Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Heater.cpp « Heating « src - github.com/Duet3D/RepRapFirmware.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8a3b50b02e9a1de4939dd6f87887053fb4534d7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
/*
 * Heater.cpp
 *
 *  Created on: 24 Jul 2019
 *      Author: David
 */

#include "Heater.h"
#include "RepRap.h"
#include "Platform.h"
#include "Heat.h"
#include "HeaterMonitor.h"
#include "Sensors/TemperatureSensor.h"
#include <GCodes/GCodeBuffer/GCodeBuffer.h>
#include <GCodes/GCodeException.h>

#if SUPPORT_OBJECT_MODEL

// Object model table and functions
// Note: if using GCC version 7.3.1 20180622 and lambda functions are used in this table, you must compile this file with option -std=gnu++17.
// Otherwise the table will be allocated in RAM instead of flash, which wastes too much RAM.

// Macro to build a standard lambda function that includes the necessary type conversions
#define OBJECT_MODEL_FUNC(...) OBJECT_MODEL_FUNC_BODY(Heater, __VA_ARGS__)
#define OBJECT_MODEL_FUNC_IF(...) OBJECT_MODEL_FUNC_IF_BODY(Heater, __VA_ARGS__)

constexpr ObjectModelArrayDescriptor Heater::monitorsArrayDescriptor =
{
	nullptr,
	[] (const ObjectModel *self, const ObjectExplorationContext&) noexcept -> size_t { return MaxMonitorsPerHeater; },
	[] (const ObjectModel *self, ObjectExplorationContext& context) noexcept -> ExpressionValue { return ExpressionValue(self, 1); }

};

constexpr ObjectModelTableEntry Heater::objectModelTable[] =
{
	// Within each group, these entries must be in alphabetical order
	// 0. Heater members
	{ "active",		OBJECT_MODEL_FUNC(self->GetActiveTemperature(), 1), 									ObjectModelEntryFlags::live },
	{ "current",	OBJECT_MODEL_FUNC(self->GetTemperature(), 1), 											ObjectModelEntryFlags::live },
	{ "max",		OBJECT_MODEL_FUNC(self->GetHighestTemperatureLimit(), 1), 								ObjectModelEntryFlags::none },
	{ "min",		OBJECT_MODEL_FUNC(self->GetLowestTemperatureLimit(), 1), 								ObjectModelEntryFlags::none },
	{ "model",		OBJECT_MODEL_FUNC((const FopDt *)&self->GetModel()),									ObjectModelEntryFlags::verbose },
	{ "monitors",	OBJECT_MODEL_FUNC_NOSELF(&monitorsArrayDescriptor), 									ObjectModelEntryFlags::none },
	{ "sensor",		OBJECT_MODEL_FUNC((int32_t)self->GetSensorNumber()), 									ObjectModelEntryFlags::none },
	{ "standby",	OBJECT_MODEL_FUNC(self->GetStandbyTemperature(), 1), 									ObjectModelEntryFlags::live },
	{ "state",		OBJECT_MODEL_FUNC(self->GetStatus().ToString()), 										ObjectModelEntryFlags::live },

	// 1. Heater.monitors[] members
	{ "action",		OBJECT_MODEL_FUNC_IF(self->monitors[context.GetLastIndex()].GetTrigger() != HeaterMonitorTrigger::Disabled,
										(int32_t)self->monitors[context.GetLastIndex()].GetAction()), 		ObjectModelEntryFlags::none },
	{ "condition",	OBJECT_MODEL_FUNC(self->monitors[context.GetLastIndex()].GetTriggerName()), 			ObjectModelEntryFlags::none },
	{ "limit",		OBJECT_MODEL_FUNC_IF(self->monitors[context.GetLastIndex()].GetTrigger() != HeaterMonitorTrigger::Disabled,
										self->monitors[context.GetLastIndex()].GetTemperatureLimit(), 1),	ObjectModelEntryFlags::none },
};

constexpr uint8_t Heater::objectModelTableDescriptor[] = { 2, 9, 3 };

DEFINE_GET_OBJECT_MODEL_TABLE(Heater)

#endif

Heater::Heater(unsigned int num) noexcept
	: heaterNumber(num), sensorNumber(-1), activeTemperature(0.0), standbyTemperature(0.0),
	  maxTempExcursion(DefaultMaxTempExcursion), maxHeatingFaultTime(DefaultMaxHeatingFaultTime),
	  active(false)
{
}

Heater::~Heater() noexcept
{
	for (HeaterMonitor& h : monitors)
	{
		h.Disable();
	}
}

void Heater::SetSensorNumber(int sn) noexcept
{
	if (sn != sensorNumber)
	{
		sensorNumber = sn;
		SetDefaultMonitors();
	}
}

void Heater::SetDefaultMonitors() noexcept
{
	for (HeaterMonitor& h : monitors)
	{
		h.Disable();
	}

	if (sensorNumber >= 0 && sensorNumber < (int)MaxSensors)
	{
		const float limit = (reprap.GetHeat().IsBedOrChamberHeater(heaterNumber)) ? DefaultBedTemperatureLimit : DefaultHotEndTemperatureLimit;
		monitors[0].Set(sensorNumber, limit, HeaterMonitorAction::GenerateFault, HeaterMonitorTrigger::TemperatureExceeded);
	}
}

GCodeResult Heater::SetOrReportModel(unsigned int heater, GCodeBuffer& gb, const StringRef& reply) THROWS(GCodeException)
{
	bool seen = false;
	float heatingRate = model.GetHeatingRate();
	float td = model.GetDeadTime(),
		maxPwm = model.GetMaxPwm(),
		voltage = model.GetVoltage();
	float coolingRates[2] = { model.GetCoolingRateFanOff(), model.GetCoolingRateFanOn() };
	int32_t dontUsePid = model.UsePid() ? 0 : 1;
	int32_t inversionParameter = 0;

	// Get the cooling time constant(s) first
	float timeConstants[2];
	size_t numValues = 2;
	if (gb.TryGetFloatArray('C', numValues, timeConstants, reply, seen, true))
	{
		return GCodeResult::error;
	}
	else if (seen)
	{
		coolingRates[0] = 1.0/timeConstants[0];
		coolingRates[1] = 1.0/timeConstants[1];
	}

	if (gb.Seen('R'))
	{
		// New style heater model. R = heating rate, C[2] = cooling rates
		seen = true;
		heatingRate = gb.GetFValue();
	}
	else if (gb.Seen('A'))
	{
		// Old style heating model. A = gain, C = cooling time constant
		seen = true;
		const float gain = gb.GetFValue();
		heatingRate = gain * coolingRates[0];
	}
	gb.TryGetFValue('D', td, seen);
	gb.TryGetIValue('B', dontUsePid, seen);
	gb.TryGetFValue('S', maxPwm, seen);
	gb.TryGetFValue('V', voltage, seen);
	gb.TryGetIValue('I', inversionParameter, seen);

	if (seen)
	{
		const bool inverseTemperatureControl = (inversionParameter == 1 || inversionParameter == 3);
		const GCodeResult rslt = SetModel(heatingRate, coolingRates[0], coolingRates[1], td, maxPwm, voltage, dontUsePid == 0, inverseTemperatureControl, reply);
		if (rslt != GCodeResult::ok)
		{
			return rslt;
		}
	}
	else if (!model.IsEnabled())
	{
		reply.printf("Heater %u is disabled due to bad model", heater);
	}
	else
	{
		const char* const mode = (!model.UsePid()) ? "bang-bang"
									: (model.ArePidParametersOverridden()) ? "custom PID"
										: "PID";
		reply.printf("Heater %u model: heating rate %.3f, cooling time constant %.1f", heater, (double)model.GetHeatingRate(), (double)model.GetTimeConstantFanOff());
		if (model.GetCoolingRateChangeFanOn() > 0.0)
		{
			reply.catf("/%.1f", (double)model.GetTimeConstantFanOn());
		}
		reply.catf(", dead time %.2f, max PWM %.2f, calibration voltage %.1f, mode %s", (double)model.GetDeadTime(), (double)model.GetMaxPwm(), (double)model.GetVoltage(), mode);
		if (model.IsInverted())
		{
			reply.cat(", inverted control");
		}
		if (model.UsePid())
		{
			M301PidParameters params = model.GetM301PidParameters(false);
			reply.catf("\nComputed PID parameters: setpoint change: P%.1f, I%.3f, D%.1f", (double)params.kP, (double)params.kI, (double)params.kD);
			params = model.GetM301PidParameters(true);
			reply.catf(", load change: P%.1f, I%.3f, D%.1f", (double)params.kP, (double)params.kI, (double)params.kD);
		}
	}
	return GCodeResult::ok;
}

// Set the process model returning true if successful
GCodeResult Heater::SetModel(float heatingRate, float coolingRateFanOff, float coolingRateFanOn, float td, float maxPwm, float voltage, bool usePid, bool inverted, const StringRef& reply) noexcept
{
	GCodeResult rslt;
	if (model.SetParameters(heatingRate, coolingRateFanOff, coolingRateFanOn, td, maxPwm, GetHighestTemperatureLimit(), voltage, usePid, inverted))
	{
		if (model.IsEnabled())
		{
			rslt = UpdateModel(reply);
			if (rslt == GCodeResult::ok)
			{
				const float predictedMaxTemp = heatingRate/coolingRateFanOff + NormalAmbientTemperature;
				const float noWarnTemp = (GetHighestTemperatureLimit() - NormalAmbientTemperature) * 1.5 + 50.0;		// allow 50% extra power plus enough for an extra 50C
				if (predictedMaxTemp > noWarnTemp)
				{
					reply.printf("Heater %u appears to be over-powered. If left on at full power, its temperature is predicted to reach %dC", GetHeaterNumber(), (int)predictedMaxTemp);
					rslt = GCodeResult::warning;
				}
			}
		}
		else
		{
			ResetHeater();
			rslt = GCodeResult::ok;
		}
	}
	else
	{
		reply.copy("bad model parameters");
		rslt = GCodeResult::error;
	}

	reprap.HeatUpdated();
	return rslt;
}

GCodeResult Heater::SetFaultDetectionParameters(float pMaxTempExcursion, float pMaxFaultTime, const StringRef& reply) noexcept
{
	maxTempExcursion = pMaxTempExcursion;
	maxHeatingFaultTime = pMaxFaultTime;
	const GCodeResult rslt = UpdateFaultDetectionParameters(reply);
	reprap.HeatUpdated();
	return rslt;
}

GCodeResult Heater::ConfigureMonitor(GCodeBuffer &gb, const StringRef &reply) THROWS(GCodeException)
{
	// Get any parameters that have been provided
	const bool seenP = gb.Seen('P');
	const size_t index = (seenP) ? gb.GetLimitedUIValue('P', MaxMonitorsPerHeater) : 0;

	const bool seenSensor = gb.Seen('T');
	const int monitoringSensor = (seenSensor) ? gb.GetLimitedUIValue('T', MaxSensors) : GetSensorNumber();

	const bool seenAction = gb.Seen('A');
	const HeaterMonitorAction action = (seenAction)
										? static_cast<HeaterMonitorAction>(gb.GetLimitedUIValue('A', (unsigned int)MaxHeaterMonitorAction + 1))
											: HeaterMonitorAction::GenerateFault;

	const bool seenCondition = gb.Seen('C');
	const HeaterMonitorTrigger trigger = (seenCondition)
											? static_cast<HeaterMonitorTrigger>(gb.GetLimitedIValue('C', -1, (int)MaxHeaterMonitorTrigger))
												: HeaterMonitorTrigger::TemperatureExceeded;

	const bool seenLimit = gb.Seen('S');
	const float limit = (seenLimit) ? gb.GetFValue() : monitors[index].GetTemperatureLimit();
	if (limit <= BadLowTemperature || limit >= BadErrorTemperature)
	{
		reply.copy("Invalid temperature limit");
		return GCodeResult::error;
	}

	if (seenSensor || seenLimit || seenAction || seenCondition)
	{
		monitors[index].Set(monitoringSensor, limit, action, trigger);
		const GCodeResult rslt = UpdateHeaterMonitors(reply);
		reprap.HeatUpdated();
		return rslt;
	}

	// Else we are reporting on one or all of the monitors
	if (seenP)
	{
		monitors[index].Report(heaterNumber, index, reply);
	}
	else
	{
		for (size_t i = 0; i < MaxMonitorsPerHeater; ++i)
		{
			monitors[i].Report(heaterNumber, i, reply);
		}
	}
	return GCodeResult::ok;
}

float Heater::GetHighestTemperatureLimit() const noexcept
{
	float limit = BadErrorTemperature;
	for (const HeaterMonitor& prot : monitors)
	{
		if (prot.GetTrigger() == HeaterMonitorTrigger::TemperatureExceeded)
		{
			const float t = prot.GetTemperatureLimit();
			if (limit == BadErrorTemperature || t > limit)
			{
				limit = t;
			}
		}
	}
	return limit;
}

float Heater::GetLowestTemperatureLimit() const noexcept
{
	float limit = ABS_ZERO;
	for (const HeaterMonitor& prot : monitors)
	{
		if (prot.GetTrigger() == HeaterMonitorTrigger::TemperatureTooLow)
		{
			const float t = prot.GetTemperatureLimit();
			if (limit == ABS_ZERO || t < limit)
			{
				limit = t;
			}
		}
	}
	return limit;
}

HeaterStatus Heater::GetStatus() const noexcept
{
	const HeaterMode mode = GetMode();
	return (mode == HeaterMode::fault) ? HeaterStatus::fault
			: (mode == HeaterMode::offline) ? HeaterStatus::offline
				: (mode == HeaterMode::off) ? HeaterStatus::off
					: (mode >= HeaterMode::tuning0) ? HeaterStatus::tuning
						: (active) ? HeaterStatus::active
							: HeaterStatus::standby;
}

const char* Heater::GetSensorName() const noexcept
{
	const auto sensor = reprap.GetHeat().FindSensor(sensorNumber);
	return (sensor.IsNotNull()) ? sensor->GetSensorName() : nullptr;
}

GCodeResult Heater::Activate(const StringRef& reply) noexcept
{
	if (GetMode() != HeaterMode::fault)
	{
		active = true;
		return SwitchOn(reply);
	}
	reply.printf("Can't activate heater %u while in fault state", heaterNumber);
	return GCodeResult::error;
}

void Heater::Standby() noexcept
{
	if (GetMode() != HeaterMode::fault)
	{
		active = false;
		String<1> dummy;
		(void)SwitchOn(dummy.GetRef());
	}
}

void Heater::SetTemperature(float t, bool activeNotStandby) THROWS(GCodeException)
{
	if (t > GetHighestTemperatureLimit())
	{
		throw GCodeException(-1, -1, "Temperature too high for heater %" PRIu32, (uint32_t)GetHeaterNumber());
	}
	else if (t < GetLowestTemperatureLimit())
	{
		throw GCodeException(-1, -1, "Temperature too low for heater %" PRIu32, (uint32_t)GetHeaterNumber());
	}
	else
	{
		((activeNotStandby) ? activeTemperature : standbyTemperature) = t;
		if (GetMode() > HeaterMode::suspended && active == activeNotStandby)
		{
			String<1> dummy;
			(void)SwitchOn(dummy.GetRef());
		}
	}
}

void Heater::SetModelDefaults() noexcept
{
	if (reprap.GetHeat().IsBedOrChamberHeater(heaterNumber))
	{
		model.SetParameters(DefaultBedHeaterGain, DefaultBedHeaterTimeConstant, DefaultBedHeaterTimeConstant, DefaultBedHeaterDeadTime, 1.0, DefaultBedTemperatureLimit, 0.0, false, false);
	}
	else
	{
		model.SetParameters(DefaultHotEndHeaterHeatingRate, DefaultHotEndHeaterCoolingRate, DefaultHotEndHeaterCoolingRate, DefaultHotEndHeaterDeadTime,
							1.0, DefaultHotEndTemperatureLimit, 0.0, true, false);
	}

	String<1> dummy;
	(void)UpdateModel(dummy.GetRef());
}

// End