Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Tasks.cpp « src - github.com/Duet3D/RepRapFirmware.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d70de1f21536d1834c5f9f16ff7390bb6f08515d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/*
 * Startup.cpp
 *
 *  Created on: 26 Mar 2018
 *      Author: David
 */

#include "Tasks.h"
#include "RepRap.h"
#include "Platform.h"
#include <malloc.h>

#ifdef RTOS
# include "FreeRTOS.h"
# include "task.h"
#endif

const uint8_t memPattern = 0xA5;

extern "C" char *sbrk(int i);
extern char _end;

#ifdef RTOS

// The main task currently runs GCodes, so it needs to be large enough to hold the matrices used for auto calibration.
constexpr unsigned int MainTaskStackWords = 2100;

static Task<MainTaskStackWords> mainTask;
static Mutex spiMutex;
static Mutex mallocMutex;

extern "C" void MainTask(void * pvParameters);

// We need to make malloc/free thread safe, else sprintf and related I/O functions are liable to crash.
// We must use a recursive mutex for it.
extern "C" void __malloc_lock ( struct _reent *_r )
{
	if (xTaskGetSchedulerState() == taskSCHEDULER_RUNNING)		// don't take mutex if scheduler not started or suspended
	{
		mallocMutex.Take();
	}
}

extern "C" void __malloc_unlock ( struct _reent *_r )
{
	if (xTaskGetSchedulerState() == taskSCHEDULER_RUNNING)		// don't release mutex if scheduler not started or suspended
	{
		mallocMutex.Release();
	}
}

#endif

// Application entry point
extern "C" void AppMain()
{
	// Fill the free memory with a pattern so that we can check for stack usage and memory corruption
	char* heapend = sbrk(0);
	register const char * stack_ptr asm ("sp");
	while (heapend + 16 < stack_ptr)
	{
		*heapend++ = memPattern;
	}

	// Trap integer divide-by-zero.
	// We could also trap unaligned memory access, if we change the gcc options to not generate code that uses unaligned memory access.
	SCB->CCR |= SCB_CCR_DIV_0_TRP_Msk;

	// When doing a software reset, we disable the NRST input (User reset) to prevent the negative-going pulse that gets generated on it
	// being held in the capacitor and changing the reset reason from Software to User. So enable it again here. We hope that the reset signal
	// will have gone away by now.
#ifndef RSTC_MR_KEY_PASSWD
// Definition of RSTC_MR_KEY_PASSWD is missing in the SAM3X ASF files
# define RSTC_MR_KEY_PASSWD (0xA5u << 24)
#endif
	RSTC->RSTC_MR = RSTC_MR_KEY_PASSWD | RSTC_MR_URSTEN;	// ignore any signal on the NRST pin for now so that the reset reason will show as Software

#if USE_CACHE
	// Enable the cache
	struct cmcc_config g_cmcc_cfg;
	cmcc_get_config_defaults(&g_cmcc_cfg);
	cmcc_init(CMCC, &g_cmcc_cfg);
	EnableCache();
#endif

#ifdef RTOS
	// Create the startup task
	mainTask.Create(MainTask, "MAIN", nullptr, TaskBase::SpinPriority);
	vTaskStartScheduler();			// doesn't return
}

extern "C" void MainTask(void *pvParameters)
{
	mallocMutex.Create();
	spiMutex.Create();
#endif
	reprap.Init();
	for (;;)
	{
		reprap.Spin();
	}
}

extern "C" uint32_t _estack;		// this is defined in the linker script

namespace Tasks
{

#ifdef RTOS
	static void GetHandlerStackUsage(uint32_t* maxStack, uint32_t* neverUsed)
	{
		const char * const ramend = (const char *)&_estack;
		const char * const heapend = sbrk(0);
		const char * stack_lwm = heapend;
		while (stack_lwm < ramend && *stack_lwm == memPattern)
		{
			++stack_lwm;
		}
		if (maxStack != nullptr) { *maxStack = ramend - stack_lwm; }
		if (neverUsed != nullptr) { *neverUsed = stack_lwm - heapend; }
	}
#else
	// Return the system stack usage and amount of memory that has never been used, in bytes
	static void GetStackUsage(uint32_t* currentStack, uint32_t* maxStack, uint32_t* neverUsed)
	{
		const char * const ramend = (const char *)&_estack;
		const char * const heapend = sbrk(0);
		const char * stack_lwm = heapend;
		register const char * stack_ptr asm ("sp");
		while (stack_lwm < stack_ptr && *stack_lwm == memPattern)
		{
			++stack_lwm;
		}
		if (currentStack != nullptr) { *currentStack = ramend - stack_ptr; }
		if (maxStack != nullptr) { *maxStack = ramend - stack_lwm; }
		if (neverUsed != nullptr) { *neverUsed = stack_lwm - heapend; }
	}
#endif

	uint32_t GetNeverUsedRam()
	{
		uint32_t neverUsedRam;

#ifdef RTOS
		GetHandlerStackUsage(nullptr, &neverUsedRam);
#else
		GetStackUsage(nullptr, nullptr, &neverUsedRam);
#endif
		return neverUsedRam;
	}

	// Write data about the current task (if RTOS) or the system
	void Diagnostics(MessageType mtype)
	{
		Platform& p = reprap.GetPlatform();
#ifdef RTOS
		p.Message(mtype, "=== RTOS ===\n");
#else
		p.Message(mtype, "=== System ===\n");
#endif
		// Print memory stats
		{
			const char * const ramstart =
#if SAME70
				(char *) 0x20400000;
#elif SAM4E || SAM4S
				(char *) 0x20000000;
#elif SAM3XA
				(char *) 0x20070000;
#else
# error Unsupported processor
#endif
			p.MessageF(mtype, "Static ram: %d\n", &_end - ramstart);

			const struct mallinfo mi = mallinfo();
			p.MessageF(mtype, "Dynamic ram: %d of which %d recycled\n", mi.uordblks, mi.fordblks);

			uint32_t maxStack, neverUsed;
#ifdef RTOS
			GetHandlerStackUsage(&maxStack, &neverUsed);
			p.MessageF(mtype, "Exception stack ram used: %" PRIu32 "\n", maxStack);
#else
			uint32_t currentStack;
			Tasks::GetStackUsage(&currentStack, &maxStack, &neverUsed);
			p.MessageF(mtype, "Stack ram used: %" PRIu32 " current, %" PRIu32 " maximum\n", currentStack, maxStack);
#endif
			p.MessageF(mtype, "Never used ram: %" PRIu32 "\n", neverUsed);
		}

#ifdef RTOS
		for (const TaskBase *t = TaskBase::GetTaskList(); t != nullptr; t = t->GetNext())
		{
			TaskStatus_t taskDetails;
			vTaskGetInfo(t->GetHandle(), &taskDetails, pdTRUE, eInvalid);
			const char* const stateText = (taskDetails.eCurrentState == eRunning) ? "running"
											: (taskDetails.eCurrentState == eReady) ? "ready"
												: (taskDetails.eCurrentState == eBlocked) ? "blocked"
													: (taskDetails.eCurrentState == eSuspended) ? "suspended"
														: "invalid";
			p.MessageF(mtype, "Task %s %s, free stack %u\n",
				taskDetails.pcTaskName, stateText, (unsigned int)(taskDetails.usStackHighWaterMark * sizeof(StackType_t)));
		}
#endif
	}

	const Mutex *GetSpiMutex()
	{
#ifdef RTOS
		return &spiMutex;
#else
		return nullptr;
#endif
	}
}

#ifdef RTOS

static StaticTask_t xIdleTaskTCB;
static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ];

extern "C" void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer,
                                    StackType_t **ppxIdleTaskStackBuffer,
                                    uint32_t *pulIdleTaskStackSize )
{
    /* Pass out a pointer to the StaticTask_t structure in which the Idle task's state will be stored. */
    *ppxIdleTaskTCBBuffer = &xIdleTaskTCB;

    /* Pass out the array that will be used as the Idle task's stack. */
    *ppxIdleTaskStackBuffer = uxIdleTaskStack;

    /* Pass out the size of the array pointed to by *ppxIdleTaskStackBuffer. */
    *pulIdleTaskStackSize = ARRAY_SIZE(uxIdleTaskStack);
}

static StaticTask_t xTimerTaskTCB;
static StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ];

extern "C" void vApplicationGetTimerTaskMemory( StaticTask_t **ppxTimerTaskTCBBuffer,
                                     StackType_t **ppxTimerTaskStackBuffer,
                                     uint32_t *pulTimerTaskStackSize )
{
    /* Pass out a pointer to the StaticTask_t structure in which the Timer task's state will be stored. */
    *ppxTimerTaskTCBBuffer = &xTimerTaskTCB;

    /* Pass out the array that will be used as the Timer task's stack. */
    *ppxTimerTaskStackBuffer = uxTimerTaskStack;

    /* Pass out the size of the array pointed to by *ppxTimerTaskStackBuffer. */
    *pulTimerTaskStackSize = ARRAY_SIZE(uxTimerTaskStack);
}

#endif

// Exception handlers
extern "C"
{
	// This intercepts the 1ms system tick. It must return 'false', otherwise the Arduino core tick handler will be bypassed.
	int sysTickHook()
	{
		reprap.Tick();
		return 0;
	}

	// Exception handlers
	// By default the Usage Fault, Bus Fault and Memory Management fault handlers are not enabled,
	// so they escalate to a Hard Fault and we don't need to provide separate exception handlers for them.
	void hardFaultDispatcher(const uint32_t *pulFaultStackAddress)
	{
	    reprap.GetPlatform().SoftwareReset((uint16_t)SoftwareResetReason::hardFault, pulFaultStackAddress + 5);
	}

	// The fault handler implementation calls a function called hardFaultDispatcher()
	void HardFault_Handler() __attribute__((naked));
	void HardFault_Handler()
	{
	    __asm volatile
	    (
	        " tst lr, #4                                                \n"		/* test bit 2 of the EXC_RETURN in LR to determine which stack was in use */
	        " ite eq                                                    \n"		/* load the appropriate stack pointer into R0 */
	        " mrseq r0, msp                                             \n"
	        " mrsne r0, psp                                             \n"
	        " ldr r2, handler_hf_address_const                          \n"
	        " bx r2                                                     \n"
	        " handler_hf_address_const: .word hardFaultDispatcher       \n"
	    );
	}

	void wdtFaultDispatcher(const uint32_t *pulFaultStackAddress)
	{
	    reprap.GetPlatform().SoftwareReset((uint16_t)SoftwareResetReason::wdtFault, pulFaultStackAddress + 5);
	}

	void WDT_Handler() __attribute__((naked));
	void WDT_Handler()
	{
	    __asm volatile
	    (
	        " tst lr, #4                                                \n"		/* test bit 2 of the EXC_RETURN in LR to determine which stack was in use */
	        " ite eq                                                    \n"		/* load the appropriate stack pointer into R0 */
	        " mrseq r0, msp                                             \n"
	        " mrsne r0, psp                                             \n"
	        " ldr r2, handler_wdt_address_const                         \n"
	        " bx r2                                                     \n"
	        " handler_wdt_address_const: .word wdtFaultDispatcher       \n"
	    );
	}

	void otherFaultDispatcher(const uint32_t *pulFaultStackAddress)
	{
	    reprap.GetPlatform().SoftwareReset((uint16_t)SoftwareResetReason::otherFault, pulFaultStackAddress + 5);
	}

	// 2017-05-25: A user is getting 'otherFault' reports, so now we do a stack dump for those too.
	// The fault handler implementation calls a function called otherFaultDispatcher()
	void OtherFault_Handler() __attribute__((naked));
	void OtherFault_Handler()
	{
	    __asm volatile
	    (
	        " tst lr, #4                                                \n"		/* test bit 2 of the EXC_RETURN in LR to determine which stack was in use */
	        " ite eq                                                    \n"		/* load the appropriate stack pointer into R0 */
	        " mrseq r0, msp                                             \n"
	        " mrsne r0, psp                                             \n"
	        " ldr r2, handler_oflt_address_const                        \n"
	        " bx r2                                                     \n"
	        " handler_oflt_address_const: .word otherFaultDispatcher    \n"
	    );
	}

	// We could set up the following fault handlers to retrieve the program counter in the same way as for a Hard Fault,
	// however these exceptions are unlikely to occur, so for now we just report the exception type.
	void NMI_Handler        () { reprap.GetPlatform().SoftwareReset((uint16_t)SoftwareResetReason::NMI); }
	void UsageFault_Handler () { reprap.GetPlatform().SoftwareReset((uint16_t)SoftwareResetReason::usageFault); }

	void DebugMon_Handler   () __attribute__ ((alias("OtherFault_Handler")));

#ifdef RTOS
	// FreeRTOS hooks that we need to provide
	void stackOverflowDispatcher(const uint32_t *pulFaultStackAddress, char* pcTaskName)
	{
	    reprap.GetPlatform().SoftwareReset((uint16_t)SoftwareResetReason::stackOverflow, pulFaultStackAddress);
	}

	void vApplicationStackOverflowHook(TaskHandle_t pxTask, char *pcTaskName) __attribute((naked));
	void vApplicationStackOverflowHook(TaskHandle_t pxTask, char *pcTaskName)
	{
		// r0 = pxTask, r1 = pxTaskName
	    __asm volatile
	    (
	    	" push {r0, r1, lr}											\n"		/* save parameters and call address on the stack */
	    	" mov r0, sp												\n"
	        " ldr r2, handler_sovf_address_const                        \n"
	        " bx r2                                                     \n"
	        " handler_sovf_address_const: .word stackOverflowDispatcher \n"
	    );
	}

	void assertCalledDispatcher(const uint32_t *pulFaultStackAddress)
	{
	    reprap.GetPlatform().SoftwareReset((uint16_t)SoftwareResetReason::assertCalled, pulFaultStackAddress);
	}

	void vAssertCalled(uint32_t line, const char *file) __attribute((naked));
	void vAssertCalled(uint32_t line, const char *file)
	{
	    __asm volatile
	    (
	    	" push {r0, r1, lr}											\n"		/* save parameters and call address */
	    	" mov r0, sp												\n"
	        " ldr r2, handler_asrt_address_const                        \n"
	        " bx r2                                                     \n"
	        " handler_asrt_address_const: .word assertCalledDispatcher  \n"
	    );
	}
#endif

}

// End