Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Heat.cpp « Heating « src - github.com/Duet3D/RepRapFirmware.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 841f79b4e8b5009cb0efd231747f8a83a104b90a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
/****************************************************************************************************

RepRapFirmware - Heat

This is all the code to deal with heat and temperature.

-----------------------------------------------------------------------------------------------------

Version 0.1

18 November 2012

Adrian Bowyer
RepRap Professional Ltd
http://reprappro.com

Licence: GPL

****************************************************************************************************/

#include "Heat.h"
#include "Platform.h"
#include "RepRap.h"
#include "Sensors/TemperatureSensor.h"

Heat::Heat(Platform& p)
	: platform(p), active(false), coldExtrude(false), bedHeater(DefaultBedHeater), chamberHeater(DefaultChamberHeater), heaterBeingTuned(-1), lastHeaterTuned(-1)
{
	for (size_t heater : ARRAY_INDICES(pids))
	{
		pids[heater] = new PID(platform, heater);
	}
}

// Reset all heater models to defaults. Called when running M502.
void Heat::ResetHeaterModels()
{
	for (size_t heater : ARRAY_INDICES(pids))
	{
		if (pids[heater]->IsHeaterEnabled())
		{
			if ((int)heater == DefaultBedHeater || (int)heater == DefaultChamberHeater)
			{
				pids[heater]->SetModel(DefaultBedHeaterGain, DefaultBedHeaterTimeConstant, DefaultBedHeaterDeadTime, 1.0, false);
			}
			else
			{
				pids[heater]->SetModel(DefaultHotEndHeaterGain, DefaultHotEndHeaterTimeConstant, DefaultHotEndHeaterDeadTime, 1.0, true);
			}
		}
	}
}

void Heat::SetBedHeater(int8_t heater)
{
	if (bedHeater >= 0)
	{
		pids[bedHeater]->SwitchOff();
	}
	bedHeater = heater;
}

void Heat::SetChamberHeater(int8_t heater)
{
	if (chamberHeater >= 0)
	{
		pids[chamberHeater]->SwitchOff();
	}
	chamberHeater = heater;
}

void Heat::Init()
{
	// Set up the real heaters and the corresponding PIDs
	for (size_t heater = 0; heater < Heaters; ++heater)
	{
		heaterSensors[heater] = nullptr;			// no temperature sensor assigned yet
		if ((int)heater == DefaultBedHeater || (int)heater == DefaultChamberHeater)
		{
			pids[heater]->Init(DefaultBedHeaterGain, DefaultBedHeaterTimeConstant, DefaultBedHeaterDeadTime, DefaultBedTemperatureLimit, false);
		}
#if defined(DUET_06_085)
		else if (heater == Heaters - 1)
		{
			// On the Duet 085, the heater 6 pin is also the fan 1 pin. By default we support fan 1, so disable heater 6.
			pids[heater]->Init(-1.0, -1.0, -1.0, DefaultExtruderTemperatureLimit, true);
		}
#endif
		else
		{
			pids[heater]->Init(DefaultHotEndHeaterGain, DefaultHotEndHeaterTimeConstant, DefaultHotEndHeaterDeadTime, DefaultExtruderTemperatureLimit, true);
		}
		lastStandbyTools[heater] = nullptr;
	}

	// Set up the virtual heaters
	// Clear the user-defined virtual heaters
	for (TemperatureSensor* &v : virtualHeaterSensors)
	{
		v = nullptr;
	}

	// Set up default virtual heaters for MCU temperature and TMC driver overheat sensors
#if HAS_CPU_TEMP_SENSOR
	virtualHeaterSensors[0] = TemperatureSensor::Create(CpuTemperatureSenseChannel);
	virtualHeaterSensors[0]->SetHeaterName("MCU");				// name this virtual heater so that it appears in DWC
#endif
#ifdef DUET_NG
	virtualHeaterSensors[1] = TemperatureSensor::Create(FirstTmcDriversSenseChannel);
	virtualHeaterSensors[2] = TemperatureSensor::Create(FirstTmcDriversSenseChannel + 1);
#endif

	lastTime = millis() - platform.HeatSampleInterval();		// flag the PIDS as due for spinning
	longWait = millis();
	coldExtrude = false;
	active = true;
}

void Heat::Exit()
{
	for (PID *pid : pids)
	{
		pid->SwitchOff();
	}
	active = false;
}

void Heat::Spin()
{
	if (active)
	{
		// See if it is time to spin the PIDs
		const uint32_t now = millis();
		if (now - lastTime >= platform.HeatSampleInterval())
		{
			lastTime = now;
			for (size_t heater=0; heater < Heaters; heater++)
			{
				pids[heater]->Spin();
			}

			// See if we have finished tuning a PID
			if (heaterBeingTuned != -1 && !pids[heaterBeingTuned]->IsTuning())
			{
				lastHeaterTuned = heaterBeingTuned;
				heaterBeingTuned = -1;
			}
		}
	}
	platform.ClassReport(longWait);
}

void Heat::Diagnostics(MessageType mtype)
{
	platform.MessageF(mtype, "=== Heat ===\nBed heater = %d, chamber heater = %d\n", bedHeater, chamberHeater);
	for (size_t heater : ARRAY_INDICES(pids))
	{
		if (pids[heater]->Active())
		{
			platform.MessageF(mtype, "Heater %d is on, I-accum = %.1f\n", heater, (double)(pids[heater]->GetAccumulator()));
		}
	}
}

bool Heat::AllHeatersAtSetTemperatures(bool includingBed) const
{
	for (size_t heater : ARRAY_INDICES(pids))
	{
		if (!HeaterAtSetTemperature(heater, true) && (includingBed || (int)heater != bedHeater))
		{
			return false;
		}
	}
	return true;
}

//query an individual heater
bool Heat::HeaterAtSetTemperature(int8_t heater, bool waitWhenCooling) const
{
	// If it hasn't anything to do, it must be right wherever it is...
	if (heater < 0 || heater >= (int)Heaters || pids[heater]->SwitchedOff() || pids[heater]->FaultOccurred())
	{
		return true;
	}

	const float dt = GetTemperature(heater);
	const float target = (pids[heater]->Active()) ? GetActiveTemperature(heater) : GetStandbyTemperature(heater);
	return (target < TEMPERATURE_LOW_SO_DONT_CARE)
		|| (fabsf(dt - target) <= TEMPERATURE_CLOSE_ENOUGH)
		|| (target < dt && !waitWhenCooling);
}

Heat::HeaterStatus Heat::GetStatus(int8_t heater) const
{
	if (heater < 0 || heater >= (int)Heaters)
	{
		return HS_off;
	}

	return (pids[heater]->FaultOccurred()) ? HS_fault
			: (pids[heater]->SwitchedOff()) ? HS_off
				: (pids[heater]->IsTuning()) ? HS_tuning
					: (pids[heater]->Active()) ? HS_active
						: HS_standby;
}

void Heat::SetActiveTemperature(int8_t heater, float t)
{
	if (heater >= 0 && heater < (int)Heaters)
	{
		pids[heater]->SetActiveTemperature(t);
	}
}

float Heat::GetActiveTemperature(int8_t heater) const
{
	return (heater >= 0 && heater < (int)Heaters) ? pids[heater]->GetActiveTemperature() : ABS_ZERO;
}

void Heat::SetStandbyTemperature(int8_t heater, float t)
{
	if (heater >= 0 && heater < (int)Heaters)
	{
		pids[heater]->SetStandbyTemperature(t);
	}
}

float Heat::GetStandbyTemperature(int8_t heater) const
{
	return (heater >= 0 && heater < (int)Heaters) ? pids[heater]->GetStandbyTemperature() : ABS_ZERO;
}

void Heat::SetTemperatureLimit(int8_t heater, float t)
{
	if (heater >= 0 && heater < (int)Heaters)
	{
		pids[heater]->SetTemperatureLimit(t);
	}
}

float Heat::GetTemperatureLimit(int8_t heater) const
{
	return (heater >= 0 && heater < (int)Heaters) ? pids[heater]->GetTemperatureLimit() : ABS_ZERO;
}

// Get the current temperature of a heater
float Heat::GetTemperature(int8_t heater) const
{
	return (heater >= 0 && heater < (int)Heaters) ? pids[heater]->GetTemperature() : ABS_ZERO;
}

// Get the target temperature of a heater
float Heat::GetTargetTemperature(int8_t heater) const
{
	const Heat::HeaterStatus hs = GetStatus(heater);
	return (hs == HS_active) ? GetActiveTemperature(heater)
			: (hs == HS_standby) ? GetStandbyTemperature(heater)
				: 0.0;
}

void Heat::Activate(int8_t heater)
{
	if (heater >= 0 && heater < (int)Heaters)
	{
		pids[heater]->Activate();
	}
}

void Heat::SwitchOff(int8_t heater)
{
	if (heater >= 0 && heater < (int)Heaters)
	{
		pids[heater]->SwitchOff();
		lastStandbyTools[heater] = nullptr;
	}
}

void Heat::SwitchOffAll()
{
	for (PID *p : pids)
	{
		p->SwitchOff();
	}
}

void Heat::Standby(int8_t heater, const Tool *tool)
{
	if (heater >= 0 && heater < (int)Heaters)
	{
		pids[heater]->Standby();
		lastStandbyTools[heater] = tool;
	}
}

void Heat::ResetFault(int8_t heater)
{
	if (heater >= 0 && heater < (int)Heaters)
	{
		pids[heater]->ResetFault();
	}
}

float Heat::GetAveragePWM(size_t heater) const
{
	return pids[heater]->GetAveragePWM();
}

uint32_t Heat::GetLastSampleTime(size_t heater) const
{
	return pids[heater]->GetLastSampleTime();
}

bool Heat::UseSlowPwm(int8_t heater) const
{
	return heater == bedHeater || heater == chamberHeater;
}

// Auto tune a PID
void Heat::StartAutoTune(size_t heater, float temperature, float maxPwm, StringRef& reply)
{
	if (heaterBeingTuned == -1)
	{
		heaterBeingTuned = (int8_t)heater;
		pids[heater]->StartAutoTune(temperature, maxPwm, reply);
	}
	else
	{
		// Trying to start a new auto tune, but we are already tuning a heater
		reply.printf("Error: cannot start auto tuning heater %u because heater %d is being tuned", heater, heaterBeingTuned);
	}
}

bool Heat::IsTuning(size_t heater) const
{
	return pids[heater]->IsTuning();
}

void Heat::GetAutoTuneStatus(StringRef& reply) const
{
	int8_t whichPid = (heaterBeingTuned == -1) ? lastHeaterTuned : heaterBeingTuned;
	if (whichPid != -1)
	{
		pids[whichPid]->GetAutoTuneStatus(reply);
	}
	else
	{
		reply.copy("No heater has been tuned yet");
	}
}

// Get the highest temperature limit of any heater
float Heat::GetHighestTemperatureLimit() const
{
	float limit = ABS_ZERO;
	for (size_t h : ARRAY_INDICES(pids))
	{
		if (h < reprap.GetToolHeatersInUse() || (int)h == bedHeater || (int)h == chamberHeater)
		{
			const float t = pids[h]->GetTemperatureLimit();
			if (t > limit)
			{
				limit = t;
			}
		}
	}
	return limit;
}

// Override the model-generated PID parameters
void Heat::SetM301PidParameters(size_t heater, const M301PidParameters& params)
{
	pids[heater]->SetM301PidParameters(params);
}

// Write heater model parameters to file returning true if no error
bool Heat::WriteModelParameters(FileStore *f) const
{
	bool ok = f->Write("; Heater model parameters\n");
	for (size_t h : ARRAY_INDICES(pids))
	{
		const FopDt& model = pids[h]->GetModel();
		if (model.IsEnabled())
		{
			ok = model.WriteParameters(f, h);
		}
	}
	return ok;
}

// Return the channel used by a particular heater, or -1 if not configured
int Heat::GetHeaterChannel(size_t heater) const
{
	const TemperatureSensor * const * const spp = GetSensor(heater);
	return (spp != nullptr && *spp != nullptr) ? (*spp)->GetSensorChannel() : -1;
}

// Set the channel used by a heater, returning true if bad heater or channel number
bool Heat::SetHeaterChannel(size_t heater, int channel)
{
	TemperatureSensor ** const spp = GetSensor(heater);
	if (spp == nullptr)
	{
		return true;		// bad heater number
	}

	TemperatureSensor *sp = TemperatureSensor::Create(channel);
	if (sp == nullptr)
	{
		return true;		// bad channel number
	}

	delete *spp;			// release the old sensor object, if any
	*spp = sp;
	return false;
}

// Configure the temperature sensor for a channel
bool Heat::ConfigureHeaterSensor(unsigned int mcode, size_t heater, GCodeBuffer& gb, StringRef& reply, bool& error)
{
	TemperatureSensor ** const spp = GetSensor(heater);
	if (spp == nullptr || *spp == nullptr)
	{
		reply.printf("heater %d is not configured", heater);
		error = true;
		return false;
	}

	return (*spp)->Configure(mcode, heater, gb, reply, error);
}

// Get a pointer to the temperature sensor entry, or nullptr if the heater number is bad
TemperatureSensor **Heat::GetSensor(size_t heater)
{
	if (heater < Heaters)
	{
		return &heaterSensors[heater];
	}
	if (heater >= FirstVirtualHeater && heater < FirstVirtualHeater + ARRAY_SIZE(virtualHeaterSensors))
	{
		return &virtualHeaterSensors[heater - FirstVirtualHeater];
	}
	return nullptr;
}

// Get a pointer to the temperature sensor entry, or nullptr if the heater number is bad (const version of above)
TemperatureSensor * const *Heat::GetSensor(size_t heater) const
{
	if (heater < Heaters)
	{
		return &heaterSensors[heater];
	}
	if (heater >= FirstVirtualHeater && heater < FirstVirtualHeater + ARRAY_SIZE(virtualHeaterSensors))
	{
		return &virtualHeaterSensors[heater - FirstVirtualHeater];
	}
	return nullptr;
}

// Get the name of a heater, or nullptr if it hasn't been named
const char *Heat::GetHeaterName(size_t heater) const
{
	const TemperatureSensor * const * const spp = GetSensor(heater);
	return (spp == nullptr || *spp == nullptr) ? nullptr : (*spp)->GetHeaterName();
}

// Get the temperature of a real or virtual heater
float Heat::GetTemperature(size_t heater, TemperatureError& err)
{
	TemperatureSensor ** const spp = GetSensor(heater);
	if (spp == nullptr)
	{
		err = TemperatureError::unknownHeater;
		return BAD_ERROR_TEMPERATURE;
	}

	if (*spp == nullptr)
	{
		err = TemperatureError::unknownChannel;
		return BAD_ERROR_TEMPERATURE;
	}

	float t;
	err = (*spp)->GetTemperature(t);
	if (err != TemperatureError::success)
	{
		t = BAD_ERROR_TEMPERATURE;
	}
	return t;
}

#ifdef DUET_NG

// Suspend the heaters to conserve power
void Heat::SuspendHeaters(bool sus)
{
	for (PID *p : pids)
	{
		p->Suspend(sus);
	}
}

#endif

// Save some resume information returning true if successful.
// We assume that the bed and chamber heaters are either on and active, or off (not on standby).
bool Heat::WriteBedAndChamberTempSettings(FileStore *f) const
{
	char bufSpace[100];
	StringRef buf(bufSpace, ARRAY_SIZE(bufSpace));
	if (bedHeater >= 0 && pids[bedHeater]->Active() && !pids[bedHeater]->SwitchedOff())
	{
		buf.printf("M140 S%.1f\n", (double)GetActiveTemperature(bedHeater));
	}
	if (chamberHeater >= 0 && pids[chamberHeater]->Active() && !pids[chamberHeater]->SwitchedOff())
	{
		buf.printf("M141 S%.1f\n", (double)GetActiveTemperature(chamberHeater));
	}
	return (buf.Length() == 0) || f->Write(buf.Pointer());
}

// End