Welcome to mirror list, hosted at ThFree Co, Russian Federation.

ScaraKinematics.cpp « Kinematics « Movement « src - github.com/Duet3D/RepRapFirmware.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 9a5580b00fffd9f762d0097292e72d3e267af9da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
/*
 * ScaraKinematics.cpp
 *
 *  Created on: 24 Apr 2017
 *      Author: David
 */

#include "ScaraKinematics.h"
#include "RepRap.h"
#include "Platform.h"
#include "Storage/MassStorage.h"
#include "GCodes/GCodeBuffer.h"
#include "Movement/DDA.h"

#include <limits>

ScaraKinematics::ScaraKinematics()
	: ZLeadscrewKinematics(KinematicsType::scara, DefaultSegmentsPerSecond, DefaultMinSegmentSize, true),
	  proximalArmLength(DefaultProximalArmLength), distalArmLength(DefaultDistalArmLength), xOffset(0.0), yOffset(0.0)
{
	thetaLimits[0] = DefaultMinTheta;
	thetaLimits[1] = DefaultMaxTheta;
	psiLimits[0] = DefaultMinPsi;
	psiLimits[1] = DefaultMaxPsi;
	crosstalk[0] = crosstalk[1] = crosstalk[2] = 0.0;
	Recalc();
}

// Return the name of the current kinematics
const char *ScaraKinematics::GetName(bool forStatusReport) const
{
	return "Scara";
}

// Calculate theta, psi and the new arm mode form a target position.
// If the position is not reachable because it is out of radius limits, set theta and psi to NaN and return false.
// Otherwise set theta and psi to the required values and return true if they are in range.
bool ScaraKinematics::CalculateThetaAndPsi(const float machinePos[], bool isCoordinated, float& theta, float& psi, bool& armMode) const
{
	const float x = machinePos[X_AXIS] + xOffset;
	const float y = machinePos[Y_AXIS] + yOffset;
	const float cosPsi = (fsquare(x) + fsquare(y) - proximalArmLengthSquared - distalArmLengthSquared) / twoPd;

	// SCARA position is undefined if abs(SCARA_C2) >= 1. In reality abs(SCARA_C2) >0.95 can be problematic.
	const float square = 1.0f - fsquare(cosPsi);
	if (square < 0.01f)
	{
		theta = psi = std::numeric_limits<float>::quiet_NaN();
		return false;		// not reachable
	}

	psi = acosf(cosPsi);
	const float sinPsi = sqrtf(square);
	const float SCARA_K1 = proximalArmLength + distalArmLength * cosPsi;
	const float SCARA_K2 = distalArmLength * sinPsi;

	// Try the current arm mode, then the other one
	bool switchedMode = false;
	for (;;)
	{
		if (armMode != switchedMode)
		{
			// The following equations choose arm mode 0 i.e. distal arm rotated anticlockwise relative to proximal arm
			if (psi >= psiLimits[0] && psi <= psiLimits[1])
			{
				theta = atan2f(SCARA_K1 * y - SCARA_K2 * x, SCARA_K1 * x + SCARA_K2 * y);
				if (theta >= thetaLimits[0] && theta <= thetaLimits[1])
				{
					break;
				}
			}
		}
		else
		{
			// The following equations choose arm mode 1 i.e. distal arm rotated clockwise relative to proximal arm
			if ((-psi) >= psiLimits[0] && (-psi) <= psiLimits[1])
			{
				theta = atan2f(SCARA_K1 * y + SCARA_K2 * x, SCARA_K1 * x - SCARA_K2 * y);
				if (theta >= thetaLimits[0] && theta <= thetaLimits[1])
				{
					psi = -psi;
					break;
				}
			}
		}

		if (isCoordinated || switchedMode)
		{
			return false;		// not reachable
		}
		switchedMode = true;
	}

	// Now that we know we are going to do the move, update the arm mode
	if (switchedMode)
	{
		armMode = !armMode;
	}

	return true;
}

// Convert Cartesian coordinates to motor coordinates, returning true if successful
// In the following, theta is the proximal arm angle relative to the X axis, psi is the distal arm angle relative to the proximal arm
bool ScaraKinematics::CartesianToMotorSteps(const float machinePos[], const float stepsPerMm[], size_t numVisibleAxes, size_t numTotalAxes, int32_t motorPos[], bool isCoordinated) const
{
	float theta, psi;
	if (machinePos[0] == cachedX && machinePos[1] == cachedY)
	{
		theta = cachedTheta;
		psi = cachedPsi;
		currentArmMode = cachedArmMode;
	}
	else
	{
		bool armMode = currentArmMode;
		if (!CalculateThetaAndPsi(machinePos, isCoordinated, theta, psi, armMode))
		{
			return false;
		}
		currentArmMode = armMode;
	}

//debugPrintf("psi = %.2f, theta = %.2f\n", psi * RadiansToDegrees, theta * RadiansToDegrees);

	motorPos[X_AXIS] = lrintf(theta * RadiansToDegrees * stepsPerMm[X_AXIS]);
	motorPos[Y_AXIS] = lrintf((psi * RadiansToDegrees * stepsPerMm[Y_AXIS]) - (crosstalk[0] * motorPos[X_AXIS]));
	motorPos[Z_AXIS] = lrintf((machinePos[Z_AXIS] * stepsPerMm[Z_AXIS]) - (motorPos[X_AXIS] * crosstalk[1]) - (motorPos[Y_AXIS] * crosstalk[2]));

	// Transform any additional axes linearly
	for (size_t axis = XYZ_AXES; axis < numVisibleAxes; ++axis)
	{
		motorPos[axis] = lrintf(machinePos[axis] * stepsPerMm[axis]);
	}
	return true;
}

// Convert motor coordinates to machine coordinates. Used after homing and after individual motor moves.
// For Scara, the X and Y components of stepsPerMm are actually steps per degree angle.
void ScaraKinematics::MotorStepsToCartesian(const int32_t motorPos[], const float stepsPerMm[], size_t numVisibleAxes, size_t numTotalAxes, float machinePos[]) const
{
	const float psi = ((float)motorPos[X_AXIS]/stepsPerMm[X_AXIS]) * DegreesToRadians;
    const float theta = (((float)motorPos[Y_AXIS] + ((float)motorPos[X_AXIS] * crosstalk[0]))/stepsPerMm[Y_AXIS]) * DegreesToRadians;

    machinePos[X_AXIS] = (cosf(psi) * proximalArmLength + cosf(psi + theta) * distalArmLength) - xOffset;
    machinePos[Y_AXIS] = (sinf(psi) * proximalArmLength + sinf(psi + theta) * distalArmLength) - yOffset;

    // On some machines (e.g. Helios), the X and/or Y arm motors also affect the Z height
    machinePos[Z_AXIS] = ((float)motorPos[Z_AXIS] + ((float)motorPos[X_AXIS] * crosstalk[1]) + ((float)motorPos[Y_AXIS] * crosstalk[2]))/stepsPerMm[Z_AXIS];

	// Convert any additional axes linearly
	for (size_t drive = XYZ_AXES; drive < numVisibleAxes; ++drive)
	{
		machinePos[drive] = motorPos[drive]/stepsPerMm[drive];
	}
}

// Set the parameters from a M665, M666 or M669 command
// Return true if we changed any parameters. Set 'error' true if there was an error, otherwise leave it alone.
bool ScaraKinematics::Configure(unsigned int mCode, GCodeBuffer& gb, StringRef& reply, bool& error) /*override*/
{
	if (mCode == 669)
	{
		bool seen = false;
		bool seenNonGeometry = false;
		gb.TryGetFValue('P', proximalArmLength, seen);
		gb.TryGetFValue('D', distalArmLength, seen);
		gb.TryGetFValue('S', segmentsPerSecond, seenNonGeometry);
		gb.TryGetFValue('T', minSegmentLength, seenNonGeometry);
		gb.TryGetFValue('X', xOffset, seen);
		gb.TryGetFValue('Y', yOffset, seen);
		if (gb.TryGetFloatArray('A', 2, thetaLimits, reply, seen))
		{
			error = true;
			return true;
		}
		if (gb.TryGetFloatArray('B', 2, psiLimits, reply, seen))
		{
			error = true;
			return true;
		}
		if (gb.TryGetFloatArray('C', 3, crosstalk, reply, seen))
		{
			error = true;
			return true;
		}

		if (seen || seenNonGeometry)
		{
			Recalc();
		}
		else
		{
			reply.printf("Printer mode is Scara with proximal arm %.2fmm range %.1f to %.1f" DEGREE_SYMBOL
							", distal arm %.2fmm range %.1f to %.1f" DEGREE_SYMBOL ", crosstalk %.1f:%.1f:%.1f, bed origin (%.1f, %.1f), segments/sec %d, min. segment length %.2f",
							(double)proximalArmLength, (double)thetaLimits[0], (double)thetaLimits[1],
							(double)distalArmLength, (double)psiLimits[0], (double)psiLimits[1],
							(double)crosstalk[0], (double)crosstalk[1], (double)crosstalk[2],
							(double)xOffset, (double)yOffset,
							(int)segmentsPerSecond, (double)minSegmentLength);
		}
		return seen;
	}
	else
	{
		return ZLeadscrewKinematics::Configure(mCode, gb, reply, error);
	}
}

// Return true if the specified XY position is reachable by the print head reference point.
bool ScaraKinematics::IsReachable(float x, float y, bool isCoordinated) const
{
	// Check the M208 limits first
	float coords[2] = {x, y};
	if (Kinematics::LimitPosition(coords, 2, LowestNBits<AxesBitmap>(2), isCoordinated))
	{
		return false;
	}

	// See if we can transform the position
	float theta, psi;
	bool armMode = currentArmMode;
	const bool reachable = CalculateThetaAndPsi(coords, isCoordinated, theta, psi, armMode);
	if (reachable)
	{
		// Save the original and transformed coordinates so that we don't need to calculate them again if we are commanded to move to this position
		cachedX = x;
		cachedY = y;
		cachedTheta = theta;
		cachedPsi = psi;
		cachedArmMode = armMode;
	}

    return reachable;
}

// Limit the Cartesian position that the user wants to move to, returning true if any coordinates were changed
bool ScaraKinematics::LimitPosition(float coords[], size_t numVisibleAxes, AxesBitmap axesHomed, bool isCoordinated) const
{
	// First limit all axes according to M208
	const bool m208Limited = Kinematics::LimitPosition(coords, numVisibleAxes, axesHomed, isCoordinated);

	float theta, psi;
	bool armMode = currentArmMode;
	if (CalculateThetaAndPsi(coords, isCoordinated, theta, psi, armMode))
	{
		// Save the original and transformed coordinates so that we don't need to calculate them again if we are commanded to move to this position
		cachedX = coords[0];
		cachedY = coords[1];
		cachedTheta = theta;
		cachedPsi = psi;
		cachedArmMode = armMode;
		return m208Limited;
	}

	// The requested position was not reachable
	if (isnan(theta))
	{
		// We are radius-limited
		float x = coords[X_AXIS] + xOffset;
		float y = coords[Y_AXIS] + yOffset;
		const float r = sqrtf(fsquare(x) + fsquare(y));
		if (r < minRadius)
		{
			// Radius is too small. The user may have specified x=0 y=0 so allow for this.
			if (r < 1.0)
			{
				x = minRadius;
				y = 0.0;
			}
			else
			{
				x *= minRadius/r;
				y *= minRadius/r;
			}
		}
		else
		{
			// Radius must be too large
			x *= maxRadius/r;
			y *= maxRadius/r;
		}

		coords[X_AXIS] = x - xOffset;
		coords[Y_AXIS] = y - yOffset;
	}

	// Recalculate theta and psi, but don't allow arm mode changes this time
	if (!CalculateThetaAndPsi(coords, true, theta, psi, armMode) && !isnan(theta))
	{
		// Radius is in range but at least one arm angle isn't
		cachedTheta = theta = constrain<float>(theta, thetaLimits[0], thetaLimits[1]);
		cachedPsi = psi = constrain<float>(psi, psiLimits[0], psiLimits[1]);
		cachedX = coords[X_AXIS] = (cosf(psi) * proximalArmLength + cosf(psi + theta) * distalArmLength) - xOffset;
		cachedY = coords[Y_AXIS] = (sinf(psi) * proximalArmLength + sinf(psi + theta) * distalArmLength) - yOffset;
		cachedArmMode = currentArmMode;
	}

	return true;
}

// Return the initial Cartesian coordinates we assume after switching to this kinematics
void ScaraKinematics::GetAssumedInitialPosition(size_t numAxes, float positions[]) const
{
	positions[X_AXIS] = maxRadius - xOffset;
	positions[Y_AXIS] = -yOffset;
	for (size_t i = Z_AXIS; i < numAxes; ++i)
	{
		positions[i] = 0.0;
	}
}

// Return the axes that we can assume are homed after executing a G92 command to set the specified axis coordinates
AxesBitmap ScaraKinematics::AxesAssumedHomed(AxesBitmap g92Axes) const
{
	// If both X and Y have been specified then we know the positions of both arm motors, otherwise we don't
	const AxesBitmap xyAxes = MakeBitmap<AxesBitmap>(X_AXIS) | MakeBitmap<AxesBitmap>(Y_AXIS);
	if ((g92Axes & xyAxes) != xyAxes)
	{
		g92Axes &= ~xyAxes;
	}
	return g92Axes;
}

size_t ScaraKinematics::NumHomingButtons(size_t numVisibleAxes) const
{
	const MassStorage *storage = reprap.GetPlatform().GetMassStorage();
	if (!storage->FileExists(SYS_DIR, HomeProximalFileName))
	{
		return 0;
	}
	if (!storage->FileExists(SYS_DIR, HomeDistalFileName))
	{
		return 1;
	}
	if (!storage->FileExists(SYS_DIR, StandardHomingFileNames[Z_AXIS]))
	{
		return 2;
	}
	return numVisibleAxes;
}

// This function is called when a request is made to home the axes in 'toBeHomed' and the axes in 'alreadyHomed' have already been homed.
// If we can proceed with homing some axes, return the name of the homing file to be called.
// If we can't proceed because other axes need to be homed first, return nullptr and pass those axes back in 'mustBeHomedFirst'.
const char* ScaraKinematics::GetHomingFileName(AxesBitmap toBeHomed, AxesBitmap alreadyHomed, size_t numVisibleAxes, AxesBitmap& mustHomeFirst) const
{
	// Ask the base class which homing file we should call first
	const char* ret = Kinematics::GetHomingFileName(toBeHomed, alreadyHomed, numVisibleAxes, mustHomeFirst);
	// Change the returned name if it is X or Y
	if (ret == StandardHomingFileNames[X_AXIS])
	{
		ret = HomeProximalFileName;
	}
	else if (ret == StandardHomingFileNames[Y_AXIS])
	{
		ret = HomeDistalFileName;
	}

	// Some SCARA printers cannot have individual axes homed safely. So it the user doesn't provide the homing file for an axis, default to homeall.
	const MassStorage *storage = reprap.GetPlatform().GetMassStorage();
	if (!storage->FileExists(SYS_DIR, ret))
	{
		ret = HomeAllFileName;
	}
	return ret;
}

// This function is called from the step ISR when an endstop switch is triggered during homing.
// Return true if the entire homing move should be terminated, false if only the motor associated with the endstop switch should be stopped.
bool ScaraKinematics::QueryTerminateHomingMove(size_t axis) const
{
	return false;
}

// This function is called from the step ISR when an endstop switch is triggered during homing after stopping just one motor or all motors.
// Take the action needed to define the current position, normally by calling dda.SetDriveCoordinate() and return false.
//TODO this doesn't appear to take account of the crosstalk factors yet
void ScaraKinematics::OnHomingSwitchTriggered(size_t axis, bool highEnd, const float stepsPerMm[], DDA& dda) const
{
	const float hitPoint = (axis == 0)
							? ((highEnd) ? thetaLimits[1] : thetaLimits[0])						// proximal joint homing switch
							  : (axis == 1)
								? ((highEnd) ? psiLimits[1] : psiLimits[0])	// distal joint homing switch
								  : (highEnd)
									? reprap.GetPlatform().AxisMaximum(axis)					// other axis (e.g. Z) high end homing switch
									  : reprap.GetPlatform().AxisMinimum(axis);					// other axis (e.g. Z) low end homing switch
	dda.SetDriveCoordinate(lrintf(hitPoint * stepsPerMm[axis]), axis);
}

// Limit the speed and acceleration of a move to values that the mechanics can handle.
// The speeds in Cartesian space have already been limited.
void ScaraKinematics::LimitSpeedAndAcceleration(DDA& dda, const float *normalisedDirectionVector) const
{
	// For now we limit the speed in the XY plane to the lower of the X and Y maximum speeds, and similarly for the acceleration.
	// Limiting the angular rates of the arms would be better.
	const float xyFactor = sqrtf(fsquare(normalisedDirectionVector[X_AXIS]) + fsquare(normalisedDirectionVector[Y_AXIS]));
	if (xyFactor > 0.01)
	{
		const Platform& platform = reprap.GetPlatform();
		const float maxSpeed = min<float>(platform.MaxFeedrate(X_AXIS), platform.MaxFeedrate(Y_AXIS));
		const float maxAcceleration = min<float>(platform.Acceleration(X_AXIS), platform.Acceleration(Y_AXIS));
		dda.LimitSpeedAndAcceleration(maxSpeed/xyFactor, maxAcceleration/xyFactor);
	}
}

// Recalculate the derived parameters
void ScaraKinematics::Recalc()
{
	proximalArmLengthSquared = fsquare(proximalArmLength);
	distalArmLengthSquared = fsquare(distalArmLength);
	twoPd = proximalArmLength * distalArmLength * 2.0f;

	minRadius = (proximalArmLength + distalArmLength * min<float>(cosf(psiLimits[0] * DegreesToRadians), cosf(psiLimits[1] * DegreesToRadians))) * 1.005;
	if (psiLimits[0] < 0.0 && psiLimits[1] > 0.0)
	{
		// Zero distal arm angle is reachable
		maxRadius = proximalArmLength + distalArmLength;
	}
	else
	{
		const float minAngle = min<float>(fabs(psiLimits[0]), fabs(psiLimits[1])) * DegreesToRadians;
		maxRadius = sqrtf(proximalArmLengthSquared + distalArmLengthSquared + (twoPd * cosf(minAngle)));
	}
	maxRadius *= 0.995;
	minRadiusSquared = fsquare(minRadius);
	maxRadiusSquared = fsquare(maxRadius);

	cachedX = cachedY = std::numeric_limits<float>::quiet_NaN();		// make sure that the cached values won't match any coordinates
}

// End