Welcome to mirror list, hosted at ThFree Co, Russian Federation.

FiveBarScaraKinematics.cpp « Kinematics « Movement « src - github.com/Duet3D/RepRapFirmware.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ea16329c741e2f07d70b64cea9b43c5f2d112cb5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
/*
 * FiveBarScaraKinematics.cpp
 *
 *  Created on: 11 Nov 2018
 *      Author: JoergS5, bondus
 *
 *	documentation: https://duet3d.dozuki.com/Guide/Five+Bar+Parallel+SCARA/24?lang=en
 */

#include "FiveBarScaraKinematics.h"
#include "RepRap.h"
#include "Platform.h"
#include "Storage/MassStorage.h"
#include "GCodes/GCodeBuffer/GCodeBuffer.h"
#include "Movement/DDA.h"

#include <limits>

//#define debugPrintf if(0) debugPrintf

FiveBarScaraKinematics::FiveBarScaraKinematics()
	: ZLeadscrewKinematics(KinematicsType::scara, DefaultSegmentsPerSecond, DefaultMinSegmentSize, true)
{
	Recalc();
}

// Return the name of the current kinematics
const char *FiveBarScaraKinematics::GetName(bool forStatusReport) const
{
	return "FiveBarScara";
}

//////////////////////// private functions /////////////////////////

// no results returnes. All results are stored in the cached variables.
// The constraints are not checked
void FiveBarScaraKinematics::getInverse(const float coords[]) const
{
	if (!cachedInvalid && coords[0] == cachedX0 && coords[1] == cachedY0)
	{	// already solved
		return;
	}

	float thetaL = -1.0;
	float thetaR = -1.0;
	float xL = -1.0;
	float xR = -1.0;
	float yL = -1.0;
	float yR = -1.0;
	float x1 = -1.0;
	float y1 = -1.0;

	float x_0 = coords[0];
	float y_0 = coords[1];

	if (isCantilevered(1))
	{
		// calculate cantilevered side first:

		float lefttheta[6];
		getTheta(lefttheta, proximalL, distalL + cantL, xOrigL, yOrigL, x_0, y_0, Arm::left);
		xL = lefttheta[0];
		yL = lefttheta[1];
		thetaL = lefttheta[2];

		// calculate x1,y1, i.e. where the distal arms meet
		float fraction = distalL / (distalL + cantL);
		x1 = (x_0 - xL) * fraction + xL;
		y1 = (y_0 - yL) * fraction + yL;

		// calculate right, non cantilevered side:
		float righttheta[6];
		getTheta(righttheta, proximalR, distalR, xOrigR, yOrigR, x1, y1, Arm::right);
		xR = righttheta[0];
		yR = righttheta[1];
		thetaR = righttheta[2];
	}
	else if (isCantilevered(2))
	{
		// calculate cantilevered side first:
		float righttheta[6];
		getTheta(righttheta, proximalR, distalR + cantR, xOrigR, yOrigR, x_0, y_0, Arm::right);
		xR = righttheta[0];
		yR = righttheta[1];
		thetaR = righttheta[2];

		// calculate x1,y1, i.e. where the distal arms meet
		float fraction = distalR / (distalR + cantR);
		x1 = (x_0 - xR) * fraction + xR;
		y1 = (y_0 - yR) * fraction + yR;

		// calculate left, non cantilevered side:
		float lefttheta[6];
		getTheta(lefttheta, proximalL, distalL, xOrigL, yOrigL, x1, y1, Arm::left);
		xL = lefttheta[0];
		yL = lefttheta[1];
		thetaL = lefttheta[2];

	}
	else
	{	// not cantilevered, hotend is at top joint
		float lefttheta[6];
		getTheta(lefttheta, proximalL, distalL, xOrigL, yOrigL, x_0, y_0, Arm::left);
		x1 = x_0;
		y1 = y_0;
		xL = lefttheta[0];
		yL = lefttheta[1];
		thetaL = lefttheta[2];

		float righttheta[6];
		getTheta(righttheta, proximalR, distalR, xOrigR, yOrigR, x_0, y_0, Arm::right);
		xR = righttheta[0];
		yR = righttheta[1];
		thetaR = righttheta[2];
	}

	cachedX0 = x_0;
	cachedY0 = y_0;
	cachedXL = xL;
	cachedYL = yL;
	cachedThetaL = thetaL;

	cachedXR = xR;
	cachedYR = yR;
	cachedThetaR = thetaR;

	cachedX1 = x1;
	cachedY1 = y1;

	cachedInvalid =
		std::isnan(cachedX0) || std::isnan(cachedY0) ||
		std::isnan(cachedX1) || std::isnan(cachedY1) ||
		std::isnan(cachedXL) || std::isnan(cachedYL) ||
		std::isnan(cachedXR) || std::isnan(cachedYR) ||
		std::isnan(cachedThetaR) || std::isnan(cachedXR) || std::isnan(cachedYR) ||
		std::isnan(cachedThetaL) || std::isnan(cachedXL) || std::isnan(cachedYL);
}

// quadrants: 1 is right upper, 2 is left upper, 3 is left down, 4 is right down
int FiveBarScaraKinematics::getQuadrant(float x, float y) const
{
	return (x >= 0.0 && y >= 0.0) ? 1
			: (x < 0.0 && y >= 0.0) ? 2
				: (x < 0.0 && y < 0.0) ? 3
					: 4;						// x >= 0 && y < 0
}

// return true if the Scara is cantilevered
bool FiveBarScaraKinematics::isCantilevered(int mode) const
{
	return (cantL > 0.0f && mode == 1) || (cantR > 0.0f && mode == 2);
}

// get angle between -90 and 270 for given origin and destination coordinates
float FiveBarScaraKinematics::getAbsoluteAngle(float xOrig, float yOrig, float xDest, float yDest) const
{
	const float length = sqrtf(fsquare(xOrig - xDest) + fsquare(yOrig - yDest));
	const float y = fabs(yOrig - yDest);
	float angle = asin(y / length) * 180.0f / M_PI;

	const int quad = getQuadrant(xDest - xOrig, yDest - yOrig);

	switch(quad)
	{
	case 1: // right upper quadrant I
		// nothing to change
		break;
	case 2:  // left upper quadrant II
		angle = 180.0 - angle;
		break;
	case 3:  // left lower quadrant III
		angle = 180.0 + angle;
		break;
	case 4: // right lower quadrant IV
		angle = 360.0 - angle;
		break;
	}
	return angle;
}

// first circle, second circle. Return the two intersection points
void FiveBarScaraKinematics::getIntersec(float result[], float firstRadius, float secondRadius, float firstX, float firstY, float secondX, float secondY) const
{
	const float firstRadius2  = fsquare(firstRadius);
	const float secondRadius2 = fsquare(secondRadius);

	const float distance2 = fsquare(firstX - secondX) + fsquare(firstY - secondY);
	const float distance  = sqrtf(distance2);

	const float delta = 0.25 * sqrtf(
			(distance + firstRadius + secondRadius)
			* (distance + firstRadius - secondRadius)
			* (distance - firstRadius + secondRadius)
			* (-distance + firstRadius + secondRadius)
		);

	// calculate x
	const float term1x = (firstX + secondX) / 2;
	const float term2x = (secondX - firstX) * (firstRadius2 - secondRadius2) / (2 * distance2);
	const float term3x = 2 * (firstY - secondY) / (distance2) * delta;
	const float x1 = term1x + term2x + term3x;
	const float x2 = term1x + term2x - term3x;

	// calculate y
	const float term1y = (firstY + secondY) / 2;
	const float term2y = (secondY - firstY)*(firstRadius2 - secondRadius2) / (2 * distance2);
	const float term3y = 2 * (firstX - secondX) / distance2 * delta;
	const float y1 = term1y + term2y - term3y;
	const float y2 = term1y + term2y + term3y;

	result[0] = x1;
	result[1] = y1;
	result[2] = x2;
	result[3] = y2;
}

// return coordinates and theta angles or both possible solutions
// first solution in [0], [1], [2] is the angle which fits to the current workmode
// result: x,y,theta of first point, then x,y,theta of second solution
void FiveBarScaraKinematics::getTheta(float result[], float prox, float distal, float proxX,
                                      float proxY, float destX, float destY, Arm arm) const
{
	float inter12[4];
	getIntersec(inter12, prox, distal, proxX, proxY, destX, destY);
	const float x1 = inter12[0];
	const float y1 = inter12[1];
	const float x2 = inter12[2];
	const float y2 = inter12[3];

	const float thetaA = getAbsoluteAngle(proxX, proxY, x1, y1);
	const float thetaB = getAbsoluteAngle(proxX, proxY, x2, y2);

	const float proxTurnA = getTurn(proxX, proxY, x1, y1, destX, destY);
	const float proxTurnB = getTurn(proxX, proxY, x2, y2, destX, destY);

	int use = 0; // 1 for A, 2 for B

	switch(workmode)
	{
	case 1:
		if (proxTurnA > 0)
		{
			use = 1;
		}
		else if(proxTurnB > 0)
		{
			use = 2;
		}
		break;

	case 2:
		if (arm == Arm::left)
		{
			if (proxTurnA < 0)
			{
				use = 1;
			}
			else if (proxTurnB < 0)
			{
				use = 2;
			}
		}
		else
		{
			if (proxTurnA > 0)
			{
				use = 1;
			}
			else if (proxTurnB > 0)
			{
				use = 2;
			}
		}
		break;

	case 3:
		if (arm == Arm::left)
		{
			if (proxTurnA > 0)
			{
				use = 1;
			}
			else if (proxTurnB > 0)
			{
				use = 2;
			}
		}
		else
		{
			if (proxTurnA < 0)
			{
				use = 1;
			}
			else if (proxTurnB < 0)
			{
				use = 2;
			}
		}
		break;

	case 4:
		if (proxTurnA < 0)
		{
			use = 1;
		}
		else if (proxTurnB < 0)
		{
			use = 2;
		}
	}

	if (use == 1)
	{
	    result[0] = x1;
	    result[1] = y1;
	    result[2] = thetaA;
	    result[3] = x2;
	    result[4] = y2;
	    result[5] = thetaB;
	}
	else if (use == 2)
	{
	    result[0] = x2;
	    result[1] = y2;
	    result[2] = thetaB;
	    result[3] = x1;
	    result[4] = y1;
	    result[5] = thetaA;
	}
	else
	{
	    // fail!!
	    result[0] = std::numeric_limits<float>::quiet_NaN();
	    result[1] = std::numeric_limits<float>::quiet_NaN();
	    result[2] = std::numeric_limits<float>::quiet_NaN();
	    result[3] = std::numeric_limits<float>::quiet_NaN();
	    result[4] = std::numeric_limits<float>::quiet_NaN();
	    result[5] = std::numeric_limits<float>::quiet_NaN();
	}
}

// from given point with angle and length, calculate destination
// resultcoords: x, y
void FiveBarScaraKinematics::getXYFromAngle(float resultcoords[], float angle, float length, float origX, float origY) const
{
	const float xL = length * cosf(angle * DegreesToRadians);
	const float yL = length * sinf(angle * DegreesToRadians);

	resultcoords[0] = xL + origX;
	resultcoords[1] = yL + origY;
}

// get forward kinematics: from theta actuators angles, calculate destination coordinates
// optional cantilevered will be added later
// resultcoords: xL, yL, xR, yR, x0, y0
void FiveBarScaraKinematics::getForward(float resultcoords[], float thetaL, float thetaR) const
{
	float coordsL[2];
	getXYFromAngle(coordsL, thetaL, proximalL, xOrigL, yOrigL);
	const float xL = coordsL[0];
	const float yL = coordsL[1];

	float coordsR[2];
	getXYFromAngle(coordsR, thetaR, proximalR, xOrigR, yOrigR);
	const float xR = coordsR[0];
	const float yR = coordsR[1];


	float inter12[4];
	getIntersec(inter12, distalL, distalR, xL, yL, xR, yR); // two intersection points x,y

	resultcoords[0] = xL;
	resultcoords[1] = yL;
	resultcoords[2] = xR;
	resultcoords[3] = yR;

	// Figure out what solution to pick, depending on angle of hotend joints
	const float turnHot0 = getTurn(xL, yL, inter12[0], inter12[1], xR, yR);
	const float turnHot1 = getTurn(xL, yL, inter12[2], inter12[3], xR, yR);

	float xDst = std::numeric_limits<float>::quiet_NaN();;
	float yDst = std::numeric_limits<float>::quiet_NaN();;
	if (workmode >= 1 && workmode <= 4)
	{
		if (turnHot0 < 0)
		{ // right turn
			xDst = inter12[0];
			yDst = inter12[1];
		}
		else if (turnHot1 < 0)
		{
			xDst = inter12[2];
			yDst = inter12[3];
		}
		// Sanity check the elbow joins to make sure it's in the correct work mode
		const float tL = getTurn(xOrigL, yOrigL, xL, yL, xDst, yDst);
		const float tR = getTurn(xOrigR, yOrigR, xR, yR, xDst, yDst);

		if ((workmode == 1 && (tL < 0 || tR < 0)) ||
			(workmode == 2 && (tL > 0 || tR < 0)) ||
			(workmode == 3 && (tL < 0 || tR > 0)) ||
			(workmode == 4 && (tL > 0 || tR > 0)))
		{
			xDst = std::numeric_limits<float>::quiet_NaN();
			yDst = std::numeric_limits<float>::quiet_NaN();
		}

		//fprintf(stderr, "xy %f %f\n", xDst, yDst);
		resultcoords[4] = xDst;
		resultcoords[5] = yDst;
	}
	else
	{
		// work mode 5-8
		//TODO??
	}
}

// 1 - angle - 2 are ordered clockwise. The angle is at the inner/right side, between 2 and 1 clockwise
float FiveBarScaraKinematics::getAngle(float x1, float y1, float x2, float y2, float x3, float y3) const
{
	const float angle1 = getAbsoluteAngle(x2, y2, x1, y1);
	const float angle2 = getAbsoluteAngle(x2, y2, x3, y3);

	return (angle2 < angle1)
			? 360 + angle2 - angle1 // Keep the angle positive
				: angle2 - angle1;
}

// return positive if turn is left (counter-clockwise), negative if turn is right (clockwise)
float FiveBarScaraKinematics::getTurn(float x1, float y1, float x2, float y2, float x3, float y3) const
{
	return (x2-x1)*(y3-y1)-(y2-y1)*(x3-x1);
}

bool FiveBarScaraKinematics::isPointInsideDefinedPrintableArea(float x0, float y0) const
{
	const float x1 = printArea[0];
	const float y1 = printArea[1];
	const float x2 = printArea[2];
	const float y2 = printArea[3];

	const float xmin = min(x1, x2);
	const float xmax = max(x1, x2);
	const float ymin = min(y1, y2);
	const float ymax = max(y1, y2);

	return x0 >= xmin && x0 <= xmax && y0 >= ymin && y0 <= ymax;
}

// Check that all consttraints are ok. If the constraints fails the cache is invalidated
bool FiveBarScaraKinematics::constraintsOk(const float coords[]) const
{
	if (!cachedInvalid && coords[0] == cachedX0 && coords[1] == cachedY0)
	{	// already solved and ok
		return true;
	}

	getInverse(coords);	// sets cache. xL, yL, thetaL, xR, yR, thetaR, x1, y1 (joint of distals)

	if (cachedInvalid)
	{
		return false;
    }

	// check theta angles
	float thetaL = cachedThetaL;
	if (actuatorAngleLMin < 0 && thetaL > actuatorAngleLMax)
	{
		thetaL -= 360; // Some trickery to allow negative min angles
	}
	if (thetaL < actuatorAngleLMin || thetaL > actuatorAngleLMax)
	{
		cachedInvalid = true;
		return false;
	}
	float thetaR = cachedThetaR;
	if (actuatorAngleRMin < 0 && thetaR > actuatorAngleRMax)
	{
		thetaR -= 360; // Some trickery to allow negative min angles
	}
	if (thetaR < actuatorAngleRMin || thetaR > actuatorAngleRMax)
	{
		cachedInvalid = true;
		return false;
	}

	// check head angles
	const float headAngle = getAngle(cachedXL, cachedYL, cachedX1, cachedY1, cachedXR, cachedYR);
	if (headAngle < headAngleMin|| headAngle > headAngleMax|| std::isnan(headAngle))
	{
		cachedInvalid = true;
		return false;
	}

	// check proxDistal angle L and R
	const float angleProxDistL = getAngle(xOrigL, yOrigL, cachedXL, cachedYL, cachedX1, cachedY1);
	if (angleProxDistL < proxDistLAngleMin|| angleProxDistL > proxDistLAngleMax || std::isnan(angleProxDistL))
	{
		cachedInvalid = true;
		return false;
	}
	const float angleProxDistR = getAngle(xOrigR, yOrigR, cachedXR, cachedYR, cachedX1, cachedY1);
	if (angleProxDistR < proxDistRAngleMin || angleProxDistR > proxDistRAngleMax || std::isnan(angleProxDistR))
	{
		cachedInvalid = true;
		return false;
	}

	cachedInvalid = false;
	return true;
}

///////////////////////////// public functions /////////////////////////


// Set the parameters from a M665, M666 or M669 command
// Return true if we changed any parameters. Set 'error' true if there was an error, otherwise leave it alone.
bool FiveBarScaraKinematics::Configure(unsigned int mCode, GCodeBuffer& gb, const StringRef& reply, bool& error) /*override*/
{
	if (mCode == 669)
	{
		// must be defined: X, Y, P, D
		gb.MustSee('X');
		gb.MustSee('Y');
		gb.MustSee('P');
		gb.MustSee('D');

		bool seen = false;
		bool seenNonGeometry = false;

		// parameter X: x origins of actuators
		float paraX[2];
		gb.TryGetFloatArray('X', 2, paraX, reply, seen);
		xOrigL = paraX[0];
		xOrigR = paraX[1];

		// parameter Y: y origins of actuators
		float paraY[2];
		gb.TryGetFloatArray('Y', 2, paraY, reply, seen);
		yOrigL = paraY[0];
		yOrigR = paraY[1];

		// workmode, default 1 is left buckled, right bulged
		if (gb.Seen('L'))
		{
			int32_t wm = 0L;
			gb.TryGetIValue('L', wm, seen);
			workmode = (int)wm;
			if (!(workmode == 1 || workmode == 2 || workmode == 4))
			{
				error = true;
				return true;
			}
		}
		else
		{
			workmode = 1;	// default
		}

		// proximal arm lenghts
		float proximalLengths[2];
		gb.TryGetFloatArray('P', 2, proximalLengths, reply, seen);
		proximalL = proximalLengths[0];
		proximalR = proximalLengths[1];

		// distal arm lengths and optional lengths of cantilevered arm
		bool dseen = false;
		float distalLengths[4];
		if (!gb.TryGetFloatArray('D', 4, distalLengths, reply, dseen) && dseen)
		{
			distalL = distalLengths[0];
			distalR = distalLengths[1];
			cantL = distalLengths[2];
			cantR = distalLengths[3];
			seen = true;
		}
		else
		{
			dseen = false;
			if (!gb.TryGetFloatArray('D', 2, distalLengths, reply, dseen) && dseen)
			{
				distalL = distalLengths[0];
				distalR = distalLengths[1];
				cantL = 0.0;
				cantR = 0.0;
				seen = true;
			}
		}

		// angle of the actuator in the home position
		if (gb.Seen('B'))
		{
			float homingAngles[2];
			gb.TryGetFloatArray('B', 2, homingAngles, reply, seen);
			homingAngleL = homingAngles[0];
			homingAngleR = homingAngles[1];
		}
		else
		{
			if (workmode == 1)
			{
				homingAngleL = 20.0;	// default
				homingAngleR = 10.0;	// default
			}
			else if (workmode == 2)
			{
				homingAngleL = 110.0;	// default
				homingAngleR = 20.0;	// default
			}
			else if (workmode == 4)
			{
				homingAngleL = 110.0;	// default
				homingAngleR = 100.0;	// default
			}
			else
			{
				homingAngleL = 90.0;	// default
				homingAngleR = 90.0;	// default
			}
		}

		// angle constraints: between distals and between proximal and distal
		if (gb.Seen('A'))
		{
			float angles[6];
			gb.TryGetFloatArray('A', 6, angles, reply, seen);
			headAngleMin      = angles[0];
			headAngleMax      = angles[1];
			proxDistLAngleMin = angles[2];
			proxDistLAngleMax = angles[3];
			proxDistRAngleMin = angles[4];
			proxDistRAngleMax = angles[5];
		}
		else
		{
			headAngleMin = 15.0;
			headAngleMax = 165.0;
			proxDistLAngleMin = 0.0;
			proxDistLAngleMax = 360.0;
			proxDistRAngleMin = 0.0;
			proxDistRAngleMax = 360.0;
		}

		// actuator angle constraints
		if (gb.Seen('C'))
		{
			float angles[4];
			gb.TryGetFloatArray('C', 4, angles, reply, seen);
			actuatorAngleLMin = angles[0];
			actuatorAngleLMax = angles[1];
			actuatorAngleRMin = angles[2];
			actuatorAngleRMax = angles[3];
		}
		else {
			actuatorAngleLMin = 10.0;
			actuatorAngleLMax = 170.0;
			actuatorAngleRMin = 10.0;
			actuatorAngleRMax = 170.0;
		}

		// optional rectangle definition of a print area. Must match the workmode reachable area
		if (gb.Seen('Z'))
		{
			float coordinates[4];
			gb.TryGetFloatArray('Z', 4, coordinates, reply, seen);
			for (int i=0; i < 4; i++)
			{
				printArea[i] = coordinates[i];
			}
			printAreaDefined = true;
		}
		else
		{
			printAreaDefined = false;
		}

		gb.TryGetFValue('S', segmentsPerSecond, seenNonGeometry);		// value defined in Kinematics.h
		gb.TryGetFValue('T', minSegmentLength, seenNonGeometry);		// value defined in Kinematics.h

		if (seen || seenNonGeometry)
		{
			Recalc();
		}
		else if (!gb.Seen('K'))
		{
			reply.printf("Kinematics is FiveBarScara, documented in https://duet3d.dozuki.com/Guide/Five+Bar+Parallel+SCARA/24?lang=en");
		}

		return seen;
	}
	else
	{
		return ZLeadscrewKinematics::Configure(mCode, gb, reply, error);
	}
}

// Limit the Cartesian position that the user wants to move to, returning true if any coordinates were changed
LimitPositionResult FiveBarScaraKinematics::LimitPosition(float coords[], const float * null initialCoords, size_t numVisibleAxes, AxesBitmap axesHomed, bool isCoordinated, bool applyM208Limits) const
{
	// First limit all axes according to M208
	const bool m208Limited = applyM208Limits && Kinematics::LimitPositionFromAxis(coords, 0, numVisibleAxes, axesHomed);

	if (!constraintsOk(coords))
	{
		return LimitPositionResult::intermediateUnreachable;	//TODO is this right?
	}

	return (m208Limited) ? LimitPositionResult::adjusted : LimitPositionResult::ok;
}


// Convert Cartesian coordinates to motor coordinates, returning true if successful
// In the following, theta is the proximal arm angle relative to the X axis, psi is the distal arm angle relative to the proximal arm
bool FiveBarScaraKinematics::CartesianToMotorSteps(const float machinePos[], const float stepsPerMm[], size_t numVisibleAxes, size_t numTotalAxes, int32_t motorPos[], bool isCoordinated) const
{
	float coords[2] = { machinePos[0], machinePos[1] };
	getInverse(coords);

	if (!constraintsOk(coords))
	{
		return false;
	}

	motorPos[X_AXIS] = lrintf(cachedThetaL * stepsPerMm[X_AXIS]);
	motorPos[Y_AXIS] = lrintf(cachedThetaR * stepsPerMm[Y_AXIS]);
	motorPos[Z_AXIS] = lrintf(machinePos[Z_AXIS] * stepsPerMm[Z_AXIS]);

	// Transform any additional axes linearly
	for (size_t axis = XYZ_AXES; axis < numVisibleAxes; ++axis)
	{
		motorPos[axis] = lrintf(machinePos[axis] * stepsPerMm[axis]);
	}

	return true;
}

// Convert motor coordinates to machine coordinates. Used after homing and after individual motor moves.
// For Scara, the X and Y components of stepsPerMm are actually steps per degree angle.
void FiveBarScaraKinematics::MotorStepsToCartesian(const int32_t motorPos[], const float stepsPerMm[], size_t numVisibleAxes, size_t numTotalAxes, float machinePos[]) const
{

	const float thetaL = ((float)motorPos[X_AXIS]/stepsPerMm[X_AXIS]);
	const float thetaR = ((float)motorPos[Y_AXIS]/stepsPerMm[Y_AXIS]);

	float x_0 = -1.0;
	float y_0 = -1.0;

	float resultcoords[6];
	getForward(resultcoords, thetaL, thetaR);
	const float x1 = resultcoords[4];
	const float y1 = resultcoords[5];

	if (isCantilevered(1))
	{
		// left distal is prolonged
		const float xL = resultcoords[0];
		const float yL = resultcoords[1];

		// calculate cantilever from psiL
		const float psiL = getAbsoluteAngle(xL, yL, x1, y1);
		float dest[2];
		getXYFromAngle(dest, psiL, cantL, x1, y1);
		x_0 = dest[0];
		y_0 = dest[1];
	}
	else if(isCantilevered(2))
	{
		// right distal is prolonged
		const float xR = resultcoords[2];
		const float yR = resultcoords[3];

		// now calculate cantilever from psiR
		const float psiR = getAbsoluteAngle(xR, yR, x1, y1);
		float dest[2];
		getXYFromAngle(dest, psiR, cantR, x1, y1);
		x_0 = dest[0];
		y_0 = dest[1];
	}
	else
	{
		x_0 = x1;
		y_0 = y1;
	}

    machinePos[X_AXIS] = x_0;
    machinePos[Y_AXIS] = y_0;

    machinePos[Z_AXIS] = (float) motorPos[Z_AXIS] / stepsPerMm[Z_AXIS];

	// Convert any additional axes linearly
	for (size_t drive = XYZ_AXES; drive < numVisibleAxes; ++drive)
	{
		machinePos[drive] = motorPos[drive]/stepsPerMm[drive];
	}
}

// Return true if the specified XY position is reachable by the print head reference point.
bool FiveBarScaraKinematics::IsReachable(float x, float y, bool isCoordinated) const
{
	float coords[2] = {x, y};
	return constraintsOk(coords);
}

// Return the initial Cartesian coordinates we assume after switching to this kinematics
void FiveBarScaraKinematics::GetAssumedInitialPosition(size_t numAxes, float positions[]) const
{
	// x and y are unknown. The stepper angles shall be near the homing endstops, so some iterations turning left and right
	// will find the endstop positions. The angles and coordinates are clearly defined then.
	positions[X_AXIS] = 0.0;
	positions[Y_AXIS] = 0.0;
	for (size_t i = Z_AXIS; i < numAxes; ++i)
	{
		positions[i] = 0.0;
	}
}

// Return the axes that we can assume are homed after executing a G92 command to set the specified axis coordinates
AxesBitmap FiveBarScaraKinematics::AxesAssumedHomed(AxesBitmap g92Axes) const
{
	// If both X and Y have been specified then we know the positions of both arm motors, otherwise we don't
	if ((g92Axes & XyAxes) != XyAxes)
	{
		g92Axes &= ~XyAxes;
	}
	return g92Axes;
}

// Return the set of axes that must be homed prior to regular movement of the specified axes
AxesBitmap FiveBarScaraKinematics::MustBeHomedAxes(AxesBitmap axesMoving, bool disallowMovesBeforeHoming) const
{
	if (axesMoving.Intersects(XyzAxes))
	{
		axesMoving |= XyzAxes;
	}
	return axesMoving;
}

// This function is called when a request is made to home the axes in 'toBeHomed' and the axes in 'alreadyHomed' have already been homed.
// If we can proceed with homing some axes, return the name of the homing file to be called.
// If we can't proceed because other axes need to be homed first, return nullptr and pass those axes back in 'mustBeHomedFirst'.
AxesBitmap FiveBarScaraKinematics::GetHomingFileName(AxesBitmap toBeHomed, AxesBitmap alreadyHomed, size_t numVisibleAxes, const StringRef& filename) const
{
	// Ask the base class which homing file we should call first
	AxesBitmap ret = Kinematics::GetHomingFileName(toBeHomed, alreadyHomed, numVisibleAxes, filename);
	filename.copy(Home5BarScaraFileName);

	return ret;
}

// This function is called from the step ISR when an endstop switch is triggered during homing.
// Return true if the entire homing move should be terminated, false if only the motor associated with the endstop switch should be stopped.
bool FiveBarScaraKinematics::QueryTerminateHomingMove(size_t axis) const
{
	return false;
}

// This function is called from the step ISR when an endstop switch is triggered during homing after stopping just one motor or all motors.
// Take the action needed to define the current position, normally by calling dda.SetDriveCoordinate() and return false.
void FiveBarScaraKinematics::OnHomingSwitchTriggered(size_t axis, bool highEnd, const float stepsPerMm[], DDA& dda) const
{
	switch (axis)
	{
	case X_AXIS:	// Left arm homing switch
		dda.SetDriveCoordinate(lrintf(homingAngleL * stepsPerMm[axis]), axis);
		break;

	case Y_AXIS:	// Left arm homing switch
		dda.SetDriveCoordinate(lrintf(homingAngleR * stepsPerMm[axis]), axis);
		break;

	case Z_AXIS:	// Z axis homing switch
		{
			const float hitPoint = ((highEnd) ? reprap.GetPlatform().AxisMaximum(axis) : reprap.GetPlatform().AxisMinimum(axis));
			dda.SetDriveCoordinate(lrintf(hitPoint * stepsPerMm[axis]), axis);
		}
		break;

	default:		// Additional axis
		{
			const float hitPoint = (highEnd) ? reprap.GetPlatform().AxisMaximum(axis) : reprap.GetPlatform().AxisMinimum(axis);
			dda.SetDriveCoordinate(lrintf(hitPoint * stepsPerMm[axis]), axis);
		}
		break;
	}
}

// Limit the speed and acceleration of a move to values that the mechanics can handle. The speeds in Cartesian space have already been limited.
void FiveBarScaraKinematics::LimitSpeedAndAcceleration(DDA& dda, const float *normalisedDirectionVector, size_t numVisibleAxes, bool continuousRotationShortcut) const
{
	//TODO should we make use of numVisibleAxes and/or continuousRotationShortcut?
	// For now we limit the speed in the XY plane to the lower of the X and Y maximum speeds, and similarly for the acceleration.
	// Limiting the angular rates of the arms would be better.
	const float xyFactor = sqrtf(fsquare(normalisedDirectionVector[X_AXIS]) + fsquare(normalisedDirectionVector[Y_AXIS]));
	if (xyFactor > 0.01)
	{
		const Platform& platform = reprap.GetPlatform();
		const float maxSpeed = min<float>(platform.MaxFeedrate(X_AXIS), platform.MaxFeedrate(Y_AXIS));
		const float maxAcceleration = min<float>(platform.Acceleration(X_AXIS), platform.Acceleration(Y_AXIS));
		dda.LimitSpeedAndAcceleration(maxSpeed/xyFactor, maxAcceleration/xyFactor);
	}
}

// Return true if the specified axis is a continuous rotation axis
bool FiveBarScaraKinematics::IsContinuousRotationAxis(size_t axis) const
{
	return false;
}

AxesBitmap FiveBarScaraKinematics::GetLinearAxes() const
{
	return AxesBitmap::MakeFromBits(Z_AXIS);
}

AxesBitmap FiveBarScaraKinematics::GetConnectedAxes(size_t axis) const
{
	return (axis == X_AXIS || axis == Y_AXIS)
			? XyAxes
				: AxesBitmap::MakeFromBits(axis);
}

// Recalculate the derived parameters
void FiveBarScaraKinematics::Recalc()
{
	cachedX0 = std::numeric_limits<float>::quiet_NaN(); // make sure that the cached values won't match any coordinates
	cachedY0 = std::numeric_limits<float>::quiet_NaN(); // make sure that the cached values won't match any coordinates
	cachedInvalid = true;
}

// End