)
TemperatureSensor * const *Heat::GetSensor(size_t heater) const
{
	if (heater < NumHeaters)
	{
		return &heaterSensors[heater];
	}
	if (heater >= FirstVirtualHeater && heater < FirstVirtualHeater + ARRAY_SIZE(virtualHeaterSensors))
	{
		return &virtualHeaterSensors[heater - FirstVirtualHeater];
	}
	return nullptr;
}

// Get the name of a heater, or nullptr if it hasn't been named
const char *Heat::GetHeaterName(size_t heater) const
{
	const TemperatureSensor * const * const spp = GetSensor(heater);
	return (spp == nullptr || *spp == nullptr) ? nullptr : (*spp)->GetHeaterName();
}

// Return the protection parameters of the given index
HeaterProtection& Heat::AccessHeaterProtection(size_t index) const
{
	if (index >= FirstExtraHeaterProtection && index < FirstExtraHeaterProtection + NumExtraHeaterProtections)
	{
		return *heaterProtections[index + NumHeaters - FirstExtraHeaterProtection];
	}
	return *heaterProtections[index];
}

// Updates the PIDs and HeaterProtection items after a heater change
void Heat::UpdateHeaterProtection()
{
	// Reassign the first mapped heater protection item of each PID where applicable
	// and rebuild the linked list of heater protection elements per heater
	for (size_t heater : ARRAY_INDICES(pids))
	{
		// Rebuild linked lists
		HeaterProtection *firstProtectionItem = nullptr;
		HeaterProtection *lastElementInList = nullptr;
		for (HeaterProtection *prot : heaterProtections)
		{
			if (prot->GetHeater() == (int)heater)
			{
				if (firstProtectionItem == nullptr)
				{
					firstProtectionItem = prot;
					prot->SetNext(nullptr);
				}
				else if (lastElementInList == nullptr)
				{
					firstProtectionItem->SetNext(prot);
					lastElementInList = prot;
				}
				else
				{
					lastElementInList->SetNext(prot);
					lastElementInList = prot;
				}
			}
		}

		// Update reference to the first item so that we can achieve better performance
		pids[heater]->SetHeaterProtection(firstProtectionItem);
	}
}

// Check if the heater is able to operate returning true if everything is OK
bool Heat::CheckHeater(size_t heater)
{
	return !pids[heater]->FaultOccurred() && pids[heater]->CheckProtection();
}

// Get the temperature of a real or virtual heater
float Heat::GetTemperature(size_t heater, TemperatureError& err)
{
	TemperatureSensor * const * const spp = GetSensor(heater);
	if (spp == nullptr)
	{
		err = TemperatureError::unknownHeater;
		return BadErrorTemperature;
	}

	if (*spp == nullptr)
	{
		err = TemperatureError::unknownChannel;
		return BadErrorTemperature;
	}

	float t;
	err = (*spp)->GetTemperature(t);
	if (err != TemperatureError::success)
	{
		t = BadErrorTemperature;
	}
	return t;
}

// Suspend the heaters to conserve power or while doing Z probing
void Heat::SuspendHeaters(bool sus)
{
	for (PID *p : pids)
	{
		p->Suspend(sus);
	}
}

// Save some resume information returning true if successful.
// We assume that the bed and chamber heaters are either on and active, or off (not on standby).
bool Heat::WriteBedAndChamberTempSettings(FileStore *f) const
{
	String<100> bufSpace;
	const StringRef buf = bufSpace.GetRef();
	for (size_t index : ARRAY_INDICES(bedHeaters))
	{
		const int bedHeater = bedHeaters[index];
		if (bedHeater >= 0 && pids[bedHeater]->Active() && !pids[bedHeater]->SwitchedOff())
		{
			buf.printf("M140 P%u S%.1f\n", index, (double)GetActiveTemperature(bedHeater));
		}
	}
	for (size_t index : ARRAY_INDICES(chamberHeaters))
	{
		const int chamberHeater = chamberHeaters[index];
		if (chamberHeater >= 0 && pids[chamberHeater]->Active() && !pids[chamberHeater]->SwitchedOff())
		{
			buf.printf("M141 P%u S%.1f\n", index, (double)GetActiveTemperature(chamberHeater));
		}
	}
	return (buf.strlen() == 0) || f->Write(buf.c_str());
}

// End