Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Heater.cpp « Heating « src - github.com/Duet3D/RepRapFirmware.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d8fdf86766969291104ad142361877d325e323db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
/*
 * Heater.cpp
 *
 *  Created on: 24 Jul 2019
 *      Author: David
 */

#include "Heater.h"
#include <Platform/RepRap.h>
#include <Platform/Platform.h>
#include "Heat.h"
#include "HeaterMonitor.h"
#include "Sensors/TemperatureSensor.h"
#include <GCodes/GCodes.h>
#include <GCodes/GCodeBuffer/GCodeBuffer.h>
#include <GCodes/GCodeException.h>

#if SUPPORT_OBJECT_MODEL

// Object model table and functions
// Note: if using GCC version 7.3.1 20180622 and lambda functions are used in this table, you must compile this file with option -std=gnu++17.
// Otherwise the table will be allocated in RAM instead of flash, which wastes too much RAM.

// Macro to build a standard lambda function that includes the necessary type conversions
#define OBJECT_MODEL_FUNC(...) OBJECT_MODEL_FUNC_BODY(Heater, __VA_ARGS__)
#define OBJECT_MODEL_FUNC_IF(...) OBJECT_MODEL_FUNC_IF_BODY(Heater, __VA_ARGS__)

constexpr ObjectModelArrayDescriptor Heater::monitorsArrayDescriptor =
{
	nullptr,
	[] (const ObjectModel *self, const ObjectExplorationContext&) noexcept -> size_t { return MaxMonitorsPerHeater; },
	[] (const ObjectModel *self, ObjectExplorationContext& context) noexcept -> ExpressionValue { return ExpressionValue(self, 1); }

};

constexpr ObjectModelTableEntry Heater::objectModelTable[] =
{
	// Within each group, these entries must be in alphabetical order
	// 0. Heater members
	{ "active",		OBJECT_MODEL_FUNC(self->GetActiveTemperature(), 1), 									ObjectModelEntryFlags::live },
	{ "avgPwm",		OBJECT_MODEL_FUNC(self->GetAveragePWM(), 3), 											ObjectModelEntryFlags::live },
	{ "current",	OBJECT_MODEL_FUNC(self->GetTemperature(), 1), 											ObjectModelEntryFlags::live },
	{ "max",		OBJECT_MODEL_FUNC(self->GetHighestTemperatureLimit(), 1), 								ObjectModelEntryFlags::none },
	{ "min",		OBJECT_MODEL_FUNC(self->GetLowestTemperatureLimit(), 1), 								ObjectModelEntryFlags::none },
	{ "model",		OBJECT_MODEL_FUNC((const FopDt *)&self->GetModel()),									ObjectModelEntryFlags::none },
	{ "monitors",	OBJECT_MODEL_FUNC_NOSELF(&monitorsArrayDescriptor), 									ObjectModelEntryFlags::none },
	{ "sensor",		OBJECT_MODEL_FUNC((int32_t)self->GetSensorNumber()), 									ObjectModelEntryFlags::none },
	{ "standby",	OBJECT_MODEL_FUNC(self->GetStandbyTemperature(), 1), 									ObjectModelEntryFlags::live },
	{ "state",		OBJECT_MODEL_FUNC(self->GetStatus().ToString()), 										ObjectModelEntryFlags::live },

	// 1. Heater.monitors[] members
	{ "action",		OBJECT_MODEL_FUNC_IF(self->monitors[context.GetLastIndex()].GetTrigger() != HeaterMonitorTrigger::Disabled,
										(int32_t)self->monitors[context.GetLastIndex()].GetAction()), 		ObjectModelEntryFlags::none },
	{ "condition",	OBJECT_MODEL_FUNC(self->monitors[context.GetLastIndex()].GetTriggerName()), 			ObjectModelEntryFlags::none },
	{ "limit",		OBJECT_MODEL_FUNC_IF(self->monitors[context.GetLastIndex()].GetTrigger() != HeaterMonitorTrigger::Disabled,
										self->monitors[context.GetLastIndex()].GetTemperatureLimit(), 1),	ObjectModelEntryFlags::none },
};

constexpr uint8_t Heater::objectModelTableDescriptor[] = { 2, 10, 3 };

DEFINE_GET_OBJECT_MODEL_TABLE(Heater)

#endif

// Static members of class Heater

float Heater::tuningPwm;								// the PWM to use, 0..1
float Heater::tuningTargetTemp;							// the target temperature
float Heater::tuningHysteresis;
float Heater::tuningFanPwm;

DeviationAccumulator Heater::tuningStartTemp;			// the temperature when we turned on the heater
DeviationAccumulator Heater::dHigh;
DeviationAccumulator Heater::dLow;
DeviationAccumulator Heater::tOn;
DeviationAccumulator Heater::tOff;
DeviationAccumulator Heater::heatingRate;
DeviationAccumulator Heater::coolingRate;
DeviationAccumulator Heater::tuningVoltage;				// sum of the voltage readings we take during the heating phase

uint32_t Heater::tuningBeginTime;						// when we started the tuning process
uint32_t Heater::lastOffTime;
uint32_t Heater::lastOnTime;
float Heater::peakTemp;									// max or min temperature
uint32_t Heater::peakTime;								// the time at which we recorded peakTemp
float Heater::afterPeakTemp;							// temperature after max from which we start timing the cooling rate
uint32_t Heater::afterPeakTime;							// the time at which we recorded afterPeakTemp
float Heater::lastCoolingRate;
FansBitmap Heater::tuningFans;
unsigned int Heater::tuningPhase;
uint8_t Heater::idleCyclesDone;

Heater::HeaterParameters Heater::fanOffParams, Heater::fanOnParams;

// Clear all the counters except tuning voltage and start temperature
/*static*/ void Heater::ClearCounters() noexcept
{
	dHigh.Clear();
	dLow.Clear();
	tOn.Clear();
	tOff.Clear();
	heatingRate.Clear();
	coolingRate.Clear();
}

Heater::Heater(unsigned int num) noexcept
	: tuned(false), heaterNumber(num), sensorNumber(-1), activeTemperature(0.0), standbyTemperature(0.0),
	  maxTempExcursion(DefaultMaxTempExcursion), maxHeatingFaultTime(DefaultMaxHeatingFaultTime),
	  active(false), modelSetByUser(false), monitorsSetByUser(false)
{
}

Heater::~Heater() noexcept
{
	for (HeaterMonitor& h : monitors)
	{
		h.Disable();
	}
}

void Heater::SetSensorNumber(int sn) noexcept
{
	if (sn != sensorNumber)
	{
		sensorNumber = sn;
	}
}

GCodeResult Heater::SetOrReportModel(unsigned int heater, GCodeBuffer& gb, const StringRef& reply) THROWS(GCodeException)
{
	bool seen = false;
	float heatingRate = model.GetHeatingRate();
	float td = model.GetDeadTime(),
		maxPwm = model.GetMaxPwm(),
		voltage = model.GetVoltage(),
		coolingRateExponent = model.GetCoolingRateExponent(),
		basicCoolingRate = model.GetBasicCoolingRate(),
		fanCoolingRate = model.GetFanCoolingRate();
	int32_t dontUsePid = model.UsePid() ? 0 : 1;
	int32_t inversionParameter = 0;

	if (gb.Seen('K'))
	{
		// New style model parameters
		seen = true;
		float coolingRates[2];
		size_t numValues = 2;
		gb.GetFloatArray(coolingRates, numValues, false);
		basicCoolingRate = coolingRates[0];
		fanCoolingRate = (numValues == 2) ? coolingRates[1] : 0.0;
		if (gb.Seen('R'))
		{
			seen = true;
			heatingRate = gb.GetFValue();
		}
		gb.TryGetFValue('E', coolingRateExponent, seen);
	}
	else if (gb.Seen('C'))
	{
		// Old style model parameters
		seen = true;
		float timeConstants[2];
		size_t numValues = 2;
		gb.GetFloatArray(timeConstants, numValues, true);
		basicCoolingRate = 100.0/timeConstants[0];
		fanCoolingRate = 100.0/timeConstants[1] - basicCoolingRate;
		coolingRateExponent = 1.0;
	}

	if (gb.TryGetFValue('R', heatingRate, seen))
	{
		// We have the heating rate
	}
	else
	{
		float gain;
		if (gb.TryGetFValue('A', gain, seen))
		{
			// Old style heating model. A = gain, C = cooling time constant
			seen = true;
			heatingRate = gain * basicCoolingRate * 0.01;
		}
	}

	gb.TryGetFValue('D', td, seen);
	gb.TryGetIValue('B', dontUsePid, seen);
	gb.TryGetFValue('S', maxPwm, seen);
	gb.TryGetFValue('V', voltage, seen);
	gb.TryGetIValue('I', inversionParameter, seen);

	if (seen)
	{
		// Set the model
		const bool inverseTemperatureControl = (inversionParameter == 1 || inversionParameter == 3);
		const GCodeResult rslt = SetModel(heatingRate, basicCoolingRate, fanCoolingRate, coolingRateExponent, td, maxPwm, voltage, dontUsePid == 0, inverseTemperatureControl, reply);
		if (rslt <= GCodeResult::warning)
		{
			modelSetByUser = true;
		}
		return rslt;
	}

	// Just report the model
	if (!model.IsEnabled())
	{
		reply.printf("Heater %u is disabled because its model is undefined", heater);
	}
	else
	{
		model.AppendModelParameters(heater, reply, !reprap.GetHeat().IsBedOrChamberHeater(heater));
	}
	return GCodeResult::ok;
}

// Set the process model returning true if successful
GCodeResult Heater::SetModel(float hr, float bcr, float fcr, float coolingRateExponent, float td, float maxPwm, float voltage, bool usePid, bool inverted, const StringRef& reply) noexcept
{
	GCodeResult rslt;
	if (model.SetParameters(hr, bcr, fcr, coolingRateExponent, td, maxPwm, GetHighestTemperatureLimit(), voltage, usePid, inverted))
	{
		if (model.IsEnabled())
		{
			rslt = UpdateModel(reply);
			if (rslt == GCodeResult::ok)
			{
				const float predictedMaxTemp = GetModel().EstimateMaxTemperatureRise() + NormalAmbientTemperature;
				const float noWarnTemp = (GetHighestTemperatureLimit() - NormalAmbientTemperature) * 1.5 + 50.0;		// allow 50% extra power plus enough for an extra 50C
				if (predictedMaxTemp > noWarnTemp)
				{
					reply.printf("Heater %u predicted maximum temperature at full power is %d" DEGREE_SYMBOL "C", GetHeaterNumber(), (int)predictedMaxTemp);
					rslt = GCodeResult::warning;
				}
			}
		}
		else
		{
			ResetHeater();
			tuned = false;
			rslt = GCodeResult::ok;
		}
	}
	else
	{
		reply.copy("bad model parameters");
		rslt = GCodeResult::error;
	}

	reprap.HeatUpdated();
	return rslt;
}

// Start an auto tune cycle for this heater
GCodeResult Heater::StartAutoTune(GCodeBuffer& gb, const StringRef& reply, FansBitmap fans) THROWS(GCodeException)
{
	// Get the target temperature (required)
	gb.MustSee('S');
	const float targetTemp = gb.GetFValue();

	if (!GetModel().IsEnabled())
	{
		reply.printf("heater %u cannot be auto tuned while it is disabled", GetHeaterNumber());
		return GCodeResult::error;
	}

	const float limit = GetHighestTemperatureLimit();
	if (targetTemp >= limit)
	{
		reply.printf("heater %u target temperature must be below the temperature limit for this heater (%.1fC)", GetHeaterNumber(), (double)limit);
		return GCodeResult::error;
	}

	TemperatureError err;
	const float currentTemp = reprap.GetHeat().GetSensorTemperature(GetSensorNumber(), err);
	if (err != TemperatureError::success)
	{
		reply.printf("heater %u reported error '%s' at start of auto tuning", GetHeaterNumber(), TemperatureErrorString(err));
		return GCodeResult::error;
	}

	const bool seenA = gb.Seen('A');
	const float ambientTemp = (seenA) ? gb.GetFValue() : currentTemp;
	if (ambientTemp + 20 >= targetTemp)
	{
		reply.printf("Target temperature must be at least 20C above ambient temperature");
	}

	// Get abd store the optional parameters
	tuningTargetTemp = targetTemp;
	tuningFans = fans;
	tuningPwm = (gb.Seen('P')) ? gb.GetLimitedFValue('P', 0.1, 1.0) : GetModel().GetMaxPwm();
	tuningHysteresis = (gb.Seen('Y')) ? gb.GetLimitedFValue('Y', 1.0, 20.0) : DefaultTuningHysteresis;
	tuningFanPwm = (gb.Seen('F')) ? gb.GetLimitedFValue('F', 0.1, 1.0) : 1.0;

	const GCodeResult rslt = StartAutoTune(reply, seenA, ambientTemp);
	if (rslt == GCodeResult::ok)
	{
		reply.printf("Auto tuning heater %u using target temperature %.1f" DEGREE_SYMBOL "C and PWM %.2f - do not leave printer unattended",
						GetHeaterNumber(), (double)targetTemp, (double)tuningPwm);
	}
	return rslt;
}

const char *const Heater::TuningPhaseText[] =
{
	"checking temperature is stable",
	"heating up",
	"settling",
	"measuring",
#if TUNE_WITH_HALF_FAN
	"measuring with 50% fan",
#endif
	"measuring with fan on"
};

// Get the auto tune status or last result
void Heater::GetAutoTuneStatus(const StringRef& reply) const noexcept
{
	if (GetStatus() == HeaterStatus::tuning)
	{
		// Phases are: 1 = stabilising, 2 = heating, 3 = settling, 4 = cycling with fan off, 5 = cycling with fan on
		const unsigned int numPhases = (tuningFans.IsEmpty()) ? 4 : ARRAY_SIZE(TuningPhaseText);
		reply.printf("Heater %u is being tuned, phase %u of %u, %s", GetHeaterNumber(), tuningPhase + 1, numPhases, TuningPhaseText[tuningPhase]);
	}
	else if (tuned)
	{
		reply.printf("Heater %u tuning succeeded, use M307 H%u to see result", GetHeaterNumber(), GetHeaterNumber());
	}
	else
	{
		reply.printf("Heater %u tuning failed", GetHeaterNumber());
	}
}

// Tell the user what's happening, called after the tuning phase has been updated
void Heater::ReportTuningUpdate() noexcept
{
	if (tuningPhase < ARRAY_SIZE(TuningPhaseText))
	{
		reprap.GetPlatform().MessageF(GenericMessage, "Auto tune starting phase %u, %s\n", tuningPhase, TuningPhaseText[tuningPhase]);
	}
}

void Heater::CalculateModel(HeaterParameters& params) noexcept
{
	if (reprap.Debug(moduleHeat))
	{
#define PLUS_OR_MINUS "\xC2\xB1"
		reprap.GetPlatform().MessageF(GenericMessage,
										"tOn %ld" PLUS_OR_MINUS "%ld, tOff %ld" PLUS_OR_MINUS "%ld,"
										" dHigh %ld" PLUS_OR_MINUS "%ld, dLow %ld" PLUS_OR_MINUS "%ld,"
										" R %.3f" PLUS_OR_MINUS "%.3f, C %.3f" PLUS_OR_MINUS "%.3f,"
#if HAS_VOLTAGE_MONITOR
										" V %.1f" PLUS_OR_MINUS "%.1f,"
#endif
										" cycles %u\n",
										lrintf(tOn.GetMean()), lrintf(tOn.GetDeviation()),
										lrintf(tOff.GetMean()), lrintf(tOff.GetDeviation()),
										lrintf(dHigh.GetMean()), lrintf(dHigh.GetDeviation()),
										lrintf(dLow.GetMean()), lrintf(dLow.GetDeviation()),
										(double)heatingRate.GetMean(), (double)heatingRate.GetDeviation(),
										(double)coolingRate.GetMean(), (double)coolingRate.GetDeviation(),
#if HAS_VOLTAGE_MONITOR
										(double)tuningVoltage.GetMean(), (double)tuningVoltage.GetDeviation(),
#endif
										coolingRate.GetNumSamples()
									 );
	}

	const float cycleTime = tOn.GetMean() + tOff.GetMean();		// in milliseconds
	const float averageTemperatureRiseHeating = tuningTargetTemp - 0.5 * (tuningHysteresis - TuningPeakTempDrop) - tuningStartTemp.GetMean();
	const float averageTemperatureRiseCooling = tuningTargetTemp - TuningPeakTempDrop - 0.5 * tuningHysteresis - tuningStartTemp.GetMean();
	const float averageTemperatureRise = (averageTemperatureRiseHeating * tOn.GetMean() + averageTemperatureRiseCooling * tOff.GetMean()) / cycleTime;
	params.deadTime = (((dHigh.GetMean() * tOff.GetMean()) + (dLow.GetMean() * tOn.GetMean())) * MillisToSeconds)/cycleTime;	// in seconds
	params.coolingRate = coolingRate.GetMean();
	params.heatingRate = (heatingRate.GetMean() + (coolingRate.GetMean() * averageTemperatureRiseHeating/averageTemperatureRiseCooling)) / tuningPwm;
	params.gain = (tOn.GetMean() + tOff.GetMean()) * averageTemperatureRise/tOn.GetMean();
	params.numCycles = dHigh.GetNumSamples();
}

void Heater::SetAndReportModelAfterTuning(bool usingFans) noexcept
{
	const float hRate = (usingFans) ? (fanOffParams.heatingRate + fanOnParams.heatingRate) * 0.5 : fanOffParams.heatingRate;
	const float deadTime = (usingFans) ? (fanOffParams.deadTime + fanOnParams.deadTime) * 0.5 : fanOffParams.deadTime;
	const float coolingRateExponent = (reprap.GetHeat().IsBedOrChamberHeater(GetHeaterNumber())) ? DefaultBedHeaterCoolingRateExponent : DefaultToolHeaterCoolingRateExponent;
	const float averageTemperatureRiseCooling = tuningTargetTemp - TuningPeakTempDrop - 0.5 * tuningHysteresis - tuningStartTemp.GetMean();
	const float basicCoolingRate = fanOffParams.coolingRate/powf(averageTemperatureRiseCooling * 0.01, coolingRateExponent);
	float fanOnCoolingRate = 0.0;
	if (usingFans)
	{
		// Sometimes the print cooling fan makes no difference to the cooling rate. The SetModel call will fail if the rate with fan on is lower than the rate with fan off.
		if (fanOnParams.coolingRate > fanOffParams.coolingRate)
		{
			fanOnCoolingRate = ((fanOnParams.coolingRate - fanOffParams.coolingRate) * 100.0)/(averageTemperatureRiseCooling * tuningFanPwm);
		}
		else
		{
			reprap.GetPlatform().Message(WarningMessage, "Turning on the print cooling fan did not increase hot end cooling. Check that the correct fan has been configured.\n");
		}
	}

	String<StringLength256> str;
	const GCodeResult rslt = SetModel(	hRate,
										basicCoolingRate,
										fanOnCoolingRate,
										coolingRateExponent,
										deadTime,
										tuningPwm,
#if HAS_VOLTAGE_MONITOR
										tuningVoltage.GetMean(),
#else
										0.0,
#endif
										true, false, str.GetRef());
	if (rslt == GCodeResult::ok || rslt == GCodeResult::warning)
	{
		tuned = true;
		str.printf(	"Auto tuning heater %u completed after %u idle and %u tuning cycles in %" PRIu32 " seconds. This heater needs the following M307 command:\n ",
					GetHeaterNumber(),
					idleCyclesDone,
					(usingFans) ? fanOffParams.numCycles + fanOnParams.numCycles : fanOffParams.numCycles,
					(millis() - tuningBeginTime)/(uint32_t)SecondsToMillis
				  );
		GetModel().AppendM307Command(GetHeaterNumber(), str.GetRef(), !reprap.GetHeat().IsBedOrChamberHeater(GetHeaterNumber()));
		reprap.GetPlatform().Message(LoggedGenericMessage, str.c_str());
		if (reprap.Debug(moduleHeat))
		{
			str.printf("Long term gain %.1f/%.1f", (double)fanOffParams.GetNormalGain(), (double)fanOffParams.gain);
			if (usingFans)
			{
				str.catf(" : %.1f/.1%f", (double)fanOnParams.GetNormalGain(), (double)fanOnParams.gain);
			}
			str.cat('\n');
			reprap.GetPlatform().Message(GenericMessage, str.c_str());
		}

		if (reprap.GetGCodes().SawM501InConfigFile())
		{
			reprap.GetPlatform().Message(GenericMessage, "Send M500 to save this command in config-override.g\n");
		}
		else
		{
			reprap.GetPlatform().MessageF(GenericMessage, "Edit the M307 H%u command in config.g to match this. Omit the V parameter if the heater is not powered from VIN.\n", GetHeaterNumber());
		}
	}
	else
	{
		reprap.GetPlatform().MessageF(WarningMessage, "Auto tune of heater %u failed due to bad curve fit (R=%.3f K=%.3f:%.3f D=%.2f)\n",
										GetHeaterNumber(), (double)hRate,
										(double)basicCoolingRate, (double)fanOnCoolingRate,
										(double)deadTime);
	}
}

GCodeResult Heater::SetFaultDetectionParameters(float pMaxTempExcursion, float pMaxFaultTime, const StringRef& reply) noexcept
{
	maxTempExcursion = pMaxTempExcursion;
	maxHeatingFaultTime = pMaxFaultTime;
	const GCodeResult rslt = UpdateFaultDetectionParameters(reply);
	reprap.HeatUpdated();
	return rslt;
}

// Process M143 for this heater
GCodeResult Heater::ConfigureMonitor(GCodeBuffer &gb, const StringRef &reply) THROWS(GCodeException)
{
	// Get any parameters that have been provided
	uint32_t index = 0;
	bool seenP = false;
	gb.TryGetLimitedUIValue('P', index, seenP, MaxMonitorsPerHeater);

	bool seenSensor = false;
	uint32_t monitoringSensor = GetSensorNumber();
	gb.TryGetLimitedUIValue('T', monitoringSensor, seenSensor, MaxSensors);

	const bool seenAction = gb.Seen('A');
	const HeaterMonitorAction action = (seenAction)
										? static_cast<HeaterMonitorAction>(gb.GetLimitedUIValue('A', (unsigned int)MaxHeaterMonitorAction + 1))
											: HeaterMonitorAction::GenerateFault;

	const bool seenCondition = gb.Seen('C');
	const HeaterMonitorTrigger trigger = (seenCondition)
											? static_cast<HeaterMonitorTrigger>(gb.GetLimitedIValue('C', -1, (int)MaxHeaterMonitorTrigger))
												: HeaterMonitorTrigger::TemperatureExceeded;

	const bool seenLimit = gb.Seen('S');
	const float limit = (seenLimit) ? gb.GetFValue() : monitors[index].GetTemperatureLimit();
	if (limit <= BadLowTemperature || limit >= BadErrorTemperature)
	{
		reply.copy("Invalid temperature limit");
		return GCodeResult::error;
	}

	if (seenSensor || seenLimit || seenAction || seenCondition)
	{
		monitors[index].Set(monitoringSensor, limit, action, trigger);
		const GCodeResult rslt = UpdateHeaterMonitors(reply);
		if (rslt <= GCodeResult::warning)
		{
			monitorsSetByUser = true;
		}
		reprap.HeatUpdated();
		return rslt;
	}

	// Else we are reporting on one or all of the monitors
	if (seenP)
	{
		monitors[index].Report(heaterNumber, index, reply);
	}
	else
	{
		for (size_t i = 0; i < MaxMonitorsPerHeater; ++i)
		{
			monitors[i].Report(heaterNumber, i, reply);
		}
	}
	return GCodeResult::ok;
}

float Heater::GetHighestTemperatureLimit() const noexcept
{
	float limit = BadErrorTemperature;
	for (const HeaterMonitor& prot : monitors)
	{
		if (prot.GetTrigger() == HeaterMonitorTrigger::TemperatureExceeded)
		{
			const float t = prot.GetTemperatureLimit();
			if (limit == BadErrorTemperature || t > limit)
			{
				limit = t;
			}
		}
	}
	return limit;
}

float Heater::GetLowestTemperatureLimit() const noexcept
{
	float limit = ABS_ZERO;
	for (const HeaterMonitor& prot : monitors)
	{
		if (prot.GetTrigger() == HeaterMonitorTrigger::TemperatureTooLow)
		{
			const float t = prot.GetTemperatureLimit();
			if (limit == ABS_ZERO || t < limit)
			{
				limit = t;
			}
		}
	}
	return limit;
}

HeaterStatus Heater::GetStatus() const noexcept
{
	const HeaterMode mode = GetMode();
	return (mode == HeaterMode::fault) ? HeaterStatus::fault
			: (mode == HeaterMode::offline) ? HeaterStatus::offline
				: (mode == HeaterMode::off) ? HeaterStatus::off
					: (mode >= HeaterMode::tuning0) ? HeaterStatus::tuning
						: (active) ? HeaterStatus::active
							: HeaterStatus::standby;
}

const char* Heater::GetSensorName() const noexcept
{
	const auto sensor = reprap.GetHeat().FindSensor(sensorNumber);
	return (sensor.IsNotNull()) ? sensor->GetSensorName() : nullptr;
}

GCodeResult Heater::Activate(const StringRef& reply) noexcept
{
	if (GetMode() != HeaterMode::fault)
	{
		active = true;
		return SwitchOn(reply);
	}
	reply.printf("Can't activate heater %u while in fault state", heaterNumber);
	return GCodeResult::error;
}

void Heater::Standby() noexcept
{
	if (GetMode() != HeaterMode::fault)
	{
		active = false;
		String<1> dummy;
		(void)SwitchOn(dummy.GetRef());
	}
}

void Heater::SetTemperature(float t, bool activeNotStandby) THROWS(GCodeException)
{
	if (t > GetHighestTemperatureLimit())
	{
		throw GCodeException(-1, -1, "Temperature too high for heater %" PRIu32, (uint32_t)GetHeaterNumber());
	}
	else if (t < GetLowestTemperatureLimit())
	{
		throw GCodeException(-1, -1, "Temperature too low for heater %" PRIu32, (uint32_t)GetHeaterNumber());
	}
	else
	{
		((activeNotStandby) ? activeTemperature : standbyTemperature) = t;
		if (GetMode() > HeaterMode::suspended && active == activeNotStandby)
		{
			String<StringLength100> reply;
			if (SwitchOn(reply.GetRef()) > GCodeResult::warning)
			{
				throw GCodeException(-1, 1, reply.c_str());
			}
		}
	}
}

// This is called when config.g is about to be re-run
void Heater::ClearModelAndMonitors() noexcept
{
	model.Reset();
	for (HeaterMonitor& hm : monitors)
	{
		hm.Disable();
	}
	modelSetByUser = monitorsSetByUser = false;
}

// This is called when this heater is declared to be a bed or chamber heater using M140 or M141
void Heater::SetAsToolHeater() noexcept
{
	if (!modelSetByUser)
	{
		model.SetDefaultToolParameters();
	}
	if (!monitorsSetByUser && sensorNumber >= 0 && sensorNumber < (int)MaxSensors)
	{
		monitors[0].Set(sensorNumber, DefaultHotEndTemperatureLimit, HeaterMonitorAction::GenerateFault, HeaterMonitorTrigger::TemperatureExceeded);
	}
}

// This is called when a heater is declared to be a tool heater using M563
void Heater::SetAsBedOrChamberHeater() noexcept
{
	if (!modelSetByUser)
	{
		model.SetDefaultBedOrChamberParameters();
	}
	if (!monitorsSetByUser &&sensorNumber >= 0 && sensorNumber < (int)MaxSensors)
	{
		monitors[0].Set(sensorNumber, DefaultBedTemperatureLimit, HeaterMonitorAction::GenerateFault, HeaterMonitorTrigger::TemperatureExceeded);
	}
}

#if SUPPORT_REMOTE_COMMANDS

GCodeResult Heater::SetHeaterMonitors(const CanMessageSetHeaterMonitors& msg, const StringRef& reply) noexcept
{
	for (size_t i = 0; i < min<size_t>(msg.numMonitors, MaxMonitorsPerHeater); ++i)
	{
		monitors[i].Set(msg.monitors[i].sensor, msg.monitors[i].limit, (HeaterMonitorAction)msg.monitors[i].action, (HeaterMonitorTrigger)msg.monitors[i].trigger);
	}
	return GCodeResult::ok;
}

GCodeResult Heater::SetModel(unsigned int heater, const CanMessageHeaterModelNewNew& msg, const StringRef& reply) noexcept
{
	const float temperatureLimit = GetHighestTemperatureLimit();
	const bool rslt = model.SetParameters(msg, temperatureLimit);
	if (rslt)
	{
		if (model.IsEnabled())
		{
			return UpdateModel(reply);
		}
		else
		{
			ResetHeater();
		}
		return GCodeResult::ok;
	}

	reply.copy("bad model parameters");
	return GCodeResult::error;
}

GCodeResult Heater::SetTemperature(const CanMessageSetHeaterTemperature& msg, const StringRef& reply) noexcept
{
	switch (msg.command)
	{
	case CanMessageSetHeaterTemperature::commandNone:
		activeTemperature = standbyTemperature = msg.setPoint;
		return GCodeResult::ok;

	case CanMessageSetHeaterTemperature::commandOff:
		activeTemperature = standbyTemperature = msg.setPoint;
		SwitchOff();
		return GCodeResult::ok;

	case CanMessageSetHeaterTemperature::commandOn:
		activeTemperature = standbyTemperature = msg.setPoint;
		return SwitchOn(reply);

	case CanMessageSetHeaterTemperature::commandResetFault:
		activeTemperature = standbyTemperature = msg.setPoint;
		return ResetFault(reply);

	case CanMessageSetHeaterTemperature::commandSuspend:
		Suspend(true);
		return GCodeResult::ok;

	case CanMessageSetHeaterTemperature::commandUnsuspend:
		activeTemperature = standbyTemperature = msg.setPoint;
		Suspend(false);
		return GCodeResult::ok;

	case CanMessageSetHeaterTemperature::commandReset:
		ResetHeater();
		return GCodeResult::ok;

	default:
		break;
	}

	reply.printf("Unknown command %u to heater %u", msg.command, heaterNumber);
	return GCodeResult::ok;
}

#endif

// End