Welcome to mirror list, hosted at ThFree Co, Russian Federation.

AxisShaper.cpp « Movement « src - github.com/Duet3D/RepRapFirmware.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d5ea5eee33c77312e7be2fc5598510962adfed41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
/*
 * InputShaper.cpp
 *
 *  Created on: 20 Feb 2021
 *      Author: David
 */

#include "AxisShaper.h"

#include <GCodes/GCodeBuffer/GCodeBuffer.h>
#include <Platform/RepRap.h>
#include "StepTimer.h"
#include "DDA.h"
#include "MoveSegment.h"

// Object model table and functions
// Note: if using GCC version 7.3.1 20180622 and lambda functions are used in this table, you must compile this file with option -std=gnu++17.
// Otherwise the table will be allocated in RAM instead of flash, which wastes too much RAM.

// Macro to build a standard lambda function that includes the necessary type conversions
#define OBJECT_MODEL_FUNC(...) OBJECT_MODEL_FUNC_BODY(AxisShaper, __VA_ARGS__)
#define OBJECT_MODEL_FUNC_IF(...) OBJECT_MODEL_FUNC_IF_BODY(AxisShaper, __VA_ARGS__)

constexpr ObjectModelArrayTableEntry AxisShaper::objectModelArrayTable[] =
{
	// 0. Amplitudes
	{
		nullptr,					// no lock needed
		[] (const ObjectModel *self, const ObjectExplorationContext& context) noexcept -> size_t { return ((const AxisShaper*)self)->numExtraImpulses; },
		[] (const ObjectModel *self, ObjectExplorationContext& context) noexcept
											-> ExpressionValue { return ExpressionValue(((const AxisShaper*)self)->coefficients[context.GetLastIndex()], 3); }
	},
	// 1. Durations
	{
		nullptr,					// no lock needed
		[] (const ObjectModel *self, const ObjectExplorationContext& context) noexcept -> size_t { return ((const AxisShaper*)self)->numExtraImpulses; },
		[] (const ObjectModel *self, ObjectExplorationContext& context) noexcept
											-> ExpressionValue { return ExpressionValue(((const AxisShaper*)self)->durations[context.GetLastIndex()] * (1.0/StepClockRate), 5); }
	}
};

DEFINE_GET_OBJECT_MODEL_ARRAY_TABLE(AxisShaper)

constexpr ObjectModelTableEntry AxisShaper::objectModelTable[] =
{
	// Within each group, these entries must be in alphabetical order
	// 0. InputShaper members
	{ "amplitudes",				OBJECT_MODEL_FUNC_ARRAY(0), 								ObjectModelEntryFlags::none },
	{ "damping",				OBJECT_MODEL_FUNC(self->zeta, 2), 							ObjectModelEntryFlags::none },
	{ "durations",				OBJECT_MODEL_FUNC_ARRAY(1), 								ObjectModelEntryFlags::none },
	{ "frequency",				OBJECT_MODEL_FUNC(self->frequency, 2), 						ObjectModelEntryFlags::none },
	{ "minAcceleration",		OBJECT_MODEL_FUNC(self->minimumAcceleration, 1),			ObjectModelEntryFlags::none },
	{ "type", 					OBJECT_MODEL_FUNC(self->type.ToString()), 					ObjectModelEntryFlags::none },
};

constexpr uint8_t AxisShaper::objectModelTableDescriptor[] = { 1, 6 };

DEFINE_GET_OBJECT_MODEL_TABLE(AxisShaper)

AxisShaper::AxisShaper() noexcept
	: numExtraImpulses(0),
	  frequency(DefaultFrequency),
	  zeta(DefaultDamping),
	  minimumAcceleration(ConvertAcceleration(DefaultMinimumAcceleration)),
	  type(InputShaperType::none)
{
}

// Process M593
GCodeResult AxisShaper::Configure(GCodeBuffer& gb, const StringRef& reply) THROWS(GCodeException)
{
	constexpr float MinimumInputShapingFrequency = (float)StepClockRate/(2 * 65535);		// we use a 16-bit number of step clocks to represent half the input shaping period
	constexpr float MaximumInputShapingFrequency = 1000.0;
	bool seen = false;

	// If we are changing the type, frequency, damping or custom parameters, we will change multiple stored values used by the motion planner, so wait until movement has stopped.
	// Changing just the minimum acceleration is OK because no other variables depend on it.
	if (gb.SeenAny("FSPHT"))
	{
		if (!reprap.GetGCodes().LockMovementAndWaitForStandstill(gb))
		{
			return GCodeResult::notFinished;
		}
	}

	if (gb.Seen('F'))
	{
		seen = true;
		frequency = gb.GetLimitedFValue('F', MinimumInputShapingFrequency, MaximumInputShapingFrequency);
	}
	if (gb.Seen('L'))
	{
		seen = true;
		minimumAcceleration = ConvertAcceleration(max<float>(gb.GetNonNegativeFValue(), 1.0));			// very low accelerations cause problems with the maths
	}
	if (gb.Seen('S'))
	{
		seen = true;
		zeta = gb.GetLimitedFValue('S', 0.0, 0.99);
	}

	if (gb.Seen('P'))
	{
		String<StringLength20> shaperName;
		gb.GetReducedString(shaperName.GetRef());
		const InputShaperType newType(shaperName.c_str());
		if (!newType.IsValid())
		{
			reply.printf("Unsupported input shaper type '%s'", shaperName.c_str());
			return GCodeResult::error;
		}
		seen = true;
		type = newType;
	}
	else if (seen && type == InputShaperType::none)
	{
#if SUPPORT_DAA
		// For backwards compatibility, if we have set input shaping parameters but not defined shaping type, default to DAA for now. Change this when we support better types of input shaping.
		type = InputShaperType::daa;
#else
		type = InputShaperType::zvd;
#endif
	}

	if (seen)
	{
		const float sqrtOneMinusZetaSquared = fastSqrtf(1.0 - fsquare(zeta));
		const float dampedFrequency = frequency * sqrtOneMinusZetaSquared;
		const float dampedPeriod = StepClockRate/dampedFrequency;
		const float k = expf(-zeta * Pi/sqrtOneMinusZetaSquared);
		switch (type.RawValue())
		{
		case InputShaperType::none:
			numExtraImpulses = 0;
			break;

		case InputShaperType::custom:
			{
				// Get the coefficients
				size_t numAmplitudes = MaxExtraImpulses;
				gb.MustSee('H');
				gb.GetFloatArray(coefficients, numAmplitudes, false);

				// Get the impulse durations, if provided
				if (gb.Seen('T'))
				{
					size_t numDurations = numAmplitudes;
					gb.GetFloatArray(durations, numDurations, true);

					// Check we have the same number of both
					if (numDurations != numAmplitudes)
					{
						reply.copy("Too few durations given");
						type = InputShaperType::none;
						return GCodeResult::error;
					}
					for (unsigned int i = 0; i < numAmplitudes; ++i)
					{
						durations[i] *= StepClockRate;			// convert from seconds to step clocks
					}
				}
				else
				{
					for (unsigned int i = 0; i < numAmplitudes; ++i)
					{
						durations[i] = 0.5 * dampedPeriod;
					}
				}
				numExtraImpulses = numAmplitudes;
			}
			break;

#if SUPPORT_DAA
		case InputShaperType::daa:
			durations[0] = dampedPeriod;
			numExtraImpulses = 0;
			break;
#endif

		case InputShaperType::mzv:		// I can't find any references in the literature to this input shaper type, so the values are taken from Klipper source code
			{
				// Klipper gives amplitude steps of [a3 = k^2 * (1 - 1/sqrt(2)), a2 = k * (sqrt(2) - 1), a1 = 1 - 1/sqrt(2)] all divided by (a1 + a2 + a3)
				// Rearrange to: a3 = k^2 * (1 - sqrt(2)/2), a2 = k * (sqrt(2) - 1), a1 = (1 - sqrt(2)/2)
				const float kMzv = expf(-zeta * 0.75 * Pi/sqrtOneMinusZetaSquared);
				const float a1 = 1.0 - 0.5 * sqrtf(2.0);
				const float a2 = (sqrtf(2.0) - 1.0) * kMzv;
				const float a3 = a1 * fsquare(kMzv);
			    const float sum = (a1 + a2 + a3);
			    coefficients[0] = a3/sum;
			    coefficients[1] = (a2 + a3)/sum;
			}
			durations[0] = durations[1] = 0.375 * dampedPeriod;
			numExtraImpulses = 2;
			break;

		case InputShaperType::zvd:		// see https://www.researchgate.net/publication/316556412_INPUT_SHAPING_CONTROL_TO_REDUCE_RESIDUAL_VIBRATION_OF_A_FLEXIBLE_BEAM
			{
				const float j = fsquare(1.0 + k);
				coefficients[0] = 1.0/j;
				coefficients[1] = coefficients[0] + 2.0 * k/j;
			}
			durations[0] = durations[1] = 0.5 * dampedPeriod;
			numExtraImpulses = 2;
			break;

		case InputShaperType::zvdd:		// see https://www.researchgate.net/publication/316556412_INPUT_SHAPING_CONTROL_TO_REDUCE_RESIDUAL_VIBRATION_OF_A_FLEXIBLE_BEAM
			{
				const float j = fcube(1.0 + k);
				coefficients[0] = 1.0/j;
				coefficients[1] = coefficients[0] + 3.0 * k/j;
				coefficients[2] = coefficients[1] + 3.0 * fsquare(k)/j;
			}
			durations[0] = durations[1] = durations[2] = 0.5 * dampedPeriod;
			numExtraImpulses = 3;
			break;

		case InputShaperType::zvddd:
			{
				const float j = fsquare(fsquare(1.0 + k));
				coefficients[0] = 1.0/j;
				coefficients[1] = coefficients[0] + 4.0 * k/j;
				coefficients[2] = coefficients[1] + 6.0 * fsquare(k)/j;
				coefficients[3] = coefficients[2] + 4.0 * fcube(k)/j;
			}
			durations[0] = durations[1] = durations[2] = durations[3] = 0.5 * dampedPeriod;
			numExtraImpulses = 4;
			break;

		case InputShaperType::ei2:		// see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.1337&rep=rep1&type=pdf. United States patent #4,916,635.
			{
				const float zetaSquared = fsquare(zeta);
				const float zetaCubed = zetaSquared * zeta;
				coefficients[0] = (0.16054)                     + (0.76699)                     * zeta + (2.26560)                     * zetaSquared + (-1.22750)                     * zetaCubed;
				coefficients[1] = (0.16054 + 0.33911)           + (0.76699 + 0.45081)           * zeta + (2.26560 - 2.58080)           * zetaSquared + (-1.22750 + 1.73650)           * zetaCubed;
				coefficients[2] = (0.16054 + 0.33911 + 0.34089) + (0.76699 + 0.45081 - 0.61533) * zeta + (2.26560 - 2.58080 - 0.68765) * zetaSquared + (-1.22750 + 1.73650 + 0.42261) * zetaCubed;

				durations[0] = ((0.49890)           + ( 0.16270          ) * zeta + (          -0.54262) * zetaSquared + (          6.16180) * zetaCubed) * dampedPeriod;
				durations[1] = ((0.99748 - 0.49890) + ( 0.18382 - 0.16270) * zeta + (-1.58270 + 0.54262) * zetaSquared + (8.17120 - 6.16180) * zetaCubed) * dampedPeriod;
				durations[2] = ((1.49920 - 0.99748) + (-0.09297 - 0.18382) * zeta + (-0.28338 + 1.58270) * zetaSquared + (1.85710 - 8.17120) * zetaCubed) * dampedPeriod;
			}
			numExtraImpulses = 3;
			break;

		case InputShaperType::ei3:		// see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.1337&rep=rep1&type=pdf. United States patent #4,916,635
			{
				const float zetaSquared = fsquare(zeta);
				const float zetaCubed = zetaSquared * zeta;
				coefficients[0] = (0.11275)                               + 0.76632                                 * zeta + (3.29160)                               * zetaSquared + (-1.44380)                               * zetaCubed;
				coefficients[1] = (0.11275 + 0.23698)                     + (0.76632 + 0.61164)                     * zeta + (3.29160 - 2.57850)                     * zetaSquared + (-1.44380 + 4.85220)                     * zetaCubed;
				coefficients[2] = (0.11275 + 0.23698 + 0.30008)           + (0.76632 + 0.61164 - 0.19062)           * zeta + (3.29160 - 2.57850 - 2.14560)           * zetaSquared + (-1.44380 + 4.85220 + 0.13744)           * zetaCubed;
				coefficients[3] = (0.11275 + 0.23698 + 0.30008 + 0.23775) + (0.76632 + 0.61164 - 0.19062 - 0.73297) * zeta + (3.29160 - 2.57850 - 2.14560 + 0.46885) * zetaSquared + (-1.44380 + 4.85220 + 0.13744 - 2.08650) * zetaCubed;

				durations[0] = ((0.49974)           + (0.23834)            * zeta + (0.44559)            * zetaSquared + (12.4720)           * zetaCubed) * dampedPeriod;
				durations[1] = ((0.99849 - 0.49974) + (0.29808 - 0.23834)  * zeta + (-2.36460 - 0.44559) * zetaSquared + (23.3990 - 12.4720) * zetaCubed) * dampedPeriod;
				durations[2] = ((1.49870 - 0.99849) + (0.10306 - 0.29808)  * zeta + (-2.01390 + 2.36460) * zetaSquared + (17.0320 - 23.3990) * zetaCubed) * dampedPeriod;
				durations[3] = ((1.99960 - 1.49870) + (-0.28231 - 0.10306) * zeta + (0.61536 + 2.01390)  * zetaSquared + (5.40450 - 17.0320) * zetaCubed) * dampedPeriod;
			}
			numExtraImpulses = 4;
			break;
		}

		// Calculate the total extra duration of input shaping
		totalShapingClocks = 0.0;
		extraClocksAtStart = 0.0;
		extraClocksAtEnd = 0.0;
		extraDistanceAtStart = 0.0;
		extraDistanceAtEnd = 0.0;

		{
			float u = 0.0;
			for (unsigned int i = 0; i < numExtraImpulses; ++i)
			{
				const float segTime = durations[i];
				totalShapingClocks += segTime;
				extraClocksAtStart += (1.0 - coefficients[i]) * segTime;
				extraClocksAtEnd += coefficients[i] * segTime;
				const float speedChange = coefficients[i] * segTime;
				extraDistanceAtStart += (1.0 - coefficients[i]) * (u + 0.5 * speedChange) * segTime;
				u += speedChange;
			}
		}

		minimumShapingStartOriginalClocks = totalShapingClocks - extraClocksAtStart + (MinimumMiddleSegmentTime * StepClockRate);
		minimumShapingEndOriginalClocks = totalShapingClocks - extraClocksAtEnd + (MinimumMiddleSegmentTime * StepClockRate);
		minimumNonOverlappedOriginalClocks = (totalShapingClocks * 2) - extraClocksAtStart - extraClocksAtEnd + (MinimumMiddleSegmentTime * StepClockRate);

		{
			float v = 0.0;
			for (int i = numExtraImpulses - 1; i >= 0; --i)
			{
				const float segTime = durations[i];
				const float speedChange = (1.0 - coefficients[i]) * segTime;
				extraDistanceAtEnd += coefficients[i] * (v - 0.5 * speedChange) * segTime;
				v -= speedChange;
			}
		}

		if (numExtraImpulses != 0)
		{
			overlappedShapingClocks = 2 * totalShapingClocks;
			// Calculate the clocks and coefficients needed when we shape the start of acceleration/deceleration and then immediately shape the end
			float maxVal = 0.0;
			for (unsigned int i = 0; i < numExtraImpulses; ++i)
			{
				overlappedDurations[i] = overlappedDurations[i + numExtraImpulses] = durations[i];
				float val = coefficients[i];
				overlappedCoefficients[i] = val;
				if (val > maxVal)
				{
					maxVal = val;
				}
				val = 1.0 - val;
				overlappedCoefficients[i + numExtraImpulses] = val;
				if (val > maxVal)
				{
					maxVal = val;
				}
			}

			// Now scale the values by maxVal so that the highest coefficient is 1.0, and calculate the total distance per unit acceleration
			overlappedDistancePerA = 0.0;
			float u = 0.0;
			for (unsigned int i = 0; i < 2 * numExtraImpulses; ++i)
			{
				overlappedCoefficients[i] /= maxVal;
				const float speedChange = overlappedCoefficients[i] * overlappedDurations[i];
				overlappedDistancePerA += (u + 0.5 * speedChange) * overlappedDurations[i];
				u += speedChange;
			}
			overlappedDeltaVPerA = u;
		}

		reprap.MoveUpdated();
	}
	else if (type == InputShaperType::none)
	{
		reply.copy("Input shaping is disabled");
	}
	else
	{
		reply.printf("Input shaping '%s' at %.1fHz damping factor %.2f, min. acceleration %.1f",
						type.ToString(), (double)frequency, (double)zeta, (double)InverseConvertAcceleration(minimumAcceleration));
		if (numExtraImpulses != 0)
		{
			reply.cat(", impulses");
			for (unsigned int i = 0; i < numExtraImpulses; ++i)
			{
				reply.catf(" %.3f", (double)coefficients[i]);
			}
			reply.cat(" with durations (ms)");
			for (unsigned int i = 0; i < numExtraImpulses; ++i)
			{
				reply.catf(" %.2f", (double)(durations[i] * StepClocksToMillis));
			}
			if (reprap.Debug(moduleMove))
			{
				reply.catf(" odpa=%.4e odvpa=%.4e ovc=", (double)overlappedDistancePerA, (double)overlappedDeltaVPerA);
				for (unsigned int i = 0; i < 2 * numExtraImpulses; ++i)
				{
					reply.catf(" %.3f", (double)overlappedCoefficients[i]);
				}
			}
		}
	}
	return GCodeResult::ok;
}

// Plan input shaping, generate the MoveSegment, and set up the basic move parameters.
// On entry, params.shapingPlan is set to 'no shaping'.
// Currently we use a single input shaper for all axes, so the move segments are attached to the DDA not the DM
void AxisShaper::PlanShaping(DDA& dda, PrepParams& params, bool shapingEnabled) const noexcept
{
	switch ((shapingEnabled) ? type.RawValue() : InputShaperType::none)
	{
#if SUPPORT_DAA
	case InputShaperType::daa:
		do
		{
			// Try to reduce the acceleration/deceleration of the move to cancel ringing
			const float idealPeriod = 1.0/frequency;					// for DAA this the full period, 1.0

			float proposedAcceleration = dda.acceleration, proposedAccelDistance = dda.beforePrepare.accelDistance;
			bool adjustAcceleration = false;
			if (dda.topSpeed > dda.startSpeed && ((dda.GetPrevious()->state != DDA::DDAState::frozen && dda.GetPrevious()->state != DDA::DDAState::executing) || !dda.GetPrevious()->flags.wasAccelOnlyMove))
			{
				const float accelTime = (dda.topSpeed - dda.startSpeed)/dda.acceleration;
				if (accelTime < idealPeriod)
				{
					proposedAcceleration = (dda.topSpeed - dda.startSpeed) * frequency;
					adjustAcceleration = true;
				}
				else if (accelTime < idealPeriod * 2)
				{
					proposedAcceleration = (dda.topSpeed - dda.startSpeed) * frequency * 0.5;
					adjustAcceleration = true;
				}
				if (adjustAcceleration)
				{
					proposedAccelDistance = (fsquare(dda.topSpeed) - fsquare(dda.startSpeed))/(2 * proposedAcceleration);
				}
			}

			float proposedDeceleration = dda.deceleration, proposedDecelDistance = dda.beforePrepare.decelDistance;
			bool adjustDeceleration = false;
			if (dda.GetNext()->state != DDA::DDAState::provisional || !dda.GetNext()->IsDecelerationMove())
			{
				const float decelTime = (dda.topSpeed - dda.endSpeed)/dda.deceleration;
				if (decelTime < idealPeriod)
				{
					proposedDeceleration = (dda.topSpeed - dda.endSpeed) * frequency;
					adjustDeceleration = true;
				}
				else if (decelTime < idealPeriod * 2)
				{
					proposedDeceleration = (dda.topSpeed - dda.endSpeed) * frequency * 0.5;
					adjustDeceleration = true;
				}
				if (adjustDeceleration)
				{
					proposedDecelDistance = (fsquare(dda.topSpeed) - fsquare(dda.endSpeed))/(2 * proposedDeceleration);
				}
			}

			if (adjustAcceleration || adjustDeceleration)
			{
				if (proposedAccelDistance + proposedDecelDistance <= dda.totalDistance)
				{
					if (proposedAcceleration < minimumAcceleration || proposedDeceleration < minimumAcceleration)
					{
						break;
					}
					dda.acceleration = proposedAcceleration;
					dda.deceleration = proposedDeceleration;
					dda.beforePrepare.accelDistance = proposedAccelDistance;
					dda.beforePrepare.decelDistance = proposedDecelDistance;
				}
				else
				{
					// We can't keep this as a trapezoidal move with the original top speed.
					// Try an accelerate-decelerate move with acceleration and deceleration times equal to the ideal period.
					const float twiceTotalDistance = 2 * dda.totalDistance;
					float proposedTopSpeed = dda.totalDistance * frequency - (dda.startSpeed + dda.endSpeed)/2;
					if (proposedTopSpeed > dda.startSpeed && proposedTopSpeed > dda.endSpeed)
					{
						proposedAcceleration = (twiceTotalDistance - ((3 * dda.startSpeed + dda.endSpeed) * idealPeriod)) * fsquare(frequency) * 0.5;
						proposedDeceleration = (twiceTotalDistance - ((dda.startSpeed + 3 * dda.endSpeed) * idealPeriod)) * fsquare(frequency) * 0.5;
						if (   proposedAcceleration < minimumAcceleration || proposedDeceleration < minimumAcceleration
							|| proposedAcceleration > dda.acceleration || proposedDeceleration > dda.deceleration
						   )
						{
							break;
						}
						dda.topSpeed = proposedTopSpeed;
						dda.acceleration = proposedAcceleration;
						dda.deceleration = proposedDeceleration;
						dda.beforePrepare.accelDistance = dda.startSpeed * idealPeriod + (dda.acceleration * fsquare(idealPeriod)) * 0.5;
						dda.beforePrepare.decelDistance = dda.endSpeed * idealPeriod + (dda.deceleration * fsquare(idealPeriod)) * 0.5;
					}
					else if (dda.startSpeed < dda.endSpeed)
					{
						// Change it into an accelerate-only move, accelerating as slowly as we can
						proposedAcceleration = (fsquare(dda.endSpeed) - fsquare(dda.startSpeed))/twiceTotalDistance;
						if (proposedAcceleration < minimumAcceleration)
						{
							break;		// avoid very small accelerations because they can be problematic
						}
						dda.acceleration = proposedAcceleration;
						dda.topSpeed = dda.endSpeed;
						dda.beforePrepare.accelDistance = dda.totalDistance;
						dda.beforePrepare.decelDistance = 0.0;
					}
					else if (dda.startSpeed > dda.endSpeed)
					{
						// Change it into a decelerate-only move, decelerating as slowly as we can
						proposedDeceleration = (fsquare(dda.startSpeed) - fsquare(dda.endSpeed))/twiceTotalDistance;
						if (proposedDeceleration < minimumAcceleration)
						{
							break;		// avoid very small accelerations because they can be problematic
						}
						dda.deceleration = proposedDeceleration;
						dda.topSpeed = dda.startSpeed;
						dda.beforePrepare.decelDistance = dda.totalDistance;
					}
					else
					{
						// Start and end speeds are exactly the same, possibly zero, so give up trying to adjust this move
						break;
					}
				}

				if (reprap.Debug(moduleMove))
				{
					debugPrintf("DAA: new a=%.1f d=%.1f\n", (double)dda.acceleration, (double)dda.deceleration);
				}
			}
		} while (false);			// this loop is solely for the purpose of catching 'break' statements
		params.SetFromDDA(dda);
		break;
#endif

	case InputShaperType::none:
	default:
		params.SetFromDDA(dda);
		break;

	// The other input shapers all have multiple impulses with varying coefficients
	case InputShaperType::zvd:
	case InputShaperType::mzv:
	case InputShaperType::zvdd:
	case InputShaperType::zvddd:
	case InputShaperType::ei2:
	case InputShaperType::ei3:
		params.SetFromDDA(dda);															// set up the provisional parameters

		if (params.unshaped.accelDistance < params.unshaped.decelStartDistance)			// we can't do any shaping unless there is a steady speed segment that can be shortened
		{
			params.shaped = params.unshaped;
			//TODO if we want to shape both acceleration and deceleration but the steady distance is zero or too short, we could reduce the top speed
			if (params.unshaped.accelDistance > 0.0)
			{
				if ((dda.GetPrevious()->state != DDA::DDAState::frozen && dda.GetPrevious()->state != DDA::DDAState::executing) || !dda.GetPrevious()->flags.wasAccelOnlyMove)
				{
					TryShapeAccelBoth(dda, params);
				}
				else if (params.unshaped.accelClocks >= minimumShapingEndOriginalClocks)
				{
					TryShapeAccelEnd(dda, params);
				}
			}
			if (params.unshaped.decelStartDistance < dda.totalDistance)
			{
				if (dda.GetNext()->GetState() != DDA::DDAState::provisional || !dda.GetNext()->IsDecelerationMove())
				{
					TryShapeDecelBoth(dda, params);
				}
				else if (params.unshaped.decelClocks >= minimumShapingStartOriginalClocks)
				{
					TryShapeDecelStart(dda, params);
				}
			}
		}
		break;
	}

	// If we are doing any input shaping then set up dda.shapedSegments, else leave it as null
	if (params.shapingPlan.IsShaped())
	{
		MoveSegment * const accelSegs = GetAccelerationSegments(dda, params);
		MoveSegment * const decelSegs = GetDecelerationSegments(dda, params);
		params.shaped.Finalise(dda.topSpeed);									// this sets up params.shaped.steadyClocks, which is needed by FinishShapedSegments
		dda.clocksNeeded = params.shaped.TotalClocks();
		dda.shapedSegments = FinishShapedSegments(dda, params, accelSegs, decelSegs);
		params.unshaped.steadyClocks = max<float>(dda.clocksNeeded - params.unshaped.accelClocks - params.unshaped.decelClocks, 0.0);
	}
	else
	{
		params.unshaped.Finalise(dda.topSpeed);									// this sets up params.steadyClocks
		dda.clocksNeeded = params.unshaped.TotalClocks();
	}

//	debugPrintf(" final plan %03x\n", (unsigned int)params.shapingPlan.all);
}

// Try to shape the end of the acceleration. We already know that there is sufficient acceleration time to do this, but we still need to check that there is enough distance.
void AxisShaper::TryShapeAccelEnd(const DDA& dda, PrepParams& params) const noexcept
{
	const float extraAccelDistance = GetExtraAccelEndDistance(dda.topSpeed, params.unshaped.acceleration);
	if (ImplementAccelShaping(dda, params, params.unshaped.accelDistance + extraAccelDistance, params.unshaped.accelClocks + extraClocksAtEnd))
	{
		params.shapingPlan.shapeAccelEnd = true;
	}
	else
	{
		// Not enough constant speed time to the acceleration shaping
		if (reprap.Debug(Module::moduleDda))
		{
			debugPrintf("Can't shape accel end\n");
		}
	}
}

void AxisShaper::TryShapeAccelBoth(DDA& dda, PrepParams& params) const noexcept
{
	const float speedIncrease = dda.topSpeed - dda.startSpeed;
	if (speedIncrease <= overlappedDeltaVPerA * params.unshaped.acceleration)
	{
		// We can use overlapped shaping
		const float newAcceleration = speedIncrease/overlappedDeltaVPerA;
		if (newAcceleration >= minimumAcceleration)
		{
			const float newAccelDistance = (dda.startSpeed * overlappedShapingClocks) + (newAcceleration * overlappedDistancePerA);
			if (ImplementAccelShaping(dda, params, newAccelDistance, overlappedShapingClocks))
			{
				params.shapingPlan.shapeAccelOverlapped = true;
				params.shaped.acceleration = newAcceleration;
			}
		}
	}
	else if (params.unshaped.accelClocks < minimumNonOverlappedOriginalClocks)
	{
		// The speed change is too high to allow overlapping, but non-overlapped shaping will give a very short steady acceleration segment.
		// If we have enough spare distance, reduce the acceleration slightly to lengthen that segment.
		const float newAcceleration = speedIncrease/minimumNonOverlappedOriginalClocks;
		const float newUnshapedAccelDistance = (dda.startSpeed + 0.5 * newAcceleration * minimumNonOverlappedOriginalClocks) * minimumNonOverlappedOriginalClocks;
		const float extraAccelDistance = GetExtraAccelStartDistance(dda.startSpeed, newAcceleration) + GetExtraAccelEndDistance(dda.topSpeed, newAcceleration);
		if (ImplementAccelShaping(dda, params, newUnshapedAccelDistance + extraAccelDistance, minimumNonOverlappedOriginalClocks + extraClocksAtStart + extraClocksAtEnd))
		{
			params.shapingPlan.shapeAccelStart = params.shapingPlan.shapeAccelEnd = true;
			params.shaped.acceleration = newAcceleration;
			//params.shapingPlan.debugPrint = true;
		}
	}
	else
	{
		// We only attempt shaping if we can shape both the start and end of acceleration
		const float extraAccelDistance = GetExtraAccelStartDistance(dda.startSpeed, params.unshaped.acceleration) + GetExtraAccelEndDistance(dda.topSpeed, params.unshaped.acceleration);
		if (ImplementAccelShaping(dda, params, params.unshaped.accelDistance + extraAccelDistance, params.unshaped.accelClocks + extraClocksAtStart + extraClocksAtEnd))
		{
			params.shapingPlan.shapeAccelStart = params.shapingPlan.shapeAccelEnd = true;
		}
	}
}

// Check whether we can implement acceleration shaping using the proposed parameters; if so then implement it and return true; else return false with nothing changed
bool AxisShaper::ImplementAccelShaping(const DDA& dda, PrepParams& params, float newAccelDistance, float newAccelClocks) const noexcept
{
	if (newAccelDistance <= params.shaped.decelStartDistance)
	{
		const float speedIncrease = dda.topSpeed - dda.startSpeed;
		const float unshapedAccelClocks = 2 * (dda.topSpeed * newAccelClocks - newAccelDistance)/speedIncrease;
		const float unshapedAccelDistance = (dda.startSpeed + dda.topSpeed) * unshapedAccelClocks * 0.5;
		if (unshapedAccelDistance <= params.unshaped.decelStartDistance)
		{
			params.shaped.accelDistance = newAccelDistance;
			params.shaped.accelClocks = newAccelClocks;
			params.unshaped.accelClocks = unshapedAccelClocks;
			params.unshaped.accelDistance = unshapedAccelDistance;
			params.unshaped.acceleration = speedIncrease/unshapedAccelClocks;
			return true;
		}
	}

	return false;
}

// Try to shape the start of the deceleration. We already know that there is sufficient deceleration time to do this, but we still need to check that there is enough distance.
void AxisShaper::TryShapeDecelStart(const DDA& dda, PrepParams& params) const noexcept
{
	const float extraDecelDistance = GetExtraDecelStartDistance(dda.topSpeed, params.unshaped.deceleration);
	if (ImplementDecelShaping(dda, params, params.unshaped.decelStartDistance - extraDecelDistance, params.unshaped.decelClocks + extraClocksAtStart))
	{
		params.shapingPlan.shapeDecelStart = true;
	}
	else
	{
		// Not enough constant speed time to do deceleration shaping
		if (reprap.Debug(Module::moduleDda))
		{
			debugPrintf("Can't shape decel start\n");
		}
	}
}

void AxisShaper::TryShapeDecelBoth(DDA& dda, PrepParams& params) const noexcept
{
	const float speedDecrease = dda.topSpeed - dda.endSpeed;
	if (speedDecrease <= overlappedDeltaVPerA * params.unshaped.deceleration)
	{
		// We can use overlapped shaping
		const float newDeceleration = speedDecrease/overlappedDeltaVPerA;
		if (newDeceleration >= minimumAcceleration)
		{
			const float newDecelDistance = (dda.topSpeed * overlappedShapingClocks) - (newDeceleration * overlappedDistancePerA);
			if (ImplementDecelShaping(dda, params, dda.totalDistance - newDecelDistance, overlappedShapingClocks))
			{
				params.shapingPlan.shapeDecelOverlapped = true;
				params.shaped.deceleration = newDeceleration;
			}
		}
	}
	else if (params.unshaped.decelClocks < minimumNonOverlappedOriginalClocks)
	{
		// The speed change is too high to allow overlapping, but non-overlapped shaping will give a very short steady acceleration segment.
		// If we have enough spare distance, reduce the acceleration slightly to lengthen that segment.
		const float newDeceleration = speedDecrease/minimumNonOverlappedOriginalClocks;
		const float newUnshapedDecelDistance = (dda.endSpeed + (0.5 * newDeceleration * minimumNonOverlappedOriginalClocks)) * minimumNonOverlappedOriginalClocks;
		const float extraDecelDistance = GetExtraDecelStartDistance(dda.topSpeed, newDeceleration) + GetExtraDecelEndDistance(dda.endSpeed, newDeceleration);
		if (ImplementDecelShaping(dda, params, dda.totalDistance - (newUnshapedDecelDistance + extraDecelDistance), minimumNonOverlappedOriginalClocks + extraClocksAtStart + extraClocksAtEnd))
		{
			params.shapingPlan.shapeDecelStart = params.shapingPlan.shapeDecelEnd = true;
			params.shaped.deceleration = newDeceleration;
			//params.shapingPlan.debugPrint = true;
		}
	}
	else
	{
		// Only perform shaping if we can shape both the start and end of deceleration, otherwise we may not be able to generate a corresponding unshaped move because it might require negative steady distance
		const float extraDecelDistance = GetExtraDecelStartDistance(dda.topSpeed, params.unshaped.deceleration) + GetExtraDecelEndDistance(dda.endSpeed, params.unshaped.deceleration);
		if (ImplementDecelShaping(dda, params, params.unshaped.decelStartDistance - extraDecelDistance, params.unshaped.decelClocks + extraClocksAtStart + extraClocksAtEnd))
		{
			params.shapingPlan.shapeDecelStart = params.shapingPlan.shapeDecelEnd = true;
		}
	}
}

// Check whether we can implement acceleration shaping using the proposed parameters; if so then implement it and return true; else return false with nothing changed
bool AxisShaper::ImplementDecelShaping(const DDA& dda, PrepParams& params, float newDecelStartDistance, float newDecelClocks) const noexcept
{
	if (params.shaped.accelDistance <= newDecelStartDistance)
	{
		const float speedDecrease = dda.topSpeed - dda.endSpeed;
		const float unshapedDecelClocks = 2 * (dda.topSpeed * newDecelClocks - (dda.totalDistance - newDecelStartDistance))/speedDecrease;
		const float unshapedDecelDistance = (dda.topSpeed + dda.endSpeed) * unshapedDecelClocks * 0.5;
		if (params.unshaped.accelDistance + unshapedDecelDistance <= dda.totalDistance)
		{
			params.shaped.decelStartDistance = newDecelStartDistance;
			params.shaped.decelClocks = newDecelClocks;
			params.unshaped.decelClocks = unshapedDecelClocks;
			params.unshaped.decelStartDistance = dda.totalDistance - unshapedDecelDistance;
			params.unshaped.deceleration = speedDecrease/unshapedDecelClocks;
			return true;
		}
	}

	return false;
}

// If there is an acceleration phase, generate the acceleration segments according to the plan, and set the number of acceleration segments in the plan
MoveSegment *AxisShaper::GetAccelerationSegments(const DDA& dda, PrepParams& params) const noexcept
{
	if (params.shaped.accelDistance > 0.0)
	{
		if (params.shapingPlan.shapeAccelOverlapped)
		{
			MoveSegment *accelSegs = nullptr;
			float segStartSpeed = dda.topSpeed;
			for (unsigned int i = 2 * numExtraImpulses; i != 0; )
			{
				--i;
				accelSegs = MoveSegment::Allocate(accelSegs);
				const float acceleration = params.shaped.acceleration * overlappedCoefficients[i];
				const float segTime = overlappedDurations[i];
				segStartSpeed -= acceleration * segTime;
				const float b = segStartSpeed/(-acceleration);
				const float c = 2.0/acceleration;
				const float segLen = (segStartSpeed + (0.5 * acceleration * segTime)) * segTime;
				accelSegs->SetNonLinear(segLen, segTime, b, c);
			}
			return accelSegs;
		}

		float accumulatedSegTime = 0.0;
		float endDistance = params.shaped.accelDistance;
		MoveSegment *endAccelSegs = nullptr;
		if (params.shapingPlan.shapeAccelEnd)
		{
			// Shape the end of the acceleration
			float segStartSpeed = dda.topSpeed;
			for (unsigned int i = numExtraImpulses; i != 0; )
			{
				--i;
				endAccelSegs = MoveSegment::Allocate(endAccelSegs);
				const float acceleration = params.shaped.acceleration * (1.0 - coefficients[i]);
				const float segTime = durations[i];
				segStartSpeed -= acceleration * segTime;
				const float b = segStartSpeed/(-acceleration);
				const float c = 2.0/acceleration;
				const float segLen = (segStartSpeed + (0.5 * acceleration * segTime)) * segTime;
				endDistance -= segLen;
				endAccelSegs->SetNonLinear(segLen, segTime, b, c);
			}
			accumulatedSegTime += totalShapingClocks;
		}

		float startDistance = 0.0;
		float startSpeed = dda.startSpeed;
		MoveSegment *startAccelSegs = nullptr;
		if (params.shapingPlan.shapeAccelStart)
		{
			// Shape the start of the acceleration
			for (unsigned int i = 0; i < numExtraImpulses; ++i)
			{
				MoveSegment *seg = MoveSegment::Allocate(nullptr);
				const float acceleration = params.shaped.acceleration * coefficients[i];
				const float segTime = durations[i];
				const float b = startSpeed/(-acceleration);
				const float c = 2.0/acceleration;
				const float segLen = (startSpeed + (0.5 * acceleration * segTime)) * segTime;
				startDistance += segLen;
				seg->SetNonLinear(segLen, segTime, b, c);
				if (i == 0)
				{
					startAccelSegs = seg;
				}
				else
				{
					startAccelSegs->AddToTail(seg);
				}
				startSpeed += acceleration * segTime;
			}
			accumulatedSegTime += totalShapingClocks;
		}

		// Do the constant acceleration part
		if (endDistance > startDistance)
		{
			endAccelSegs = MoveSegment::Allocate(endAccelSegs);
			const float b = startSpeed/(-params.shaped.acceleration);
			const float c = 2.0/params.shaped.acceleration;
			endAccelSegs->SetNonLinear(endDistance - startDistance, params.shaped.accelClocks - accumulatedSegTime, b, c);
		}
		else if (reprap.Debug(moduleMove))
		{
			debugPrintf("Missing steady accel segment\n");
			params.shapingPlan.debugPrint = true;
		}

		if (startAccelSegs == nullptr)
		{
			return endAccelSegs;
		}

		if (endAccelSegs != nullptr)
		{
			startAccelSegs->AddToTail(endAccelSegs);
		}
		return startAccelSegs;
	}

	return nullptr;
}

// If there is a deceleration phase, generate the deceleration segments according to the plan, and set the number of deceleration segments in the plan
MoveSegment *AxisShaper::GetDecelerationSegments(const DDA& dda, PrepParams& params) const noexcept
{
	if (params.shaped.decelStartDistance < dda.totalDistance)
	{
		if (params.shapingPlan.shapeDecelOverlapped)
		{
			MoveSegment *decelSegs = nullptr;
			float segStartSpeed = dda.endSpeed;
			for (unsigned int i = 2 * numExtraImpulses; i != 0; )
			{
				--i;
				decelSegs = MoveSegment::Allocate(decelSegs);
				const float deceleration = params.shaped.deceleration * overlappedCoefficients[i];
				const float segTime = overlappedDurations[i];
				segStartSpeed += deceleration * segTime;
				const float b = segStartSpeed/deceleration;
				const float c = -2.0/deceleration;
				const float segLen = (segStartSpeed + (-0.5 * deceleration * segTime)) * segTime;
				decelSegs->SetNonLinear(segLen, segTime, b, c);
			}
			return decelSegs;
		}

		float accumulatedSegTime = 0.0;
		float endDistance = dda.totalDistance;
		MoveSegment *endDecelSegs = nullptr;
		if (params.shapingPlan.shapeDecelEnd)
		{
			// Shape the end of the deceleration
			float segStartSpeed = dda.endSpeed;
			for (unsigned int i = numExtraImpulses; i != 0; )
			{
				--i;
				endDecelSegs = MoveSegment::Allocate(endDecelSegs);
				const float deceleration = params.shaped.deceleration * (1.0 - coefficients[i]);
				const float segTime = durations[i];
				segStartSpeed += deceleration * segTime;
				const float b = segStartSpeed/deceleration;
				const float c = -2.0/deceleration;
				const float segLen = (segStartSpeed + (-0.5 * deceleration * segTime)) * segTime;
				endDecelSegs->SetNonLinear(segLen, segTime, b, c);
				endDistance -= segLen;
			}
			accumulatedSegTime += totalShapingClocks;
		}

		float startDistance = params.shaped.decelStartDistance;
		float startSpeed = dda.topSpeed;
		MoveSegment *startDecelSegs = nullptr;
		if (params.shapingPlan.shapeDecelStart)
		{
			// Shape the start of the deceleration
			for (unsigned int i = 0; i < numExtraImpulses; ++i)
			{
				MoveSegment *seg = MoveSegment::Allocate(nullptr);
				const float deceleration = params.shaped.deceleration * coefficients[i];
				const float segTime = durations[i];
				const float b = startSpeed/deceleration;
				const float c = -2.0/deceleration;
				const float segLen = (startSpeed + (-0.5 * deceleration * segTime)) * segTime;
				startDistance += segLen;
				seg->SetNonLinear(segLen, segTime, b, c);
				if (i == 0)
				{
					startDecelSegs = seg;
				}
				else
				{
					startDecelSegs->AddToTail(seg);
				}
				startSpeed -= deceleration * segTime;
			}
			accumulatedSegTime += totalShapingClocks;
		}

		// Do the constant deceleration part
		if (endDistance > startDistance)
		{
			endDecelSegs = MoveSegment::Allocate(endDecelSegs);
			const float b = startSpeed/params.shaped.deceleration;
			const float c = -2.0/params.shaped.deceleration;
			endDecelSegs->SetNonLinear(endDistance - startDistance, params.shaped.decelClocks - accumulatedSegTime, b, c);
		}
		else if (reprap.Debug(moduleMove))
		{
			debugPrintf("Missing steady decel segment\n");
			params.shapingPlan.debugPrint = true;
		}

		if (startDecelSegs == nullptr)
		{
			return endDecelSegs;
		}

		if (endDecelSegs != nullptr)
		{
			startDecelSegs->AddToTail(endDecelSegs);
		}
		return startDecelSegs;
	}

	return nullptr;
}

// Generate the steady speed segment (if any), tack the segments together, and attach them to the DDA
// Must set up params.steadyClocks before calling this
MoveSegment *AxisShaper::FinishShapedSegments(const DDA& dda, const PrepParams& params, MoveSegment *accelSegs, MoveSegment *decelSegs) const noexcept
{
	if (params.shaped.steadyClocks > 0.0)
	{
		// Insert a steady speed segment before the deceleration segments
		decelSegs = MoveSegment::Allocate(decelSegs);
		const float c = 1.0/dda.topSpeed;
		decelSegs->SetLinear(params.shaped.decelStartDistance - params.shaped.accelDistance, params.shaped.steadyClocks, c);
	}

	if (accelSegs != nullptr)
	{
		if (decelSegs != nullptr)
		{
			accelSegs->AddToTail(decelSegs);
		}
		return accelSegs;
	}

	return decelSegs;
}

// Calculate the additional acceleration distance needed if we shape the start of acceleration
inline float AxisShaper::GetExtraAccelStartDistance(float startSpeed, float acceleration) const noexcept
{
	return (extraClocksAtStart * startSpeed) + (extraDistanceAtStart * acceleration);
}

// Calculate the additional acceleration distance needed if we shape the end of acceleration
inline float AxisShaper::GetExtraAccelEndDistance(float topSpeed, float acceleration) const noexcept
{
	return (extraClocksAtEnd * topSpeed) + (extraDistanceAtEnd * acceleration);
}

inline float AxisShaper::GetExtraDecelStartDistance(float topSpeed, float deceleration) const noexcept
{
	return (extraClocksAtStart * topSpeed) - (extraDistanceAtStart * deceleration);
}

// Calculate the additional deceleration distance needed if we shape the end of deceleration
inline float AxisShaper::GetExtraDecelEndDistance(float endSpeed, float deceleration) const noexcept
{
	return (extraClocksAtEnd * endSpeed) - (extraDistanceAtEnd * deceleration);
}

/*static*/ MoveSegment *AxisShaper::GetUnshapedSegments(DDA& dda, const PrepParams& params) noexcept
{
	// Deceleration phase
	MoveSegment * tempSegments;
	if (params.unshaped.decelClocks > 0.0)
	{
		tempSegments = MoveSegment::Allocate(nullptr);
		const float b = dda.topSpeed/params.unshaped.deceleration;
		const float c = -2.0/params.unshaped.deceleration;
		tempSegments->SetNonLinear(dda.totalDistance - params.unshaped.decelStartDistance, params.unshaped.decelClocks, b, c);
	}
	else
	{
		tempSegments = nullptr;
	}

	// Steady speed phase
	if (params.unshaped.steadyClocks > 0.0)
	{
		tempSegments = MoveSegment::Allocate(tempSegments);
		const float c = 1.0/dda.topSpeed;
		tempSegments->SetLinear(params.unshaped.decelStartDistance - params.unshaped.accelDistance, params.unshaped.steadyClocks, c);
	}

	// Acceleration phase
	if (params.unshaped.accelClocks > 0.0)
	{
		tempSegments = MoveSegment::Allocate(tempSegments);
		const float b = dda.startSpeed/(-params.unshaped.acceleration);
		const float c = 2.0/params.unshaped.acceleration;
		tempSegments->SetNonLinear(params.unshaped.accelDistance, params.unshaped.accelClocks, b, c);
	}

	return tempSegments;
}

// End