/* * Copyright (c) 2017 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "avfilter.h" #include "formats.h" #include "internal.h" #include "audio.h" #undef ctype #undef ftype #undef SQRT #undef SAMPLE_FORMAT #if DEPTH == 32 #define SAMPLE_FORMAT float #define SQRT sqrtf #define ctype AVComplexFloat #define ftype float #else #define SAMPLE_FORMAT double #define SQRT sqrt #define ctype AVComplexDouble #define ftype double #endif #define fn3(a,b) a##_##b #define fn2(a,b) fn3(a,b) #define fn(a) fn2(a, SAMPLE_FORMAT) static void fn(draw_response)(AVFilterContext *ctx, AVFrame *out) { AudioFIRContext *s = ctx->priv; ftype *mag, *phase, *delay, min = FLT_MAX, max = FLT_MIN; ftype min_delay = FLT_MAX, max_delay = FLT_MIN; int prev_ymag = -1, prev_yphase = -1, prev_ydelay = -1; char text[32]; int channel, i, x; memset(out->data[0], 0, s->h * out->linesize[0]); phase = av_malloc_array(s->w, sizeof(*phase)); mag = av_malloc_array(s->w, sizeof(*mag)); delay = av_malloc_array(s->w, sizeof(*delay)); if (!mag || !phase || !delay) goto end; channel = av_clip(s->ir_channel, 0, s->ir[s->selir]->ch_layout.nb_channels - 1); for (i = 0; i < s->w; i++) { const ftype *src = (const ftype *)s->ir[s->selir]->extended_data[channel]; double w = i * M_PI / (s->w - 1); double div, real_num = 0., imag_num = 0., real = 0., imag = 0.; for (x = 0; x < s->nb_taps; x++) { real += cos(-x * w) * src[x]; imag += sin(-x * w) * src[x]; real_num += cos(-x * w) * src[x] * x; imag_num += sin(-x * w) * src[x] * x; } mag[i] = hypot(real, imag); phase[i] = atan2(imag, real); div = real * real + imag * imag; delay[i] = (real_num * real + imag_num * imag) / div; min = fminf(min, mag[i]); max = fmaxf(max, mag[i]); min_delay = fminf(min_delay, delay[i]); max_delay = fmaxf(max_delay, delay[i]); } for (i = 0; i < s->w; i++) { int ymag = mag[i] / max * (s->h - 1); int ydelay = (delay[i] - min_delay) / (max_delay - min_delay) * (s->h - 1); int yphase = (0.5 * (1. + phase[i] / M_PI)) * (s->h - 1); ymag = s->h - 1 - av_clip(ymag, 0, s->h - 1); yphase = s->h - 1 - av_clip(yphase, 0, s->h - 1); ydelay = s->h - 1 - av_clip(ydelay, 0, s->h - 1); if (prev_ymag < 0) prev_ymag = ymag; if (prev_yphase < 0) prev_yphase = yphase; if (prev_ydelay < 0) prev_ydelay = ydelay; draw_line(out, i, ymag, FFMAX(i - 1, 0), prev_ymag, 0xFFFF00FF); draw_line(out, i, yphase, FFMAX(i - 1, 0), prev_yphase, 0xFF00FF00); draw_line(out, i, ydelay, FFMAX(i - 1, 0), prev_ydelay, 0xFF00FFFF); prev_ymag = ymag; prev_yphase = yphase; prev_ydelay = ydelay; } if (s->w > 400 && s->h > 100) { drawtext(out, 2, 2, "Max Magnitude:", 0xDDDDDDDD); snprintf(text, sizeof(text), "%.2f", max); drawtext(out, 15 * 8 + 2, 2, text, 0xDDDDDDDD); drawtext(out, 2, 12, "Min Magnitude:", 0xDDDDDDDD); snprintf(text, sizeof(text), "%.2f", min); drawtext(out, 15 * 8 + 2, 12, text, 0xDDDDDDDD); drawtext(out, 2, 22, "Max Delay:", 0xDDDDDDDD); snprintf(text, sizeof(text), "%.2f", max_delay); drawtext(out, 11 * 8 + 2, 22, text, 0xDDDDDDDD); drawtext(out, 2, 32, "Min Delay:", 0xDDDDDDDD); snprintf(text, sizeof(text), "%.2f", min_delay); drawtext(out, 11 * 8 + 2, 32, text, 0xDDDDDDDD); } end: av_free(delay); av_free(phase); av_free(mag); } static void fn(convert_channels)(AVFilterContext *ctx, AudioFIRContext *s) { for (int ch = 0; ch < ctx->inputs[1 + s->selir]->ch_layout.nb_channels; ch++) { ftype *time = (ftype *)s->ir[s->selir]->extended_data[!s->one2many * ch]; int toffset = 0; for (int i = FFMAX(1, s->length * s->nb_taps); i < s->nb_taps; i++) time[i] = 0; av_log(ctx, AV_LOG_DEBUG, "channel: %d\n", ch); for (int segment = 0; segment < s->nb_segments; segment++) { AudioFIRSegment *seg = &s->seg[segment]; ftype *blockin = (ftype *)seg->blockin->extended_data[ch]; ftype *blockout = (ftype *)seg->blockout->extended_data[ch]; ctype *coeff = (ctype *)seg->coeff->extended_data[ch]; av_log(ctx, AV_LOG_DEBUG, "segment: %d\n", segment); for (int i = 0; i < seg->nb_partitions; i++) { const int coffset = i * seg->coeff_size; const int remaining = s->nb_taps - toffset; const int size = remaining >= seg->part_size ? seg->part_size : remaining; if (size < 8) { for (int n = 0; n < size; n++) coeff[coffset + n].re = time[toffset + n]; toffset += size; continue; } memset(blockin, 0, sizeof(*blockin) * seg->fft_length); memcpy(blockin, time + toffset, size * sizeof(*blockin)); seg->tx_fn(seg->tx[0], blockout, blockin, sizeof(ftype)); for (int n = 0; n < seg->part_size + 1; n++) { coeff[coffset + n].re = blockout[2 * n]; coeff[coffset + n].im = blockout[2 * n + 1]; } toffset += size; } av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", seg->nb_partitions); av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", seg->part_size); av_log(ctx, AV_LOG_DEBUG, "block size: %d\n", seg->block_size); av_log(ctx, AV_LOG_DEBUG, "fft_length: %d\n", seg->fft_length); av_log(ctx, AV_LOG_DEBUG, "coeff_size: %d\n", seg->coeff_size); av_log(ctx, AV_LOG_DEBUG, "input_size: %d\n", seg->input_size); av_log(ctx, AV_LOG_DEBUG, "input_offset: %d\n", seg->input_offset); } } } static int fn(get_power)(AVFilterContext *ctx, AudioFIRContext *s, int cur_nb_taps) { ftype power = 0; int ch; switch (s->gtype) { case -1: /* nothing to do */ break; case 0: for (ch = 0; ch < ctx->inputs[1 + s->selir]->ch_layout.nb_channels; ch++) { ftype *time = (ftype *)s->ir[s->selir]->extended_data[!s->one2many * ch]; for (int i = 0; i < cur_nb_taps; i++) power += FFABS(time[i]); } s->gain = ctx->inputs[1 + s->selir]->ch_layout.nb_channels / power; break; case 1: for (ch = 0; ch < ctx->inputs[1 + s->selir]->ch_layout.nb_channels; ch++) { ftype *time = (ftype *)s->ir[s->selir]->extended_data[!s->one2many * ch]; for (int i = 0; i < cur_nb_taps; i++) power += time[i]; } s->gain = ctx->inputs[1 + s->selir]->ch_layout.nb_channels / power; break; case 2: for (ch = 0; ch < ctx->inputs[1 + s->selir]->ch_layout.nb_channels; ch++) { ftype *time = (ftype *)s->ir[s->selir]->extended_data[!s->one2many * ch]; for (int i = 0; i < cur_nb_taps; i++) power += time[i] * time[i]; } s->gain = SQRT(ch / power); break; default: return AVERROR_BUG; } s->gain = FFMIN(s->gain * s->ir_gain, 1.); av_log(ctx, AV_LOG_DEBUG, "power %f, gain %f\n", power, s->gain); for (int ch = 0; ch < ctx->inputs[1 + s->selir]->ch_layout.nb_channels; ch++) { ftype *time = (ftype *)s->ir[s->selir]->extended_data[!s->one2many * ch]; #if DEPTH == 32 s->fdsp->vector_fmul_scalar(time, time, s->gain, FFALIGN(cur_nb_taps, 4)); #else s->fdsp->vector_dmul_scalar(time, time, s->gain, FFALIGN(cur_nb_taps, 8)); #endif } return 0; } static void fn(direct)(const ftype *in, const ctype *ir, int len, ftype *out) { for (int n = 0; n < len; n++) for (int m = 0; m <= n; m++) out[n] += ir[m].re * in[n - m]; } static void fn(fir_fadd)(AudioFIRContext *s, ftype *dst, const ftype *src, int nb_samples) { if ((nb_samples & 15) == 0 && nb_samples >= 16) { #if DEPTH == 32 s->fdsp->vector_fmac_scalar(dst, src, 1.f, nb_samples); #else s->fdsp->vector_dmac_scalar(dst, src, 1.0, nb_samples); #endif } else { for (int n = 0; n < nb_samples; n++) dst[n] += src[n]; } } static int fn(fir_quantum)(AVFilterContext *ctx, AVFrame *out, int ch, int offset) { AudioFIRContext *s = ctx->priv; const ftype *in = (const ftype *)s->in->extended_data[ch] + offset; ftype *blockin, *blockout, *buf, *ptr = (ftype *)out->extended_data[ch] + offset; const int nb_samples = FFMIN(s->min_part_size, out->nb_samples - offset); int n, i, j; for (int segment = 0; segment < s->nb_segments; segment++) { AudioFIRSegment *seg = &s->seg[segment]; ftype *src = (ftype *)seg->input->extended_data[ch]; ftype *dst = (ftype *)seg->output->extended_data[ch]; ftype *sumin = (ftype *)seg->sumin->extended_data[ch]; ftype *sumout = (ftype *)seg->sumout->extended_data[ch]; if (s->min_part_size >= 8) { #if DEPTH == 32 s->fdsp->vector_fmul_scalar(src + seg->input_offset, in, s->dry_gain, FFALIGN(nb_samples, 4)); #else s->fdsp->vector_dmul_scalar(src + seg->input_offset, in, s->dry_gain, FFALIGN(nb_samples, 8)); #endif emms_c(); } else { for (n = 0; n < nb_samples; n++) src[seg->input_offset + n] = in[n] * s->dry_gain; } seg->output_offset[ch] += s->min_part_size; if (seg->output_offset[ch] == seg->part_size) { seg->output_offset[ch] = 0; } else { memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src)); dst += seg->output_offset[ch]; fn(fir_fadd)(s, ptr, dst, nb_samples); continue; } if (seg->part_size < 8) { memset(dst, 0, sizeof(*dst) * seg->part_size * seg->nb_partitions); j = seg->part_index[ch]; for (i = 0; i < seg->nb_partitions; i++) { const int coffset = j * seg->coeff_size; const ctype *coeff = (const ctype *)seg->coeff->extended_data[ch * !s->one2many] + coffset; fn(direct)(src, coeff, nb_samples, dst); if (j == 0) j = seg->nb_partitions; j--; } seg->part_index[ch] = (seg->part_index[ch] + 1) % seg->nb_partitions; memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src)); for (n = 0; n < nb_samples; n++) { ptr[n] += dst[n]; } continue; } memset(sumin, 0, sizeof(*sumin) * seg->fft_length); blockin = (ftype *)seg->blockin->extended_data[ch] + seg->part_index[ch] * seg->block_size; blockout = (ftype *)seg->blockout->extended_data[ch] + seg->part_index[ch] * seg->block_size; memset(blockin + seg->part_size, 0, sizeof(*blockin) * (seg->fft_length - seg->part_size)); memcpy(blockin, src, sizeof(*src) * seg->part_size); seg->tx_fn(seg->tx[ch], blockout, blockin, sizeof(ftype)); j = seg->part_index[ch]; for (i = 0; i < seg->nb_partitions; i++) { const int coffset = j * seg->coeff_size; const ftype *blockout = (const ftype *)seg->blockout->extended_data[ch] + i * seg->block_size; const ctype *coeff = (const ctype *)seg->coeff->extended_data[ch * !s->one2many] + coffset; #if DEPTH == 32 s->afirdsp.fcmul_add(sumin, blockout, (const ftype *)coeff, seg->part_size); #else s->afirdsp.dcmul_add(sumin, blockout, (const ftype *)coeff, seg->part_size); #endif if (j == 0) j = seg->nb_partitions; j--; } seg->itx_fn(seg->itx[ch], sumout, sumin, sizeof(ftype)); buf = (ftype *)seg->buffer->extended_data[ch]; fn(fir_fadd)(s, buf, sumout, seg->part_size); memcpy(dst, buf, seg->part_size * sizeof(*dst)); buf = (ftype *)seg->buffer->extended_data[ch]; memcpy(buf, sumout + seg->part_size, seg->part_size * sizeof(*buf)); seg->part_index[ch] = (seg->part_index[ch] + 1) % seg->nb_partitions; memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src)); fn(fir_fadd)(s, ptr, dst, nb_samples); } if (s->min_part_size >= 8) { #if DEPTH == 32 s->fdsp->vector_fmul_scalar(ptr, ptr, s->wet_gain, FFALIGN(nb_samples, 4)); #else s->fdsp->vector_dmul_scalar(ptr, ptr, s->wet_gain, FFALIGN(nb_samples, 8)); #endif emms_c(); } else { for (n = 0; n < nb_samples; n++) ptr[n] *= s->wet_gain; } return 0; }