/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #define REFERENCE_WHITE 100.0f extern float3 lrgb2yuv(float3); extern float lrgb2y(float3); extern float3 yuv2lrgb(float3); extern float3 lrgb2lrgb(float3); extern float get_luma_src(float3); extern float get_luma_dst(float3); extern float3 ootf(float3 c, float peak); extern float3 inverse_ootf(float3 c, float peak); extern float3 get_chroma_sample(float3, float3, float3, float3); struct detection_result { float peak; float average; }; float hable_f(float in) { float a = 0.15f, b = 0.50f, c = 0.10f, d = 0.20f, e = 0.02f, f = 0.30f; return (in * (in * a + b * c) + d * e) / (in * (in * a + b) + d * f) - e / f; } float direct(float s, float peak) { return s; } float linear(float s, float peak) { return s * tone_param / peak; } float gamma(float s, float peak) { float p = s > 0.05f ? s /peak : 0.05f / peak; float v = powr(p, 1.0f / tone_param); return s > 0.05f ? v : (s * v /0.05f); } float clip(float s, float peak) { return clamp(s * tone_param, 0.0f, 1.0f); } float reinhard(float s, float peak) { return s / (s + tone_param) * (peak + tone_param) / peak; } float hable(float s, float peak) { return hable_f(s)/hable_f(peak); } float mobius(float s, float peak) { float j = tone_param; float a, b; if (s <= j) return s; a = -j * j * (peak - 1.0f) / (j * j - 2.0f * j + peak); b = (j * j - 2.0f * j * peak + peak) / max(peak - 1.0f, 1e-6f); return (b * b + 2.0f * b * j + j * j) / (b - a) * (s + a) / (s + b); } // detect peak/average signal of a frame, the algorithm was ported from: // libplacebo (https://github.com/haasn/libplacebo) struct detection_result detect_peak_avg(global uint *util_buf, __local uint *sum_wg, float signal, float peak) { // layout of the util buffer // // Name: : Size (units of 4-bytes) // average buffer : detection_frames + 1 // peak buffer : detection_frames + 1 // workgroup counter : 1 // total of peak : 1 // total of average : 1 // frame index : 1 // frame number : 1 global uint *avg_buf = util_buf; global uint *peak_buf = avg_buf + DETECTION_FRAMES + 1; global uint *counter_wg_p = peak_buf + DETECTION_FRAMES + 1; global uint *max_total_p = counter_wg_p + 1; global uint *avg_total_p = max_total_p + 1; global uint *frame_idx_p = avg_total_p + 1; global uint *scene_frame_num_p = frame_idx_p + 1; uint frame_idx = *frame_idx_p; uint scene_frame_num = *scene_frame_num_p; size_t lidx = get_local_id(0); size_t lidy = get_local_id(1); size_t lsizex = get_local_size(0); size_t lsizey = get_local_size(1); uint num_wg = get_num_groups(0) * get_num_groups(1); size_t group_idx = get_group_id(0); size_t group_idy = get_group_id(1); struct detection_result r = {peak, sdr_avg}; if (lidx == 0 && lidy == 0) *sum_wg = 0; barrier(CLK_LOCAL_MEM_FENCE); // update workgroup sum atomic_add(sum_wg, (uint)(signal * REFERENCE_WHITE)); barrier(CLK_LOCAL_MEM_FENCE); // update frame peak/avg using work-group-average. if (lidx == 0 && lidy == 0) { uint avg_wg = *sum_wg / (lsizex * lsizey); atomic_max(&peak_buf[frame_idx], avg_wg); atomic_add(&avg_buf[frame_idx], avg_wg); } if (scene_frame_num > 0) { float peak = (float)*max_total_p / (REFERENCE_WHITE * scene_frame_num); float avg = (float)*avg_total_p / (REFERENCE_WHITE * scene_frame_num); r.peak = max(1.0f, peak); r.average = max(0.25f, avg); } if (lidx == 0 && lidy == 0 && atomic_add(counter_wg_p, 1) == num_wg - 1) { *counter_wg_p = 0; avg_buf[frame_idx] /= num_wg; if (scene_threshold > 0.0f) { uint cur_max = peak_buf[frame_idx]; uint cur_avg = avg_buf[frame_idx]; int diff = (int)(scene_frame_num * cur_avg) - (int)*avg_total_p; if (abs(diff) > scene_frame_num * scene_threshold * REFERENCE_WHITE) { for (uint i = 0; i < DETECTION_FRAMES + 1; i++) avg_buf[i] = 0; for (uint i = 0; i < DETECTION_FRAMES + 1; i++) peak_buf[i] = 0; *avg_total_p = *max_total_p = 0; *scene_frame_num_p = 0; avg_buf[frame_idx] = cur_avg; peak_buf[frame_idx] = cur_max; } } uint next = (frame_idx + 1) % (DETECTION_FRAMES + 1); // add current frame, subtract next frame *max_total_p += peak_buf[frame_idx] - peak_buf[next]; *avg_total_p += avg_buf[frame_idx] - avg_buf[next]; // reset next frame peak_buf[next] = avg_buf[next] = 0; *frame_idx_p = next; *scene_frame_num_p = min(*scene_frame_num_p + 1, (uint)DETECTION_FRAMES); } return r; } float3 map_one_pixel_rgb(float3 rgb, float peak, float average) { float sig = max(max(rgb.x, max(rgb.y, rgb.z)), 1e-6f); // Rescale the variables in order to bring it into a representation where // 1.0 represents the dst_peak. This is because all of the tone mapping // algorithms are defined in such a way that they map to the range [0.0, 1.0]. if (target_peak > 1.0f) { sig *= 1.0f / target_peak; peak *= 1.0f / target_peak; } float sig_old = sig; // Scale the signal to compensate for differences in the average brightness float slope = min(1.0f, sdr_avg / average); sig *= slope; peak *= slope; // Desaturate the color using a coefficient dependent on the signal level if (desat_param > 0.0f) { float luma = get_luma_dst(rgb); float coeff = max(sig - 0.18f, 1e-6f) / max(sig, 1e-6f); coeff = native_powr(coeff, 10.0f / desat_param); rgb = mix(rgb, (float3)luma, (float3)coeff); sig = mix(sig, luma * slope, coeff); } sig = TONE_FUNC(sig, peak); sig = min(sig, 1.0f); rgb *= (sig/sig_old); return rgb; } // map from source space YUV to destination space RGB float3 map_to_dst_space_from_yuv(float3 yuv, float peak) { float3 c = yuv2lrgb(yuv); c = ootf(c, peak); c = lrgb2lrgb(c); return c; } __kernel void tonemap(__write_only image2d_t dst1, __read_only image2d_t src1, __write_only image2d_t dst2, __read_only image2d_t src2, global uint *util_buf, float peak ) { __local uint sum_wg; const sampler_t sampler = (CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST); int xi = get_global_id(0); int yi = get_global_id(1); // each work item process four pixels int x = 2 * xi; int y = 2 * yi; float y0 = read_imagef(src1, sampler, (int2)(x, y)).x; float y1 = read_imagef(src1, sampler, (int2)(x + 1, y)).x; float y2 = read_imagef(src1, sampler, (int2)(x, y + 1)).x; float y3 = read_imagef(src1, sampler, (int2)(x + 1, y + 1)).x; float2 uv = read_imagef(src2, sampler, (int2)(xi, yi)).xy; float3 c0 = map_to_dst_space_from_yuv((float3)(y0, uv.x, uv.y), peak); float3 c1 = map_to_dst_space_from_yuv((float3)(y1, uv.x, uv.y), peak); float3 c2 = map_to_dst_space_from_yuv((float3)(y2, uv.x, uv.y), peak); float3 c3 = map_to_dst_space_from_yuv((float3)(y3, uv.x, uv.y), peak); float sig0 = max(c0.x, max(c0.y, c0.z)); float sig1 = max(c1.x, max(c1.y, c1.z)); float sig2 = max(c2.x, max(c2.y, c2.z)); float sig3 = max(c3.x, max(c3.y, c3.z)); float sig = max(sig0, max(sig1, max(sig2, sig3))); struct detection_result r = detect_peak_avg(util_buf, &sum_wg, sig, peak); float3 c0_old = c0, c1_old = c1, c2_old = c2; c0 = map_one_pixel_rgb(c0, r.peak, r.average); c1 = map_one_pixel_rgb(c1, r.peak, r.average); c2 = map_one_pixel_rgb(c2, r.peak, r.average); c3 = map_one_pixel_rgb(c3, r.peak, r.average); c0 = inverse_ootf(c0, target_peak); c1 = inverse_ootf(c1, target_peak); c2 = inverse_ootf(c2, target_peak); c3 = inverse_ootf(c3, target_peak); y0 = lrgb2y(c0); y1 = lrgb2y(c1); y2 = lrgb2y(c2); y3 = lrgb2y(c3); float3 chroma_c = get_chroma_sample(c0, c1, c2, c3); float3 chroma = lrgb2yuv(chroma_c); if (xi < get_image_width(dst2) && yi < get_image_height(dst2)) { write_imagef(dst1, (int2)(x, y), (float4)(y0, 0.0f, 0.0f, 1.0f)); write_imagef(dst1, (int2)(x+1, y), (float4)(y1, 0.0f, 0.0f, 1.0f)); write_imagef(dst1, (int2)(x, y+1), (float4)(y2, 0.0f, 0.0f, 1.0f)); write_imagef(dst1, (int2)(x+1, y+1), (float4)(y3, 0.0f, 0.0f, 1.0f)); write_imagef(dst2, (int2)(xi, yi), (float4)(chroma.y, chroma.z, 0.0f, 1.0f)); } }