Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/FastLED/FastLED.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'controller.h')
-rw-r--r--controller.h324
1 files changed, 301 insertions, 23 deletions
diff --git a/controller.h b/controller.h
index 9df96efa..a2519e1f 100644
--- a/controller.h
+++ b/controller.h
@@ -1,57 +1,335 @@
#ifndef __INC_CONTROLLER_H
#define __INC_CONTROLLER_H
-#include <avr/io.h>
+#include "led_sysdefs.h"
#include "pixeltypes.h"
+#include "color.h"
+#define RO(X) RGB_BYTE(RGB_ORDER, X)
+#define RGB_BYTE(RO,X) (((RO)>>(3*(2-(X)))) & 0x3)
-#define RGB_BYTE0(X) ((X>>6) & 0x3)
-#define RGB_BYTE1(X) ((X>>3) & 0x3)
-#define RGB_BYTE2(X) ((X) & 0x3)
+#define RGB_BYTE0(RO) ((RO>>6) & 0x3)
+#define RGB_BYTE1(RO) ((RO>>3) & 0x3)
+#define RGB_BYTE2(RO) ((RO) & 0x3)
// operator byte *(struct CRGB[] arr) { return (byte*)arr; }
+#define DISABLE_DITHER 0x00
+#define BINARY_DITHER 0x01
+typedef uint8_t EDitherMode;
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-//
+//
// LED Controller interface definition
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-/// Base definition for an LED controller. Pretty much the methods that every LED controller object will make available.
+/// Base definition for an LED controller. Pretty much the methods that every LED controller object will make available.
/// Note that the showARGB method is not impelemented for all controllers yet. Note also the methods for eventual checking
/// of background writing of data (I'm looking at you, teensy 3.0 DMA controller!). If you want to pass LED controllers around
/// to methods, make them references to this type, keeps your code saner. However, most people won't be seeing/using these objects
/// directly at all
-class CLEDController {
+class CLEDController {
+protected:
+ friend class CFastLED;
+ CRGB *m_Data;
+ CLEDController *m_pNext;
+ CRGB m_ColorCorrection;
+ CRGB m_ColorTemperature;
+ EDitherMode m_DitherMode;
+ int m_nLeds;
+ static CLEDController *m_pHead;
+ static CLEDController *m_pTail;
+
+ // set all the leds on the controller to a given color
+ virtual void showColor(const struct CRGB & data, int nLeds, CRGB scale) = 0;
+
+ // note that the uint8_ts will be in the order that you want them sent out to the device.
+ // nLeds is the number of RGB leds being written to
+ virtual void show(const struct CRGB *data, int nLeds, CRGB scale) = 0;
+
+#ifdef SUPPORT_ARGB
+ // as above, but every 4th uint8_t is assumed to be alpha channel data, and will be skipped
+ virtual void show(const struct CARGB *data, int nLeds, CRGB scale) = 0;
+#endif
public:
+ CLEDController() : m_Data(NULL), m_ColorCorrection(UncorrectedColor), m_ColorTemperature(UncorrectedTemperature), m_DitherMode(BINARY_DITHER), m_nLeds(0) {
+ m_pNext = NULL;
+ if(m_pHead==NULL) { m_pHead = this; }
+ if(m_pTail != NULL) { m_pTail->m_pNext = this; }
+ m_pTail = this;
+ }
+
// initialize the LED controller
virtual void init() = 0;
- // reset any internal state to a clean point
- virtual void reset() { init(); }
-
// clear out/zero out the given number of leds.
virtual void clearLeds(int nLeds) = 0;
- // set all the leds on the controller to a given color
- virtual void showColor(const struct CRGB & data, int nLeds, uint8_t scale = 255) = 0;
+ // show function w/integer brightness, will scale for color correction and temperature
+ void show(const struct CRGB *data, int nLeds, uint8_t brightness) {
+ show(data, nLeds, getAdjustment(brightness));
+ }
+
+ // show function w/integer brightness, will scale for color correction and temperature
+ void showColor(const struct CRGB &data, int nLeds, uint8_t brightness) {
+ showColor(data, nLeds, getAdjustment(brightness));
+ }
+
+ // show function using the "attached to this controller" led data
+ void showLeds(uint8_t brightness=255) {
+ show(m_Data, m_nLeds, getAdjustment(brightness));
+ }
- // note that the uint8_ts will be in the order that you want them sent out to the device.
- // nLeds is the number of RGB leds being written to
- virtual void show(const struct CRGB *data, int nLeds, uint8_t scale = 255) = 0;
+ void showColor(const struct CRGB & data, uint8_t brightness=255) {
+ showColor(data, m_nLeds, getAdjustment(brightness));
+ }
+
+ // navigating the list of controllers
+ static CLEDController *head() { return m_pHead; }
+ CLEDController *next() { return m_pNext; }
+
+ #ifdef SUPPORT_ARGB
+ // as above, but every 4th uint8_t is assumed to be alpha channel data, and will be skipped
+ void show(const struct CARGB *data, int nLeds, uint8_t brightness) {
+ show(data, nLeds, getAdjustment(brightness))
+ }
+#endif
+
+ CLEDController & setLeds(CRGB *data, int nLeds) {
+ m_Data = data;
+ m_nLeds = nLeds;
+ return *this;
+ }
+
+ void clearLedData() {
+ if(m_Data) {
+ memset8((void*)m_Data, 0, sizeof(struct CRGB) * m_nLeds);
+ }
+ }
+
+ // How many leds does this controller manage?
+ int size() { return m_nLeds; }
+
+ // Pointer to the CRGB array for this controller
+ CRGB* leds() { return m_Data; }
+
+ // Reference to the n'th item in the controller
+ CRGB &operator[](int x) { return m_Data[x]; }
+
+ inline CLEDController & setDither(uint8_t ditherMode = BINARY_DITHER) { m_DitherMode = ditherMode; return *this; }
+ inline uint8_t getDither() { return m_DitherMode; }
+
+ CLEDController & setCorrection(CRGB correction) { m_ColorCorrection = correction; return *this; }
+ CLEDController & setCorrection(LEDColorCorrection correction) { m_ColorCorrection = correction; return *this; }
+ CRGB getCorrection() { return m_ColorCorrection; }
+
+ CLEDController & setTemperature(CRGB temperature) { m_ColorTemperature = temperature; return *this; }
+ CLEDController & setTemperature(ColorTemperature temperature) { m_ColorTemperature = temperature; return *this; }
+ CRGB getTemperature() { return m_ColorTemperature; }
+
+ CRGB getAdjustment(uint8_t scale) {
+#if defined(NO_CORRECTION) && (NO_CORRECTION==1)
+ return CRGB(scale,scale,scale);
+#else
+ CRGB adj(0,0,0);
+
+ if(scale > 0) {
+ for(uint8_t i = 0; i < 3; i++) {
+ uint8_t cc = m_ColorCorrection.raw[i];
+ uint8_t ct = m_ColorTemperature.raw[i];
+ if(cc > 0 && ct > 0) {
+ uint32_t work = (((uint32_t)cc)+1) * (((uint32_t)ct)+1) * scale;
+ work /= 0x10000L;
+ adj.raw[i] = work & 0xFF;
+ }
+ }
+ }
+
+ return adj;
+#endif
+ }
+};
+
+// Pixel controller class. This is the class that we use to centralize pixel access in a block of data, including
+// support for things like RGB reordering, scaling, dithering, skipping (for ARGB data), and eventually, we will
+// centralize 8/12/16 conversions here as well.
+template<EOrder RGB_ORDER>
+struct PixelController {
+ const uint8_t *mData;
+ int mLen;
+ uint8_t d[3];
+ uint8_t e[3];
+ CRGB mScale;
+ uint8_t mAdvance;
+
+ PixelController(const PixelController & other) {
+ d[0] = other.d[0];
+ d[1] = other.d[1];
+ d[2] = other.d[2];
+ e[0] = other.e[0];
+ e[1] = other.e[1];
+ e[2] = other.e[2];
+ mData = other.mData;
+ mScale = other.mScale;
+ mAdvance = other.mAdvance;
+ mLen = other.mLen;
+ }
+
+ PixelController(const uint8_t *d, int len, CRGB & s, EDitherMode dither = BINARY_DITHER, bool advance=true, uint8_t skip=0) : mData(d), mLen(len), mScale(s) {
+ enable_dithering(dither);
+ mData += skip;
+ mAdvance = (advance) ? 3+skip : 0;
+ }
+
+ PixelController(const CRGB *d, int len, CRGB & s, EDitherMode dither = BINARY_DITHER) : mData((const uint8_t*)d), mLen(len), mScale(s) {
+ enable_dithering(dither);
+ mAdvance = 3;
+ }
+
+ PixelController(const CRGB &d, int len, CRGB & s, EDitherMode dither = BINARY_DITHER) : mData((const uint8_t*)&d), mLen(len), mScale(s) {
+ enable_dithering(dither);
+ mAdvance = 0;
+ }
#ifdef SUPPORT_ARGB
- // as above, but every 4th uint8_t is assumed to be alpha channel data, and will be skipped
- virtual void show(const struct CARGB *data, int nLeds, uint8_t scale = 255) = 0;
+ PixelController(const CARGB &d, int len, CRGB & s, EDitherMode dither = BINARY_DITHER) : mData((const uint8_t*)&d), mLen(len), mScale(s) {
+ enable_dithering(dither);
+ // skip the A in CARGB
+ mData += 1;
+ mAdvance = 0;
+ }
+
+ PixelController(const CARGB *d, int len, CRGB & s, EDitherMode dither = BINARY_DITHER) : mData((const uint8_t*)d), mLen(len), mScale(s) {
+ enable_dithering(dither);
+ // skip the A in CARGB
+ mData += 1;
+ mAdvance = 4;
+ }
+#endif
+
+ void init_binary_dithering() {
+#if !defined(NO_DITHERING) || (NO_DITHERING != 1)
+
+ // Set 'virtual bits' of dithering to the highest level
+ // that is not likely to cause excessive flickering at
+ // low brightness levels + low update rates.
+ // These pre-set values are a little ambitious, since
+ // a 400Hz update rate for WS2811-family LEDs is only
+ // possible with 85 pixels or fewer.
+ // Once we have a 'number of milliseconds since last update'
+ // value available here, we can quickly calculate the correct
+ // number of 'virtual bits' on the fly with a couple of 'if'
+ // statements -- no division required. At this point,
+ // the division is done at compile time, so there's no runtime
+ // cost, but the values are still hard-coded.
+#define MAX_LIKELY_UPDATE_RATE_HZ 400
+#define MIN_ACCEPTABLE_DITHER_RATE_HZ 50
+#define UPDATES_PER_FULL_DITHER_CYCLE (MAX_LIKELY_UPDATE_RATE_HZ / MIN_ACCEPTABLE_DITHER_RATE_HZ)
+#define RECOMMENDED_VIRTUAL_BITS ((UPDATES_PER_FULL_DITHER_CYCLE>1) + \
+ (UPDATES_PER_FULL_DITHER_CYCLE>2) + \
+ (UPDATES_PER_FULL_DITHER_CYCLE>4) + \
+ (UPDATES_PER_FULL_DITHER_CYCLE>8) + \
+ (UPDATES_PER_FULL_DITHER_CYCLE>16) + \
+ (UPDATES_PER_FULL_DITHER_CYCLE>32) + \
+ (UPDATES_PER_FULL_DITHER_CYCLE>64) + \
+ (UPDATES_PER_FULL_DITHER_CYCLE>128) )
+#define VIRTUAL_BITS RECOMMENDED_VIRTUAL_BITS
+ // R is the digther signal 'counter'.
+ static byte R = 0;
+ R++;
+
+ // R is wrapped around at 2^ditherBits,
+ // so if ditherBits is 2, R will cycle through (0,1,2,3)
+ byte ditherBits = VIRTUAL_BITS;
+ R &= (0x01 << ditherBits) - 1;
+
+ // Q is the "unscaled dither signal" itself.
+ // It's initialized to the reversed bits of R.
+ // If 'ditherBits' is 2, Q here will cycle through (0,128,64,192)
+ byte Q = 0;
+
+ // Reverse bits in a byte
+ {
+ if(R & 0x01) { Q |= 0x80; }
+ if(R & 0x02) { Q |= 0x40; }
+ if(R & 0x04) { Q |= 0x20; }
+ if(R & 0x08) { Q |= 0x10; }
+ if(R & 0x10) { Q |= 0x08; }
+ if(R & 0x20) { Q |= 0x04; }
+ if(R & 0x40) { Q |= 0x02; }
+ if(R & 0x80) { Q |= 0x01; }
+ }
+
+ // Now we adjust Q to fall in the center of each range,
+ // instead of at the start of the range.
+ // If ditherBits is 2, Q will be (0, 128, 64, 192) at first,
+ // and this adjustment makes it (31, 159, 95, 223).
+ if( ditherBits < 8) {
+ Q += 0x01 << (7 - ditherBits);
+ }
+
+ // D and E form the "scaled dither signal"
+ // which is added to pixel values to affect the
+ // actual dithering.
+
+ // Setup the initial D and E values
+ for(int i = 0; i < 3; i++) {
+ byte s = mScale.raw[i];
+ e[i] = s ? (256/s) + 1 : 0;
+ d[i] = scale8(Q, e[i]);
+ if(e[i]) e[i]--;
+ }
#endif
-
- // is the controller ready to write data out
- virtual bool ready() { return true; }
+ }
+
+ // Do we have n pixels left to process?
+ __attribute__((always_inline)) inline bool has(int n) {
+ return mLen >= n;
+ }
+
+ // toggle dithering enable
+ void enable_dithering(EDitherMode dither) {
+ switch(dither) {
+ case BINARY_DITHER: init_binary_dithering(); break;
+ default: d[0]=d[1]=d[2]=e[0]=e[1]=e[2]=0; break;
+ }
+ }
- // wait until the controller is ready to write data out
- virtual void wait() { return; }
+ // get the amount to advance the pointer by
+ __attribute__((always_inline)) inline int advanceBy() { return mAdvance; }
+ // advance the data pointer forward, adjust position counter
+ __attribute__((always_inline)) inline void advanceData() { mData += mAdvance; mLen--;}
+
+ // step the dithering forward
+ __attribute__((always_inline)) inline void stepDithering() {
+ // IF UPDATING HERE, BE SURE TO UPDATE THE ASM VERSION IN
+ // clockless_trinket.h!
+ d[0] = e[0] - d[0];
+ d[1] = e[1] - d[1];
+ d[2] = e[2] - d[2];
+ }
+
+ // Some chipsets pre-cycle the first byte, which means we want to cycle byte 0's dithering separately
+ __attribute__((always_inline)) inline void preStepFirstByteDithering() {
+ d[RO(0)] = e[RO(0)] - d[RO(0)];
+ }
+
+ template<int SLOT> __attribute__((always_inline)) inline static uint8_t loadByte(PixelController & pc) { return pc.mData[RO(SLOT)]; }
+ template<int SLOT> __attribute__((always_inline)) inline static uint8_t dither(PixelController & pc, uint8_t b) { return b ? qadd8(b, pc.d[RO(SLOT)]) : 0; }
+ template<int SLOT> __attribute__((always_inline)) inline static uint8_t scale(PixelController & pc, uint8_t b) { return scale8(b, pc.mScale.raw[RO(SLOT)]); }
+
+ // composite shortcut functions for loading, dithering, and scaling
+ template<int SLOT> __attribute__((always_inline)) inline static uint8_t loadAndScale(PixelController & pc) { return scale<SLOT>(pc, pc.dither<SLOT>(pc, pc.loadByte<SLOT>(pc))); }
+ template<int SLOT> __attribute__((always_inline)) inline static uint8_t advanceAndLoadAndScale(PixelController & pc) { pc.advanceData(); return pc.loadAndScale<SLOT>(pc); }
+
+ // Helper functions to get around gcc stupidities
+ __attribute__((always_inline)) inline uint8_t loadAndScale0() { return loadAndScale<0>(*this); }
+ __attribute__((always_inline)) inline uint8_t loadAndScale1() { return loadAndScale<1>(*this); }
+ __attribute__((always_inline)) inline uint8_t loadAndScale2() { return loadAndScale<2>(*this); }
+ __attribute__((always_inline)) inline uint8_t advanceAndLoadAndScale0() { return advanceAndLoadAndScale<0>(*this); }
+ __attribute__((always_inline)) inline uint8_t stepAdvanceAndLoadAndScale0() { stepDithering(); return advanceAndLoadAndScale<0>(*this); }
};
-#endif \ No newline at end of file
+#endif