Welcome to mirror list, hosted at ThFree Co, Russian Federation.

ScaraKinematics.cpp « Kinematics « Movement « src - github.com/Duet3D/RepRapFirmware.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 63d623470677379fa65e73aa16b7a04f3992ef80 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/*
 * ScaraKinematics.cpp
 *
 *  Created on: 24 Apr 2017
 *      Author: David
 */

#include "ScaraKinematics.h"
#include <Platform/RepRap.h>
#include <Platform/Platform.h>
#include <Storage/MassStorage.h>
#include <GCodes/GCodeBuffer/GCodeBuffer.h>
#include <Movement/DDA.h>

#include <limits>

#if SUPPORT_OBJECT_MODEL

// Object model table and functions
// Note: if using GCC version 7.3.1 20180622 and lambda functions are used in this table, you must compile this file with option -std=gnu++17.
// Otherwise the table will be allocated in RAM instead of flash, which wastes too much RAM.

// Macro to build a standard lambda function that includes the necessary type conversions
#define OBJECT_MODEL_FUNC(...) OBJECT_MODEL_FUNC_BODY(ScaraKinematics, __VA_ARGS__)

constexpr ObjectModelTableEntry ScaraKinematics::objectModelTable[] =
{
	// Within each group, these entries must be in alphabetical order
	// 0. kinematics members
	{ "name",	OBJECT_MODEL_FUNC(self->GetName(true)), 	ObjectModelEntryFlags::none },
};

constexpr uint8_t ScaraKinematics::objectModelTableDescriptor[] = { 1, 1 };

DEFINE_GET_OBJECT_MODEL_TABLE_WITH_PARENT(ScaraKinematics, ZLeadscrewKinematics)

#endif

ScaraKinematics::ScaraKinematics() noexcept
	: ZLeadscrewKinematics(KinematicsType::scara, true, true),
	  proximalArmLength(DefaultProximalArmLength), distalArmLength(DefaultDistalArmLength), xOffset(0.0), yOffset(0.0)
{
	thetaLimits[0] = DefaultMinTheta;
	thetaLimits[1] = DefaultMaxTheta;
	psiLimits[0] = DefaultMinPsi;
	psiLimits[1] = DefaultMaxPsi;
	crosstalk[0] = crosstalk[1] = crosstalk[2] = requestedMinRadius = 0.0;
	Recalc();
}

// Return the name of the current kinematics
const char *ScaraKinematics::GetName(bool forStatusReport) const noexcept
{
	return "Scara";
}

// Calculate theta, psi and the new arm mode from a target position.
// If the position is not reachable because it is out of radius limits, set theta and psi to NaN and return false.
// Otherwise set theta and psi to the required values and return true if they are in range.
// Note: theta and psi are now returned in degrees.
bool ScaraKinematics::CalculateThetaAndPsi(const float machinePos[], bool isCoordinated, float& theta, float& psi, bool& armMode) const noexcept
{
	const float x = machinePos[X_AXIS] + xOffset;
	const float y = machinePos[Y_AXIS] + yOffset;
	const float cosPsi = (fsquare(x) + fsquare(y) - proximalArmLengthSquared - distalArmLengthSquared) / twoPd;

	// SCARA position is undefined if abs(SCARA_C2) >= 1. In reality abs(SCARA_C2) >0.95 can be problematic.
	const float square = 1.0 - fsquare(cosPsi);
	if (square < 0.01)
	{
		theta = psi = std::numeric_limits<float>::quiet_NaN();
		return false;		// not reachable
	}

	psi = acosf(cosPsi) * RadiansToDegrees;
	const float sinPsi = fastSqrtf(square);
	const float SCARA_K1 = proximalArmLength + distalArmLength * cosPsi;
	const float SCARA_K2 = distalArmLength * sinPsi;

	// Try the current arm mode, then the other one
	bool switchedMode = false;
	for (;;)
	{
		if (armMode != switchedMode)
		{
			// The following equations choose arm mode 0 i.e. distal arm rotated anticlockwise relative to proximal arm
			if (supportsContinuousRotation[1] || (psi >= psiLimits[0] && psi <= psiLimits[1]))
			{
				theta = atan2f(SCARA_K1 * y - SCARA_K2 * x, SCARA_K1 * x + SCARA_K2 * y) * RadiansToDegrees;
				if (supportsContinuousRotation[0] || (theta >= thetaLimits[0] && theta <= thetaLimits[1]))
				{
					break;
				}
			}
		}
		else
		{
			// The following equations choose arm mode 1 i.e. distal arm rotated clockwise relative to proximal arm
			if (supportsContinuousRotation[1] || ((-psi) >= psiLimits[0] && (-psi) <= psiLimits[1]))
			{
				theta = atan2f(SCARA_K1 * y + SCARA_K2 * x, SCARA_K1 * x - SCARA_K2 * y) * RadiansToDegrees;
				if (supportsContinuousRotation[0] || (theta >= thetaLimits[0] && theta <= thetaLimits[1]))
				{
					psi = -psi;
					break;
				}
			}
		}

		if (isCoordinated || switchedMode)
		{
			return false;		// not reachable
		}
		switchedMode = true;
	}

	// Now that we know we are going to do the move, update the arm mode
	if (switchedMode)
	{
		armMode = !armMode;
	}

	// Save the original and transformed coordinates so that we don't need to calculate them again if we are commanded to move to this position
	cachedX = machinePos[0];
	cachedY = machinePos[1];
	cachedTheta = theta;
	cachedPsi = psi;
	cachedArmMode = armMode;
	return true;
}

// Convert Cartesian coordinates to motor coordinates, returning true if successful
// In the following, theta is the proximal arm angle relative to the X axis, psi is the distal arm angle relative to the proximal arm
bool ScaraKinematics::CartesianToMotorSteps(const float machinePos[], const float stepsPerMm[], size_t numVisibleAxes, size_t numTotalAxes, int32_t motorPos[], bool isCoordinated) const noexcept
{
	float theta, psi;
	if (machinePos[0] == cachedX && machinePos[1] == cachedY)
	{
		theta = cachedTheta;
		psi = cachedPsi;
		currentArmMode = cachedArmMode;
	}
	else
	{
		bool armMode = currentArmMode;
		if (!CalculateThetaAndPsi(machinePos, isCoordinated, theta, psi, armMode))
		{
			return false;
		}
		currentArmMode = armMode;
	}

//debugPrintf("psi = %.2f, theta = %.2f\n", psi * RadiansToDegrees, theta * RadiansToDegrees);

	motorPos[X_AXIS] = lrintf(theta * stepsPerMm[X_AXIS]);
	motorPos[Y_AXIS] = lrintf((psi - (crosstalk[0] * theta)) * stepsPerMm[Y_AXIS]);
	motorPos[Z_AXIS] = lrintf((machinePos[Z_AXIS] - (crosstalk[1] * theta) - (crosstalk[2] * psi)) * stepsPerMm[Z_AXIS]);

	// Transform any additional axes linearly
	for (size_t axis = XYZ_AXES; axis < numVisibleAxes; ++axis)
	{
		motorPos[axis] = lrintf(machinePos[axis] * stepsPerMm[axis]);
	}
	return true;
}

// Convert motor coordinates to machine coordinates. Used after homing and after individual motor moves.
// For Scara, the X and Y components of stepsPerMm are actually steps per degree angle.
void ScaraKinematics::MotorStepsToCartesian(const int32_t motorPos[], const float stepsPerMm[], size_t numVisibleAxes, size_t numTotalAxes, float machinePos[]) const noexcept
{
	const float theta = ((float)motorPos[X_AXIS]/stepsPerMm[X_AXIS]);
    const float psi = ((float)motorPos[Y_AXIS]/stepsPerMm[Y_AXIS]) + (crosstalk[0] * theta);

    // Cache the current values so that a Z probe at this position won't fail due to rounding error when transforming the XY coordinates back
    currentArmMode = cachedArmMode = (motorPos[Y_AXIS] >= 0);
    cachedTheta = theta;
    cachedPsi = psi;
    cachedX = machinePos[X_AXIS] = (cosf(theta * DegreesToRadians) * proximalArmLength + cosf((psi + theta) * DegreesToRadians) * distalArmLength) - xOffset;
    cachedY = machinePos[Y_AXIS] = (sinf(theta * DegreesToRadians) * proximalArmLength + sinf((psi + theta) * DegreesToRadians) * distalArmLength) - yOffset;

    // On some machines (e.g. Helios), the X and/or Y arm motors also affect the Z height
    machinePos[Z_AXIS] = ((float)motorPos[Z_AXIS]/stepsPerMm[Z_AXIS]) + (crosstalk[1] * theta) + (crosstalk[2] * psi);

	// Convert any additional axes linearly
	for (size_t drive = XYZ_AXES; drive < numVisibleAxes; ++drive)
	{
		machinePos[drive] = motorPos[drive]/stepsPerMm[drive];
	}
}

// Set the parameters from a M665, M666 or M669 command
// Return true if we changed any parameters that affect the geometry. Set 'error' true if there was an error, otherwise leave it alone.
bool ScaraKinematics::Configure(unsigned int mCode, GCodeBuffer& gb, const StringRef& reply, bool& error) THROWS(GCodeException) /*override*/
{
	if (mCode == 669)
	{
		const bool seenNonGeometry = TryConfigureSegmentation(gb);
		bool seen = false;
		gb.TryGetFValue('P', proximalArmLength, seen);
		gb.TryGetFValue('D', distalArmLength, seen);
		gb.TryGetFValue('X', xOffset, seen);
		gb.TryGetFValue('Y', yOffset, seen);
		if (gb.TryGetFloatArray('A', 2, thetaLimits, reply, seen))
		{
			error = true;
			return true;
		}
		if (gb.TryGetFloatArray('B', 2, psiLimits, reply, seen))
		{
			error = true;
			return true;
		}
		if (gb.TryGetFloatArray('C', 3, crosstalk, reply, seen))
		{
			error = true;
			return true;
		}
		gb.TryGetFValue('R', requestedMinRadius, seen);

		if (seen)
		{
			Recalc();
		}
		else if (!seenNonGeometry && !gb.Seen('K'))
		{
			reply.printf("Kinematics is Scara with proximal arm %.2fmm range %.1f to %.1f" DEGREE_SYMBOL
							"%s, distal arm %.2fmm range %.1f to %.1f" DEGREE_SYMBOL "%s, crosstalk %.1f:%.1f:%.1f, bed origin (%.1f, %.1f), segments/sec %d, min. segment length %.2f",
							(double)proximalArmLength, (double)thetaLimits[0], (double)thetaLimits[1], (supportsContinuousRotation[0]) ? " (continuous)" : "",
							(double)distalArmLength, (double)psiLimits[0], (double)psiLimits[1], (supportsContinuousRotation[0]) ? " (continuous)" : "",
							(double)crosstalk[0], (double)crosstalk[1], (double)crosstalk[2],
							(double)xOffset, (double)yOffset,
							(int)segmentsPerSecond, (double)minSegmentLength);
		}
		return seen;
	}
	else
	{
		return ZLeadscrewKinematics::Configure(mCode, gb, reply, error);
	}
}

// Return true if the specified XY position is reachable by the print head reference point, ignoring M208 limits.
bool ScaraKinematics::IsReachable(float axesCoords[MaxAxes], AxesBitmap axes, bool isCoordinated) const noexcept
{
	if (axes.IsBitSet(X_AXIS) && axes.IsBitSet(Y_AXIS))
	{
		// See if we can transform the position
		float coords[2] = {axesCoords[X_AXIS], axesCoords[Y_AXIS]};
		float theta, psi;
		bool armMode = currentArmMode;
		if (!CalculateThetaAndPsi(coords, isCoordinated, theta, psi, armMode))
		{
			return false;
		}
	}
	axes.ClearBit(X_AXIS);
	axes.ClearBit(Y_AXIS);
	return Kinematics::IsReachable(axesCoords, axes, isCoordinated);
}

// Limit the Cartesian position that the user wants to move to, returning true if any coordinates were changed
LimitPositionResult ScaraKinematics::LimitPosition(float finalCoords[], const float * null initialCoords,
													size_t numVisibleAxes, AxesBitmap axesToLimit, bool isCoordinated, bool applyM208Limits) const noexcept
{
	// First limit all axes according to M208
	bool limited = applyM208Limits && Kinematics::LimitPositionFromAxis(finalCoords, 0, numVisibleAxes, axesToLimit);

	// Now check whether the arms can reach the final position
	float theta, psi;
	bool armMode = currentArmMode;
	if (!CalculateThetaAndPsi(finalCoords, isCoordinated, theta, psi, armMode))
	{
		// The requested position was not reachable
		limited = true;
		if (std::isnan(theta))
		{
			// We are radius-limited
			float x = finalCoords[X_AXIS] + xOffset;
			float y = finalCoords[Y_AXIS] + yOffset;
			const float r = fastSqrtf(fsquare(x) + fsquare(y));
			if (r < minRadius)
			{
				// Radius is too small. The user may have specified x=0 y=0 so allow for this.
				if (r < 1.0)
				{
					x = minRadius;
					y = 0.0;
				}
				else
				{
					x *= minRadius/r;
					y *= minRadius/r;
				}
			}
			else
			{
				// Radius must be too large
				x *= maxRadius/r;
				y *= maxRadius/r;
			}

			finalCoords[X_AXIS] = x - xOffset;
			finalCoords[Y_AXIS] = y - yOffset;
		}

		// Recalculate theta and psi, but don't allow arm mode changes this time
		if (!CalculateThetaAndPsi(finalCoords, true, theta, psi, armMode) && !std::isnan(theta))
		{
			// Radius is in range but at least one arm angle isn't
			cachedTheta = theta = constrain<float>(theta, thetaLimits[0], thetaLimits[1]);
			cachedPsi = psi = constrain<float>(psi, psiLimits[0], psiLimits[1]);
			cachedX = finalCoords[X_AXIS] = (cosf(theta * DegreesToRadians) * proximalArmLength + cosf((psi + theta) * DegreesToRadians) * distalArmLength) - xOffset;
			cachedY = finalCoords[Y_AXIS] = (sinf(theta * DegreesToRadians) * proximalArmLength + sinf((psi + theta) * DegreesToRadians) * distalArmLength) - yOffset;
			cachedArmMode = currentArmMode;
		}
	}

	// The final position is now reachable. Check that we can get there from the initial position.
	if (isCoordinated && initialCoords != nullptr)
	{
		// Calculate how far along the line the closest point of approach to the distal axis is
		// From maxima, t = -(y0(y1-y0)+x0(x1-x0))/L^2, d^2=((x0y1-x1y0)^2)/L^2
		// where t is how far from along the line from x0y0 to x1y1 the closest point of approach is (0..1), d is the closest approach distance, and L^2= (x1-x0)^2+(y1-y0)^2
		const float xdiff = finalCoords[0] - initialCoords[0];
		const float ydiff = finalCoords[1] - initialCoords[1];
		const float sumOfSquares = fsquare(xdiff) + fsquare(ydiff);
		const float p = -(xdiff * (initialCoords[0] + xOffset) + ydiff * (initialCoords[1] + yOffset));
		if (p > 0.0 && p < sumOfSquares)
		{
			// The closest point of approach to the distal axis is between the start and end points, so calculate the distance
			const float cpa2 = fsquare((finalCoords[0] + xOffset) * (initialCoords[1] + yOffset) - (finalCoords[1] + yOffset) * (initialCoords[0] + xOffset));
			if (cpa2 < minRadiusSquared * sumOfSquares)
			{
				return (limited) ? LimitPositionResult::adjustedAndIntermediateUnreachable : LimitPositionResult::intermediateUnreachable;
			}
		}
	}

	return (limited) ? LimitPositionResult::adjusted : LimitPositionResult::ok;
}

// Return the initial Cartesian coordinates we assume after switching to this kinematics
void ScaraKinematics::GetAssumedInitialPosition(size_t numAxes, float positions[]) const noexcept
{
	positions[X_AXIS] = maxRadius - xOffset;
	positions[Y_AXIS] = -yOffset;
	for (size_t i = Z_AXIS; i < numAxes; ++i)
	{
		positions[i] = 0.0;
	}
}

// Return the axes that we can assume are homed after executing a G92 command to set the specified axis coordinates
AxesBitmap ScaraKinematics::AxesAssumedHomed(AxesBitmap g92Axes) const noexcept
{
	// If both X and Y have been specified then we know the positions of both arm motors, otherwise we don't
	if ((g92Axes & XyAxes) != XyAxes)
	{
		g92Axes &= ~XyAxes;
	}
	return g92Axes;
}

// Return the set of axes that must be homed prior to regular movement of the specified axes
AxesBitmap ScaraKinematics::MustBeHomedAxes(AxesBitmap axesMoving, bool disallowMovesBeforeHoming) const noexcept
{
	if (axesMoving.Intersects(XyAxes))
	{
		axesMoving |= XyAxes;
	}
	return axesMoving;
}

size_t ScaraKinematics::NumHomingButtons(size_t numVisibleAxes) const noexcept
{
#if HAS_MASS_STORAGE
	const Platform& platform = reprap.GetPlatform();
	if (!platform.SysFileExists(HomeProximalFileName))
	{
		return 0;
	}
	if (!platform.SysFileExists(HomeDistalFileName))
	{
		return 1;
	}
	if (!platform.SysFileExists("homez.g"))
	{
		return 2;
	}
#endif
	return numVisibleAxes;
}

// This function is called when a request is made to home the axes in 'toBeHomed' and the axes in 'alreadyHomed' have already been homed.
// If we can proceed with homing some axes, return the name of the homing file to be called.
// If we can't proceed because other axes need to be homed first, return nullptr and pass those axes back in 'mustBeHomedFirst'.
AxesBitmap ScaraKinematics::GetHomingFileName(AxesBitmap toBeHomed, AxesBitmap alreadyHomed, size_t numVisibleAxes, const StringRef& filename) const noexcept
{
	// Ask the base class which homing file we should call first
	const AxesBitmap ret = Kinematics::GetHomingFileName(toBeHomed, alreadyHomed, numVisibleAxes, filename);

	if (ret.IsEmpty())
	{
		// Change the returned name if it is X or Y
		if (StringEqualsIgnoreCase(filename.c_str(), "homex.g"))
		{
			filename.copy(HomeProximalFileName);
		}
		else if (StringEqualsIgnoreCase(filename.c_str(), "homey.g"))
		{
			filename.copy(HomeDistalFileName);
		}

#if HAS_MASS_STORAGE
		// Some SCARA printers cannot have individual axes homed safely. So it the user doesn't provide the homing file for an axis, default to homeall.
		if (!reprap.GetPlatform().SysFileExists(filename.c_str()))
		{
			filename.copy(HomeAllFileName);
		}
#endif
	}
	return ret;
}

// This function is called from the step ISR when an endstop switch is triggered during homing.
// Return true if the entire homing move should be terminated, false if only the motor associated with the endstop switch should be stopped.
bool ScaraKinematics::QueryTerminateHomingMove(size_t axis) const noexcept
{
	// If crosstalk causes the axis motor concerned to affect other axes then must terminate the entire move
	return (axis == X_AXIS && (crosstalk[0] != 0.0 || crosstalk[1] != 0.0))
		|| (axis == Y_AXIS && crosstalk[2] != 0.0);
}

// This function is called from the step ISR when an endstop switch is triggered during homing after stopping just one motor or all motors.
// Take the action needed to define the current position, normally by calling dda.SetDriveCoordinate().
void ScaraKinematics::OnHomingSwitchTriggered(size_t axis, bool highEnd, const float stepsPerMm[], DDA& dda) const noexcept
{
	switch (axis)
	{
	case X_AXIS:	// proximal joint homing switch
		{
			const float hitPoint = (highEnd) ? thetaLimits[1] : thetaLimits[0];
			dda.SetDriveCoordinate(lrintf(hitPoint * stepsPerMm[axis]), axis);
		}
		break;

	case Y_AXIS:	// distal joint homing switch
		{
			const float hitPoint = ((highEnd) ? psiLimits[1] : psiLimits[0])
									- ((dda.DriveCoordinates()[X_AXIS] * crosstalk[0])/stepsPerMm[X_AXIS]);
			dda.SetDriveCoordinate(lrintf(hitPoint * stepsPerMm[axis]), axis);
		}
		break;

	case Z_AXIS:	// Z axis homing switch
		{
			const float hitPoint = ((highEnd) ? reprap.GetPlatform().AxisMaximum(axis) : reprap.GetPlatform().AxisMinimum(axis))
									- ((dda.DriveCoordinates()[X_AXIS] * crosstalk[1])/stepsPerMm[X_AXIS])
									- ((dda.DriveCoordinates()[Y_AXIS] * crosstalk[2])/stepsPerMm[Y_AXIS]);
			dda.SetDriveCoordinate(lrintf(hitPoint * stepsPerMm[axis]), axis);
		}
		break;

	default:		// Additional axis
		{
			const float hitPoint = (highEnd) ? reprap.GetPlatform().AxisMaximum(axis) : reprap.GetPlatform().AxisMinimum(axis);
			dda.SetDriveCoordinate(lrintf(hitPoint * stepsPerMm[axis]), axis);
		}
		break;
	}
}

// Limit the speed and acceleration of a move to values that the mechanics can handle.
// The speeds in Cartesian space have already been limited.
void ScaraKinematics::LimitSpeedAndAcceleration(DDA& dda, const float *normalisedDirectionVector, size_t numVisibleAxes, bool continuousRotationShortcut) const noexcept
{
	// For now we limit the speed in the XY plane to the lower of the X and Y maximum speeds, and similarly for the acceleration.
	// Limiting the angular rates of the arms would be better.
	const float xyFactor = fastSqrtf(fsquare(normalisedDirectionVector[X_AXIS]) + fsquare(normalisedDirectionVector[Y_AXIS]));
	if (xyFactor > 0.01)
	{
		const Platform& platform = reprap.GetPlatform();
		const float maxSpeed = min<float>(platform.MaxFeedrate(X_AXIS), platform.MaxFeedrate(Y_AXIS));
		const float maxAcceleration = min<float>(platform.Acceleration(X_AXIS), platform.Acceleration(Y_AXIS));
		dda.LimitSpeedAndAcceleration(maxSpeed/xyFactor, maxAcceleration/xyFactor);
	}
}

// Return true if the specified axis is a continuous rotation axis
bool ScaraKinematics::IsContinuousRotationAxis(size_t axis) const noexcept
{
	return (axis < 2 && supportsContinuousRotation[axis]) || Kinematics::IsContinuousRotationAxis(axis);
}

// Return a bitmap of axes that move linearly in response to the correct combination of linear motor movements.
// This is called to determine whether we can babystep the specified axis independently of regular motion.
AxesBitmap ScaraKinematics::GetLinearAxes() const noexcept
{
	return (crosstalk[1] == 0.0 && crosstalk[2] == 0.0) ? AxesBitmap::MakeFromBits(Z_AXIS) : AxesBitmap();
}

// Recalculate the derived parameters
void ScaraKinematics::Recalc() noexcept
{
	proximalArmLengthSquared = fsquare(proximalArmLength);
	distalArmLengthSquared = fsquare(distalArmLength);
	twoPd = proximalArmLength * distalArmLength * 2;

	minRadius = max<float>(fastSqrtf(proximalArmLengthSquared + distalArmLengthSquared
							+ twoPd * min<float>(cosf(psiLimits[0] * DegreesToRadians), cosf(psiLimits[1] * DegreesToRadians))) * 1.005,
							requestedMinRadius);
	minRadiusSquared = fsquare(minRadius);

	// If the total angle range is greater than 360 degrees, we assume that it supports continuous rotation
	supportsContinuousRotation[0] = (thetaLimits[1] - thetaLimits[0] > 360.0);
	supportsContinuousRotation[1] = (psiLimits[1] - psiLimits[0] > 360.0);

	if (supportsContinuousRotation[1] || (psiLimits[0] <= 0.0 && psiLimits[1] >= 0.0))
	{
		// Zero distal arm angle is reachable
		maxRadius = proximalArmLength + distalArmLength;
	}
	else
	{
		const float minAngle = min<float>(fabsf(psiLimits[0]), fabsf(psiLimits[1])) * DegreesToRadians;
		maxRadius = fastSqrtf(proximalArmLengthSquared + distalArmLengthSquared + (twoPd * cosf(minAngle)));
	}
	maxRadius *= 0.995;

	cachedX = cachedY = std::numeric_limits<float>::quiet_NaN();		// make sure that the cached values won't match any coordinates
}

// End