#include #define LED_PIN 3 #define BRIGHTNESS 96 #define LED_TYPE WS2811 #define COLOR_ORDER GRB const uint8_t kMatrixWidth = 16; const uint8_t kMatrixHeight = 16; const bool kMatrixSerpentineLayout = true; // This example combines two features of FastLED to produce a remarkable range of // effects from a relatively small amount of code. This example combines FastLED's // color palette lookup functions with FastLED's Perlin/simplex noise generator, and // the combination is extremely powerful. // // You might want to look at the "ColorPalette" and "Noise" examples separately // if this example code seems daunting. // // // The basic setup here is that for each frame, we generate a new array of // 'noise' data, and then map it onto the LED matrix through a color palette. // // Periodically, the color palette is changed, and new noise-generation parameters // are chosen at the same time. In this example, specific noise-generation // values have been selected to match the given color palettes; some are faster, // or slower, or larger, or smaller than others, but there's no reason these // parameters can't be freely mixed-and-matched. // // In addition, this example includes some fast automatic 'data smoothing' at // lower noise speeds to help produce smoother animations in those cases. // // The FastLED built-in color palettes (Forest, Clouds, Lava, Ocean, Party) are // used, as well as some 'hand-defined' ones, and some proceedurally generated // palettes. #define NUM_LEDS (kMatrixWidth * kMatrixHeight) #define MAX_DIMENSION ((kMatrixWidth>kMatrixHeight) ? kMatrixWidth : kMatrixHeight) // The leds CRGB leds[kMatrixWidth * kMatrixHeight]; // The 16 bit version of our coordinates static uint16_t x; static uint16_t y; static uint16_t z; // We're using the x/y dimensions to map to the x/y pixels on the matrix. We'll // use the z-axis for "time". speed determines how fast time moves forward. Try // 1 for a very slow moving effect, or 60 for something that ends up looking like // water. uint16_t speed = 20; // speed is set dynamically once we've started up // Scale determines how far apart the pixels in our noise matrix are. Try // changing these values around to see how it affects the motion of the display. The // higher the value of scale, the more "zoomed out" the noise iwll be. A value // of 1 will be so zoomed in, you'll mostly see solid colors. uint16_t scale = 30; // scale is set dynamically once we've started up // This is the array that we keep our computed noise values in uint8_t noise[MAX_DIMENSION][MAX_DIMENSION]; CRGBPalette16 currentPalette( PartyColors_p ); uint8_t colorLoop = 1; void setup() { delay(3000); FastLED.addLeds(leds,NUM_LEDS); FastLED.setBrightness(BRIGHTNESS); // Initialize our coordinates to some random values x = random16(); y = random16(); z = random16(); } // Fill the x/y array of 8-bit noise values using the inoise8 function. void fillnoise8() { // If we're runing at a low "speed", some 8-bit artifacts become visible // from frame-to-frame. In order to reduce this, we can do some fast data-smoothing. // The amount of data smoothing we're doing depends on "speed". uint8_t dataSmoothing = 0; if( speed < 50) { dataSmoothing = 200 - (speed * 4); } for(int i = 0; i < MAX_DIMENSION; i++) { int ioffset = scale * i; for(int j = 0; j < MAX_DIMENSION; j++) { int joffset = scale * j; uint8_t data = inoise8(x + ioffset,y + joffset,z); // The range of the inoise8 function is roughly 16-238. // These two operations expand those values out to roughly 0..255 // You can comment them out if you want the raw noise data. data = qsub8(data,16); data = qadd8(data,scale8(data,39)); if( dataSmoothing ) { uint8_t olddata = noise[i][j]; uint8_t newdata = scale8( olddata, dataSmoothing) + scale8( data, 256 - dataSmoothing); data = newdata; } noise[i][j] = data; } } z += speed; // apply slow drift to X and Y, just for visual variation. x += speed / 8; y -= speed / 16; } void mapNoiseToLEDsUsingPalette() { static uint8_t ihue=0; for(int i = 0; i < kMatrixWidth; i++) { for(int j = 0; j < kMatrixHeight; j++) { // We use the value at the (i,j) coordinate in the noise // array for our brightness, and the flipped value from (j,i) // for our pixel's index into the color palette. uint8_t index = noise[j][i]; uint8_t bri = noise[i][j]; // if this palette is a 'loop', add a slowly-changing base value if( colorLoop) { index += ihue; } // brighten up, as the color palette itself often contains the // light/dark dynamic range desired if( bri > 127 ) { bri = 255; } else { bri = dim8_raw( bri * 2); } CRGB color = ColorFromPalette( currentPalette, index, bri); leds[XY(i,j)] = color; } } ihue+=1; } void loop() { // Periodically choose a new palette, speed, and scale ChangePaletteAndSettingsPeriodically(); // generate noise data fillnoise8(); // convert the noise data to colors in the LED array // using the current palette mapNoiseToLEDsUsingPalette(); FastLED.show(); // delay(10); } // There are several different palettes of colors demonstrated here. // // FastLED provides several 'preset' palettes: RainbowColors_p, RainbowStripeColors_p, // OceanColors_p, CloudColors_p, LavaColors_p, ForestColors_p, and PartyColors_p. // // Additionally, you can manually define your own color palettes, or you can write // code that creates color palettes on the fly. // 1 = 5 sec per palette // 2 = 10 sec per palette // etc #define HOLD_PALETTES_X_TIMES_AS_LONG 1 void ChangePaletteAndSettingsPeriodically() { uint8_t secondHand = ((millis() / 1000) / HOLD_PALETTES_X_TIMES_AS_LONG) % 60; static uint8_t lastSecond = 99; if( lastSecond != secondHand) { lastSecond = secondHand; if( secondHand == 0) { currentPalette = RainbowColors_p; speed = 20; scale = 30; colorLoop = 1; } if( secondHand == 5) { SetupPurpleAndGreenPalette(); speed = 10; scale = 50; colorLoop = 1; } if( secondHand == 10) { SetupBlackAndWhiteStripedPalette(); speed = 20; scale = 30; colorLoop = 1; } if( secondHand == 15) { currentPalette = ForestColors_p; speed = 8; scale =120; colorLoop = 0; } if( secondHand == 20) { currentPalette = CloudColors_p; speed = 4; scale = 30; colorLoop = 0; } if( secondHand == 25) { currentPalette = LavaColors_p; speed = 8; scale = 50; colorLoop = 0; } if( secondHand == 30) { currentPalette = OceanColors_p; speed = 20; scale = 90; colorLoop = 0; } if( secondHand == 35) { currentPalette = PartyColors_p; speed = 20; scale = 30; colorLoop = 1; } if( secondHand == 40) { SetupRandomPalette(); speed = 20; scale = 20; colorLoop = 1; } if( secondHand == 45) { SetupRandomPalette(); speed = 50; scale = 50; colorLoop = 1; } if( secondHand == 50) { SetupRandomPalette(); speed = 90; scale = 90; colorLoop = 1; } if( secondHand == 55) { currentPalette = RainbowStripeColors_p; speed = 30; scale = 20; colorLoop = 1; } } } // This function generates a random palette that's a gradient // between four different colors. The first is a dim hue, the second is // a bright hue, the third is a bright pastel, and the last is // another bright hue. This gives some visual bright/dark variation // which is more interesting than just a gradient of different hues. void SetupRandomPalette() { currentPalette = CRGBPalette16( CHSV( random8(), 255, 32), CHSV( random8(), 255, 255), CHSV( random8(), 128, 255), CHSV( random8(), 255, 255)); } // This function sets up a palette of black and white stripes, // using code. Since the palette is effectively an array of // sixteen CRGB colors, the various fill_* functions can be used // to set them up. void SetupBlackAndWhiteStripedPalette() { // 'black out' all 16 palette entries... fill_solid( currentPalette, 16, CRGB::Black); // and set every fourth one to white. currentPalette[0] = CRGB::White; currentPalette[4] = CRGB::White; currentPalette[8] = CRGB::White; currentPalette[12] = CRGB::White; } // This function sets up a palette of purple and green stripes. void SetupPurpleAndGreenPalette() { CRGB purple = CHSV( HUE_PURPLE, 255, 255); CRGB green = CHSV( HUE_GREEN, 255, 255); CRGB black = CRGB::Black; currentPalette = CRGBPalette16( green, green, black, black, purple, purple, black, black, green, green, black, black, purple, purple, black, black ); } // // Mark's xy coordinate mapping code. See the XYMatrix for more information on it. // uint16_t XY( uint8_t x, uint8_t y) { uint16_t i; if( kMatrixSerpentineLayout == false) { i = (y * kMatrixWidth) + x; } if( kMatrixSerpentineLayout == true) { if( y & 0x01) { // Odd rows run backwards uint8_t reverseX = (kMatrixWidth - 1) - x; i = (y * kMatrixWidth) + reverseX; } else { // Even rows run forwards i = (y * kMatrixWidth) + x; } } return i; }