Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Tasks.cpp « src - github.com/Duet3D/RepRapFirmware.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 306bb7d00b9f9b8f992ea5f073165a4a80c484fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
/*
 * Startup.cpp
 *
 *  Created on: 26 Mar 2018
 *      Author: David
 */

#include "Tasks.h"
#include "RepRap.h"
#include "Platform.h"
#include "Hardware/Cache.h"
#include <TaskPriorities.h>

#include "FreeRTOS.h"
#include "task.h"
#include <malloc.h>

const uint8_t memPattern = 0xA5;

extern "C" char *sbrk(int i);
extern char _end;						// defined in linker script
extern uint32_t _firmware_crc;			// defined in linker script
extern uint32_t _estack;				// defined in linker script

// MAIN task data
// The main task currently runs GCodes, so it needs to be large enough to hold the matrices used for delta auto calibration.
// The worst case stack usage is after running delta auto calibration with Move debugging enabled.
// The timer and idle tasks currently never do I/O, so they can be much smaller.
#if SAME70
constexpr unsigned int MainTaskStackWords = 1800;			// on the SAME70 we use matrices of doubles
#elif defined(__LPC17xx__)
constexpr unsigned int MainTaskStackWords = 1110-(16*9);	// LPC builds only support 16 calibration points, so less space needed
#else
constexpr unsigned int MainTaskStackWords = 1110;			// on other processors we use matrixes of floats
#endif

static Task<MainTaskStackWords> mainTask;
extern "C" [[noreturn]] void MainTask(void * pvParameters) noexcept;

// Idle task data
constexpr unsigned int IdleTaskStackWords = 40;				// currently we don't use the idle talk for anything, so this can be quite small
static Task<IdleTaskStackWords> idleTask;

extern "C" void vApplicationGetIdleTaskMemory(StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize) noexcept
{
	*ppxIdleTaskTCBBuffer = idleTask.GetTaskMemory();
	*ppxIdleTaskStackBuffer = idleTask.GetStackBase();
	*pulIdleTaskStackSize = idleTask.GetStackSize();
}

#if configUSE_TIMERS

// Timer task data
constexpr unsigned int TimerTaskStackWords = 60;
static Task<TimerTaskStackWords> timerTask;

extern "C" void vApplicationGetTimerTaskMemory(StaticTask_t **ppxTimerTaskTCBBuffer, StackType_t **ppxTimerTaskStackBuffer, uint32_t *pulTimerTaskStackSize) noexcept
{
    *ppxTimerTaskTCBBuffer = timerTask.GetTaskMemory();
    *ppxTimerTaskStackBuffer = timerTask.GetStackBase();
    *pulTimerTaskStackSize = timerTask.GetStackSize();
}

#endif

// Mutexes
static Mutex spiMutex;
static Mutex i2cMutex;
static Mutex sysDirMutex;
static Mutex mallocMutex;

// We need to make malloc/free thread safe. We must use a recursive mutex for it.
extern "C" void __malloc_lock (struct _reent *_r) noexcept
{
	if (xTaskGetSchedulerState() == taskSCHEDULER_RUNNING)		// don't take mutex if scheduler not started or suspended
	{
		mallocMutex.Take();
	}
}

extern "C" void __malloc_unlock (struct _reent *_r) noexcept
{
	if (xTaskGetSchedulerState() == taskSCHEDULER_RUNNING)		// don't release mutex if scheduler not started or suspended
	{
		mallocMutex.Release();
	}
}

// Application entry point
extern "C" [[noreturn]] void AppMain() noexcept
{
	pinMode(DiagPin, OUTPUT_LOW);				// set up diag LED for debugging and turn it off

#if !defined(DEBUG) && !defined(__LPC17xx__)	// don't check the CRC of a debug build because debugger breakpoints mess up the CRC
	// Check the integrity of the firmware by checking the firmware CRC
	{
#ifdef IFLASH_ADDR
		const char *firmwareStart = reinterpret_cast<const char *>(IFLASH_ADDR);
#else
		const char *firmwareStart = reinterpret_cast<const char *>(IFLASH0_ADDR);
#endif
		CRC32 crc;
		crc.Update(firmwareStart, (const char*)&_firmware_crc - firmwareStart);
		if (crc.Get() != _firmware_crc)
		{
			// CRC failed so flash the diagnostic LED 3 times, pause and repeat. This is the same error code used by the Duet 3 expansion boards bootloader.
			for (unsigned int i = 0; ; ++i)
			{
				digitalWrite(DiagPin, (i & 1) == 0 && (i & 15) < 6);		// turn LED on if count is 0, 2, 4 or 16, 18, 20 etc. otherwise turn it off
				for (unsigned int j = 0; j < 500; ++j)
				{
					delayMicroseconds(1000);								// delayMicroseconds only works with low values of delay so do 1ms at a time
				}
			}
		}
	}
#endif	// !defined(DEBUG) && !defined(__LPC17xx__)

	// Fill the free memory with a pattern so that we can check for stack usage and memory corruption
	char* heapend = sbrk(0);
	register const char * stack_ptr asm ("sp");
	while (heapend + 16 < stack_ptr)
	{
		*heapend++ = memPattern;
	}

	// Trap integer divide-by-zero.
	// We could also trap unaligned memory access, if we change the gcc options to not generate code that uses unaligned memory access.
	SCB->CCR |= SCB_CCR_DIV_0_TRP_Msk;

#if SAME70 && USE_MPU
#endif

#ifndef __LPC17xx__
	// When doing a software reset, we disable the NRST input (User reset) to prevent the negative-going pulse that gets generated on it being held
	// in the capacitor and changing the reset reason from Software to User. So enable it again here. We hope that the reset signal will have gone away by now.
# ifndef RSTC_MR_KEY_PASSWD
// Definition of RSTC_MR_KEY_PASSWD is missing in the SAM3X ASF files
#  define RSTC_MR_KEY_PASSWD (0xA5u << 24)
# endif
	RSTC->RSTC_MR = RSTC_MR_KEY_PASSWD | RSTC_MR_URSTEN;
#endif

	Cache::Init();
	Cache::Enable();

#if SAM4S
	efc_enable_cloe(EFC0);			// enable code loop optimisation
#elif SAM4E || SAME70
	efc_enable_cloe(EFC);			// enable code loop optimisation
#endif

	idleTask.AddToList();			// add the FreeRTOS internal tasks to the task list

#if configUSE_TIMERS
	timerTask.AddToList();
#endif

	// Create the startup task
	mainTask.Create(MainTask, "MAIN", nullptr, TaskPriority::SpinPriority);
	vTaskStartScheduler();			// doesn't return
	for (;;) { }					// keep gcc happy
}

extern "C" [[noreturn]] void MainTask(void *pvParameters) noexcept
{
	mallocMutex.Create("Malloc");
	spiMutex.Create("SPI");
	i2cMutex.Create("I2C");
	sysDirMutex.Create("SysDir");

	reprap.Init();
	for (;;)
	{
		reprap.Spin();
	}
}

#ifdef __LPC17xx__
	extern "C" size_t xPortGetTotalHeapSize( void );
#endif

namespace Tasks
{
	static void GetHandlerStackUsage(uint32_t* maxStack, uint32_t* neverUsed) noexcept
	{
		const char * const ramend = (const char *)&_estack;
		const char * const heapend = sbrk(0);
		const char * stack_lwm = heapend;
		while (stack_lwm < ramend && *stack_lwm == memPattern)
		{
			++stack_lwm;
		}
		if (maxStack != nullptr) { *maxStack = ramend - stack_lwm; }
		if (neverUsed != nullptr) { *neverUsed = stack_lwm - heapend; }
	}

	uint32_t GetNeverUsedRam() noexcept
	{
		uint32_t neverUsedRam;

		GetHandlerStackUsage(nullptr, &neverUsedRam);
		return neverUsedRam;
	}

	// Write data about the current task
	void Diagnostics(MessageType mtype) noexcept
	{
		Platform& p = reprap.GetPlatform();
		p.Message(mtype, "=== RTOS ===\n");
		// Print memory stats
		{
			const char * const ramstart =
#if SAME70
				(char *) 0x20400000;
#elif SAM4E || SAM4S
				(char *) 0x20000000;
#elif SAM3XA
				(char *) 0x20070000;
#elif __LPC17xx__
				(char *) 0x10000000;
#else
# error Unsupported processor
#endif
			p.MessageF(mtype, "Static ram: %d\n", &_end - ramstart);

#ifdef __LPC17xx__
            p.MessageF(mtype, "Dynamic Memory (RTOS Heap 5): %d free, %d never used\n", xPortGetFreeHeapSize(), xPortGetMinimumEverFreeHeapSize() );
#else
            const struct mallinfo mi = mallinfo();
			p.MessageF(mtype, "Dynamic ram: %d of which %d recycled\n", mi.uordblks, mi.fordblks);
#endif
			uint32_t maxStack, neverUsed;
			GetHandlerStackUsage(&maxStack, &neverUsed);
			p.MessageF(mtype, "Exception stack ram used: %" PRIu32 "\n", maxStack);
			p.MessageF(mtype, "Never used ram: %" PRIu32 "\n", neverUsed);

		}	// end memory stats scope

		p.Message(mtype, "Tasks:");
		for (const TaskBase *t = TaskBase::GetTaskList(); t != nullptr; t = t->GetNext())
		{
			TaskStatus_t taskDetails;
			vTaskGetInfo(t->GetHandle(), &taskDetails, pdTRUE, eInvalid);
			const char* const stateText = (taskDetails.eCurrentState == eRunning) ? "running"
											: (taskDetails.eCurrentState == eReady) ? "ready"
												: (taskDetails.eCurrentState == eBlocked) ? "blocked"
													: (taskDetails.eCurrentState == eSuspended) ? "suspended"
														: "invalid";
			p.MessageF(mtype, " %s(%s,%u)",
				taskDetails.pcTaskName, stateText, (unsigned int)(taskDetails.usStackHighWaterMark * sizeof(StackType_t)));
		}
		p.Message(mtype, "\nOwned mutexes:");

		for (const Mutex *m = Mutex::GetMutexList(); m != nullptr; m = m->GetNext())
		{
			const TaskHandle holder = m->GetHolder();
			if (holder != nullptr)
			{
				p.MessageF(mtype, " %s(%s)", m->GetName(), pcTaskGetName(holder));
			}
		}
		p.MessageF(mtype, "\n");
	}

	const Mutex *GetSpiMutex() noexcept
	{
		return &spiMutex;
	}

	const Mutex *GetI2CMutex() noexcept
	{
		return &i2cMutex;
	}

	const Mutex *GetSysDirMutex() noexcept
	{
		return &sysDirMutex;
	}
}

// Exception handlers
extern "C"
{
	// This intercepts the 1ms system tick
	void vApplicationTickHook() noexcept
	{
		CoreSysTick();
		reprap.Tick();
	}

	// Exception handlers
	// By default the Usage Fault, Bus Fault and Memory Management fault handlers are not enabled,
	// so they escalate to a Hard Fault and we don't need to provide separate exception handlers for them.
	[[noreturn]] void hardFaultDispatcher(const uint32_t *pulFaultStackAddress) noexcept
	{
	    reprap.SoftwareReset((uint16_t)SoftwareResetReason::hardFault, pulFaultStackAddress + 5);
	}

	// The fault handler implementation calls a function called hardFaultDispatcher()
    void HardFault_Handler() noexcept __attribute__((naked, noreturn));
	void HardFault_Handler() noexcept
	{
	    __asm volatile
	    (
	        " tst lr, #4                                                \n"		/* test bit 2 of the EXC_RETURN in LR to determine which stack was in use */
	        " ite eq                                                    \n"		/* load the appropriate stack pointer into R0 */
	        " mrseq r0, msp                                             \n"
	        " mrsne r0, psp                                             \n"
	        " ldr r2, handler_hf_address_const                          \n"
	        " bx r2                                                     \n"
	        " handler_hf_address_const: .word hardFaultDispatcher       \n"
	    );
	}

#if USE_MPU

	[[noreturn]] void memManageDispatcher(const uint32_t *pulFaultStackAddress) noexcept
	{
	    reprap.SoftwareReset((uint16_t)SoftwareResetReason::memFault, pulFaultStackAddress + 5);
	}

	// The fault handler implementation calls a function called memManageDispatcher()
	[[noreturn]] void MemManage_Handler() noexcept __attribute__((naked));
	void MemManage_Handler() noexcept
	{
	    __asm volatile
	    (
	        " tst lr, #4                                                \n"		/* test bit 2 of the EXC_RETURN in LR to determine which stack was in use */
	        " ite eq                                                    \n"		/* load the appropriate stack pointer into R0 */
	        " mrseq r0, msp                                             \n"
	        " mrsne r0, psp                                             \n"
	        " ldr r2, handler_mf_address_const                          \n"
	        " bx r2                                                     \n"
	        " handler_mf_address_const: .word memManageDispatcher       \n"
	    );
	}

#endif

	[[noreturn]] void wdtFaultDispatcher(const uint32_t *pulFaultStackAddress) noexcept
	{
	    reprap.SoftwareReset((uint16_t)SoftwareResetReason::wdtFault, pulFaultStackAddress + 5);
	}

#ifdef __LPC17xx__
	[[noreturn]] void WDT_IRQHandler() noexcept __attribute__((naked));
    void WDT_IRQHandler() noexcept
    {
    	LPC_WDT->MOD &=~((uint32_t)(1<<2)); //SD::clear timout flag before resetting to prevent the Smoothie bootloader going into DFU mode
#else
    [[noreturn]] void WDT_Handler() noexcept __attribute__((naked));
	void WDT_Handler() noexcept
	{
#endif
	    __asm volatile
	    (
	        " tst lr, #4                                                \n"		/* test bit 2 of the EXC_RETURN in LR to determine which stack was in use */
	        " ite eq                                                    \n"		/* load the appropriate stack pointer into R0 */
	        " mrseq r0, msp                                             \n"
	        " mrsne r0, psp                                             \n"
	        " ldr r2, handler_wdt_address_const                         \n"
	        " bx r2                                                     \n"
	        " handler_wdt_address_const: .word wdtFaultDispatcher       \n"
	    );
	}

	[[noreturn]] void otherFaultDispatcher(const uint32_t *pulFaultStackAddress) noexcept
	{
	    reprap.SoftwareReset((uint16_t)SoftwareResetReason::otherFault, pulFaultStackAddress + 5);
	}

	// 2017-05-25: A user is getting 'otherFault' reports, so now we do a stack dump for those too.
	// The fault handler implementation calls a function called otherFaultDispatcher()
	[[noreturn]] void OtherFault_Handler() noexcept __attribute__((naked));
	void OtherFault_Handler() noexcept
	{
	    __asm volatile
	    (
	        " tst lr, #4                                                \n"		/* test bit 2 of the EXC_RETURN in LR to determine which stack was in use */
	        " ite eq                                                    \n"		/* load the appropriate stack pointer into R0 */
	        " mrseq r0, msp                                             \n"
	        " mrsne r0, psp                                             \n"
	        " ldr r2, handler_oflt_address_const                        \n"
	        " bx r2                                                     \n"
	        " handler_oflt_address_const: .word otherFaultDispatcher    \n"
	    );
	}

	// We could set up the following fault handlers to retrieve the program counter in the same way as for a Hard Fault,
	// however these exceptions are unlikely to occur, so for now we just report the exception type.
	[[noreturn]] void NMI_Handler        () noexcept { reprap.SoftwareReset((uint16_t)SoftwareResetReason::NMI); }
	[[noreturn]] void UsageFault_Handler () noexcept { reprap.SoftwareReset((uint16_t)SoftwareResetReason::usageFault); }

	[[noreturn]] void DebugMon_Handler   () noexcept __attribute__ ((alias("OtherFault_Handler")));

	// FreeRTOS hooks that we need to provide
	[[noreturn]] void stackOverflowDispatcher(const uint32_t *pulFaultStackAddress, char* pcTaskName) noexcept
	{
		reprap.SoftwareReset((uint16_t)SoftwareResetReason::stackOverflow, pulFaultStackAddress);
	}

	[[noreturn]] void vApplicationStackOverflowHook(TaskHandle_t pxTask, char *pcTaskName) noexcept __attribute((naked));
	void vApplicationStackOverflowHook(TaskHandle_t pxTask, char *pcTaskName) noexcept
	{
		// r0 = pxTask, r1 = pxTaskName
		__asm volatile
		(
			" push {r0, r1, lr}											\n"		/* save parameters and call address on the stack */
			" mov r0, sp												\n"
			" ldr r2, handler_sovf_address_const                        \n"
			" bx r2                                                     \n"
			" handler_sovf_address_const: .word stackOverflowDispatcher \n"
		);
	}

	[[noreturn]] void assertCalledDispatcher(const uint32_t *pulFaultStackAddress) noexcept
	{
	    reprap.SoftwareReset((uint16_t)SoftwareResetReason::assertCalled, pulFaultStackAddress);
	}

	[[noreturn]] void vAssertCalled(uint32_t line, const char *file) noexcept __attribute((naked));
	void vAssertCalled(uint32_t line, const char *file) noexcept
	{
#if false
		debugPrintf("ASSERTION FAILED IN %s on LINE %d\n", file, line);
		SERIAL_MAIN_DEVICE.flush();
#endif
	    __asm volatile
	    (
	    	" push {r0, r1, lr}											\n"		/* save parameters and call address */
	    	" mov r0, sp												\n"
	        " ldr r2, handler_asrt_address_const                        \n"
	        " bx r2                                                     \n"
	        " handler_asrt_address_const: .word assertCalledDispatcher  \n"
	    );
	}

#ifdef __LPC17xx__
	[[noreturn]] void applicationMallocFailedCalledDispatcher(const uint32_t *pulFaultStackAddress) noexcept
	{
		reprap.SoftwareReset((uint16_t)SoftwareResetReason::assertCalled, pulFaultStackAddress);
	}

	[[noreturn]] void vApplicationMallocFailedHook() noexcept __attribute((naked));
	void vApplicationMallocFailedHook() noexcept
	{
		 __asm volatile
		(
			" push {r0, r1, lr}											\n"        /* save parameters and call address */
			" mov r0, sp												\n"
			" ldr r2, handler_amf_address_const							\n"
			" bx r2														\n"
			" handler_amf_address_const: .word applicationMallocFailedCalledDispatcher  \n"
		 );
	}
#endif

}	// end extern "C"

namespace std
{
	// We need to define this function in order to use lambda functions with captures
	[[noreturn]] void __throw_bad_function_call() noexcept { vAssertCalled(__LINE__, __FILE__); }
}

// The default terminate handler pulls in sprintf and lots of other functions, which makes the binary too large. So we replace it.
[[noreturn]] void Terminate() noexcept
{
	register const uint32_t * stack_ptr asm ("sp");
	reprap.SoftwareReset((uint16_t)SoftwareResetReason::terminateCalled, stack_ptr);
}

namespace __cxxabiv1
{
	std::terminate_handler __terminate_handler = Terminate;
}

extern "C" [[noreturn]] void __cxa_pure_virtual() noexcept
{
	register const uint32_t * stack_ptr asm ("sp");
	reprap.SoftwareReset((uint16_t)SoftwareResetReason::pureVirtual, stack_ptr);
}

extern "C" [[noreturn]] void __cxa_deleted_virtual() noexcept
{
	register const uint32_t * stack_ptr asm ("sp");
	reprap.SoftwareReset((uint16_t)SoftwareResetReason::deletedVirtual, stack_ptr);
}

// We don't need the time zone functionality. Declaring these saves 8Kb.
extern "C" void __tzset() noexcept { }
extern "C" void __tz_lock() noexcept { }
extern "C" void __tz_unlock() noexcept { }
extern "C" void _tzset_unlocked() noexcept { }

// End