#ifndef __INC_FASTPIN_H #define __INC_FASTPIN_H #include // Arduino.h needed for convinience functions digitalPinToPort/BitMask/portOutputRegister and the pinMode methods. #include #define NO_PIN 255 // Class to ensure that a minimum amount of time has kicked since the last time run - and delay if not enough time has passed yet // this should make sure that chipsets that have template class CMinWait { long mLastMicros; public: CMinWait() { mLastMicros = 0; } void wait() { long diff = micros() - mLastMicros; if(diff < WAIT) { delayMicroseconds(WAIT - diff); } } void mark() { mLastMicros = micros(); } }; ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // // Pin access class - needs to tune for various platforms (naive fallback solution?) // ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) #define _CYCLES(_PIN) (((_PIN >= 62 ) || (_PIN>=42 && _PIN<=49) || (_PIN>=14 && _PIN <=17) || (_PIN>=6 && _PIN <=9)) ? 2 : 1) #else #define _CYCLES(_PIN) ((_PIN >= 24) ? 2 : 1) #endif class Selectable { public: virtual void select() = 0; virtual void release() = 0; virtual bool isSelected() = 0; }; class Pin : public Selectable { uint8_t mPinMask; uint8_t mPin; volatile uint8_t *mPort; void _init() { mPinMask = digitalPinToBitMask(mPin); mPort = portOutputRegister(digitalPinToPort(mPin)); } public: Pin(int pin) : mPin(pin) { _init(); } typedef volatile uint8_t * port_ptr_t; typedef uint8_t port_t; inline void setOutput() { pinMode(mPin, OUTPUT); } inline void setInput() { pinMode(mPin, INPUT); } inline void hi() __attribute__ ((always_inline)) { *mPort |= mPinMask; } inline void lo() __attribute__ ((always_inline)) { *mPort &= ~mPinMask; } inline void strobe() __attribute__ ((always_inline)) { hi(); lo(); } inline void hi(register port_ptr_t port) __attribute__ ((always_inline)) { *port |= mPinMask; } inline void lo(register port_ptr_t port) __attribute__ ((always_inline)) { *port &= ~mPinMask; } inline void set(register port_t val) __attribute__ ((always_inline)) { *mPort = val; } inline void fastset(register port_ptr_t port, register port_t val) __attribute__ ((always_inline)) { *port = val; } port_t hival() __attribute__ ((always_inline)) { return *mPort | mPinMask; } port_t loval() __attribute__ ((always_inline)) { return *mPort & ~mPinMask; } port_ptr_t port() __attribute__ ((always_inline)) { return mPort; } port_t mask() __attribute__ ((always_inline)) { return mPinMask; } virtual void select() { hi(); } virtual void release() { lo(); } virtual bool isSelected() { return (*mPort & mPinMask) == mPinMask; } }; class OutputPin : public Pin { public: OutputPin(int pin) : Pin(pin) { setOutput(); } }; class InputPin : public Pin { public: InputPin(int pin) : Pin(pin) { setInput(); } }; /// The simplest level of Pin class. This relies on runtime functions durinig initialization to get the port/pin mask for the pin. Most /// of the accesses involve references to these static globals that get set up. This won't be the fastest set of pin operations, but it /// will provide pin level access on pretty much all arduino environments. In addition, it includes some methods to help optimize access in /// various ways. Namely, the versions of hi, lo, and fastset that take the port register as a passed in register variable (saving a global /// dereference), since these functions are aggressively inlined, that can help collapse out a lot of extraneous memory loads/dereferences. /// /// In addition, if, while writing a bunch of data to a pin, you know no other pins will be getting written to, you can get/cache a value of /// the pin's port register and use that to do a full set to the register. This results in one being able to simply do a store to the register, /// vs. the load, and/or, and store that would be done normally. /// /// There are platform specific instantiations of this class that provide direct i/o register access to pins for much higher speed pin twiddling. /// /// Note that these classes are all static functions. So the proper usage is Pin<13>::hi(); or such. Instantiating objects is not recommended, /// as passing Pin objects around will likely -not- have the effect you're expecting. template class FastPin { static uint8_t sPinMask; static volatile uint8_t *sPort; static void _init() { sPinMask = digitalPinToBitMask(PIN); sPort = portOutputRegister(digitalPinToPort(PIN)); } public: typedef volatile uint8_t * port_ptr_t; typedef uint8_t port_t; inline static void setOutput() { _init(); pinMode(PIN, OUTPUT); } inline static void setInput() { _init(); pinMode(PIN, INPUT); } inline static void hi() __attribute__ ((always_inline)) { *sPort |= sPinMask; } inline static void lo() __attribute__ ((always_inline)) { *sPort &= ~sPinMask; } inline static void strobe() __attribute__ ((always_inline)) { hi(); lo(); } inline static void hi(register port_ptr_t port) __attribute__ ((always_inline)) { *port |= sPinMask; } inline static void lo(register port_ptr_t port) __attribute__ ((always_inline)) { *port &= ~sPinMask; } inline static void set(register port_t val) __attribute__ ((always_inline)) { *sPort = val; } inline static void fastset(register port_ptr_t port, register port_t val) __attribute__ ((always_inline)) { *port = val; } static port_t hival() __attribute__ ((always_inline)) { return *sPort | sPinMask; } static port_t loval() __attribute__ ((always_inline)) { return *sPort & ~sPinMask; } static port_ptr_t port() __attribute__ ((always_inline)) { return sPort; } static port_t mask() __attribute__ ((always_inline)) { return sPinMask; } }; template uint8_t FastPin::sPinMask; template volatile uint8_t *FastPin::sPort; /// Class definition for a Pin where we know the port registers at compile time for said pin. This allows us to make /// a lot of optimizations, as the inlined hi/lo methods will devolve to a single io register write/bitset. template class _AVRPIN { public: typedef volatile uint8_t * port_ptr_t; typedef uint8_t port_t; inline static void setOutput() { _DDR::r() |= _MASK; } inline static void setInput() { _DDR::r() &= ~_MASK; } inline static void hi() __attribute__ ((always_inline)) { _PORT::r() |= _MASK; } inline static void lo() __attribute__ ((always_inline)) { _PORT::r() &= ~_MASK; } inline static void set(register uint8_t val) __attribute__ ((always_inline)) { _PORT::r() = val; } inline static void strobe() __attribute__ ((always_inline)) { hi(); lo(); } inline static void hi(register port_ptr_t port) __attribute__ ((always_inline)) { hi(); } inline static void lo(register port_ptr_t port) __attribute__ ((always_inline)) { lo(); } inline static void fastset(register port_ptr_t port, register uint8_t val) __attribute__ ((always_inline)) { set(val); } inline static port_t hival() __attribute__ ((always_inline)) { return _PORT::r() | _MASK; } inline static port_t loval() __attribute__ ((always_inline)) { return _PORT::r() & ~_MASK; } inline static port_ptr_t port() __attribute__ ((always_inline)) { return &_PORT::r(); } inline static port_t mask() __attribute__ ((always_inline)) { return _MASK; } }; /// Template definition for teensy 3.0 style ARM pins, providing direct access to the various GPIO registers. Note that this /// uses the full port GPIO registers. In theory, in some way, bit-band register access -should- be faster, however I have found /// that something about the way gcc does register allocation results in the bit-band code being slower. It will need more fine tuning. template class _ARMPIN { public: typedef volatile uint32_t * port_ptr_t; typedef uint32_t port_t; inline static void setOutput() { pinMode(PIN, OUTPUT); } // TODO: perform MUX config { _PDDR::r() |= _MASK; } inline static void setInput() { pinMode(PIN, INPUT); } // TODO: preform MUX config { _PDDR::r() &= ~_MASK; } inline static void hi() __attribute__ ((always_inline)) { _PSOR::r() = _MASK; } inline static void lo() __attribute__ ((always_inline)) { _PCOR::r() = _MASK; } inline static void set(register port_t val) __attribute__ ((always_inline)) { _PDOR::r() = val; } inline static void strobe() __attribute__ ((always_inline)) { toggle(); toggle(); } inline static void toggle() __attribute__ ((always_inline)) { _PTOR::r() = _MASK; } inline static void hi(register port_ptr_t port) __attribute__ ((always_inline)) { hi(); } inline static void lo(register port_ptr_t port) __attribute__ ((always_inline)) { lo(); } inline static void fastset(register port_ptr_t port, register port_t val) __attribute__ ((always_inline)) { *port = val; } inline static port_t hival() __attribute__ ((always_inline)) { return _PDOR::r() | _MASK; } inline static port_t loval() __attribute__ ((always_inline)) { return _PDOR::r() & ~_MASK; } inline static port_ptr_t port() __attribute__ ((always_inline)) { return &_PDOR::r(); } inline static port_t mask() __attribute__ ((always_inline)) { return _MASK; } }; /// Template definition for teensy 3.0 style ARM pins using bit banding, providing direct access to the various GPIO registers. GCC /// does a poor job of optimizing around these accesses so they are not being used just yet. template class _ARMPIN_BITBAND { public: typedef volatile uint32_t * port_ptr_t; typedef uint32_t port_t; inline static void setOutput() { pinMode(PIN, OUTPUT); } // TODO: perform MUX config { _PDDR::r() |= _MASK; } inline static void setInput() { pinMode(PIN, INPUT); } // TODO: preform MUX config { _PDDR::r() &= ~_MASK; } inline static void hi() __attribute__ ((always_inline)) { *_PDOR::template rx<_BIT>() = 1; } inline static void lo() __attribute__ ((always_inline)) { *_PDOR::template rx<_BIT>() = 0; } inline static void set(register port_t val) __attribute__ ((always_inline)) { *_PDOR::template rx<_BIT>() = val; } inline static void strobe() __attribute__ ((always_inline)) { toggle(); toggle(); } inline static void toggle() __attribute__ ((always_inline)) { *_PTOR::template rx<_BIT>() = 1; } inline static void hi(register port_ptr_t port) __attribute__ ((always_inline)) { *port = 1; } inline static void lo(register port_ptr_t port) __attribute__ ((always_inline)) { *port = 0; } inline static void fastset(register port_ptr_t port, register port_t val) __attribute__ ((always_inline)) { *port = val; } inline static port_t hival() __attribute__ ((always_inline)) { return 1; } inline static port_t loval() __attribute__ ((always_inline)) { return 0; } inline static port_ptr_t port() __attribute__ ((always_inline)) { return _PDOR::template rx<_BIT>(); } inline static port_t mask() __attribute__ ((always_inline)) { return 1; } }; /// AVR definitions for pins. Getting around the fact that I can't pass GPIO register addresses in as template arguments by instead creating /// a custom type for each GPIO register with a single, static, aggressively inlined function that returns that specific GPIO register. A similar /// trick is used a bit further below for the ARM GPIO registers (of which there are far more than on AVR!) typedef volatile uint8_t & reg8_t; #define _R(T) struct __gen_struct_ ## T #define _RD8(T) struct __gen_struct_ ## T { static inline reg8_t r() { return T; }}; #define _IO(L) _RD8(DDR ## L); _RD8(PORT ## L); _RD8(PIN ## L); #define _DEFPIN_AVR(PIN, MASK, L) template<> class FastPin : public _AVRPIN {}; // ARM definitions #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000) #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit))) typedef volatile uint32_t & reg32_t; typedef volatile uint32_t * ptr_reg32_t; #define _RD32(T) struct __gen_struct_ ## T { static __attribute__((always_inline)) inline reg32_t r() { return T; } \ template static __attribute__((always_inline)) inline ptr_reg32_t rx() { return GPIO_BITBAND_PTR(T, BIT); } }; #define _IO32(L) _RD32(GPIO ## L ## _PDOR); _RD32(GPIO ## L ## _PSOR); _RD32(GPIO ## L ## _PCOR); _RD32(GPIO ## L ## _PTOR); _RD32(GPIO ## L ## _PDIR); _RD32(GPIO ## L ## _PDDR); #define _DEFPIN_ARM(PIN, BIT, L) template<> class FastPin : public _ARMPIN {}; // Don't use bit band'd pins for now, the compiler generates far less efficient code around them // #define _DEFPIN_ARM(PIN, BIT, L) template<> class Pin : public _ARMPIN_BITBAND {}; /////////////////////////////////////////////////////////////////////////////////////////////////////////// // // Pin definitions for AVR and ARM. If there are pin definitions supplied below for the platform being // built on, then much higher speed access will be possible, namely with direct GPIO register accesses. // /////////////////////////////////////////////////////////////////////////////////////////////////////////// #if defined(FORCE_SOFTWARE_PINS) #warning "Softwrae pin support forced pin access will be slightly slower. See fastpin.h for info." #define NO_HARDWARE_PIN_SUPPORT #elif defined(__AVR_ATtiny85__) _IO(B); _DEFPIN_AVR(0, 0x01, B); _DEFPIN_AVR(1, 0x02, B); _DEFPIN_AVR(2, 0x04, B); _DEFPIN_AVR(3, 0x08, B); _DEFPIN_AVR(4, 0x10, B); _DEFPIN_AVR(5, 0x20, B); #elif defined(__AVR_ATmega328P__) || defined(__AVR_ATmega168__) // Accelerated port definitions for arduino avrs _IO(D); _IO(B); _IO(C); _DEFPIN_AVR( 0, 0x01, D); _DEFPIN_AVR( 1, 0x02, D); _DEFPIN_AVR( 2, 0x04, D); _DEFPIN_AVR( 3, 0x08, D); _DEFPIN_AVR( 4, 0x10, D); _DEFPIN_AVR( 5, 0x20, D); _DEFPIN_AVR( 6, 0x40, D); _DEFPIN_AVR( 7, 0x80, D); _DEFPIN_AVR( 8, 0x01, B); _DEFPIN_AVR( 9, 0x02, B); _DEFPIN_AVR(10, 0x04, B); _DEFPIN_AVR(11, 0x08, B); _DEFPIN_AVR(12, 0x10, B); _DEFPIN_AVR(13, 0x20, B); _DEFPIN_AVR(14, 0x01, C); _DEFPIN_AVR(15, 0x02, C); _DEFPIN_AVR(16, 0x04, C); _DEFPIN_AVR(17, 0x08, C); _DEFPIN_AVR(18, 0x10, C); _DEFPIN_AVR(19, 0x20, C); #define SPI_DATA 11 #define SPI_CLOCK 13 #define SPI_SELECT 10 #define AVR_HARDWARE_SPI #elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // megas _IO(A); _IO(B); _IO(C); _IO(D); _IO(E); _IO(F); _IO(G); _IO(H); _IO(J); _IO(K); _IO(L); _DEFPIN_AVR(0, 1, E); _DEFPIN_AVR(1, 2, E); _DEFPIN_AVR(2, 16, E); _DEFPIN_AVR(3, 32, E); _DEFPIN_AVR(4, 32, G); _DEFPIN_AVR(5, 8, E); _DEFPIN_AVR(6, 8, H); _DEFPIN_AVR(7, 16, H); _DEFPIN_AVR(8, 32, H); _DEFPIN_AVR(9, 64, H); _DEFPIN_AVR(10, 16, B); _DEFPIN_AVR(11, 32, B); _DEFPIN_AVR(12, 64, B); _DEFPIN_AVR(13, 128, B); _DEFPIN_AVR(14, 2, J); _DEFPIN_AVR(15, 1, J); _DEFPIN_AVR(16, 2, H); _DEFPIN_AVR(17, 1, H); _DEFPIN_AVR(18, 8, D); _DEFPIN_AVR(19, 4, D); _DEFPIN_AVR(20, 2, D); _DEFPIN_AVR(21, 1, D); _DEFPIN_AVR(22, 1, A); _DEFPIN_AVR(23, 2, A); _DEFPIN_AVR(24, 4, A); _DEFPIN_AVR(25, 8, A); _DEFPIN_AVR(26, 16, A); _DEFPIN_AVR(27, 32, A); _DEFPIN_AVR(28, 64, A); _DEFPIN_AVR(29, 128, A); _DEFPIN_AVR(30, 128, C); _DEFPIN_AVR(31, 64, C); _DEFPIN_AVR(32, 32, C); _DEFPIN_AVR(33, 16, C); _DEFPIN_AVR(34, 8, C); _DEFPIN_AVR(35, 4, C); _DEFPIN_AVR(36, 2, C); _DEFPIN_AVR(37, 1, C); _DEFPIN_AVR(38, 128, D); _DEFPIN_AVR(39, 4, G); _DEFPIN_AVR(40, 2, G); _DEFPIN_AVR(41, 1, G); _DEFPIN_AVR(42, 128, L); _DEFPIN_AVR(43, 64, L); _DEFPIN_AVR(44, 32, L); _DEFPIN_AVR(45, 16, L); _DEFPIN_AVR(46, 8, L); _DEFPIN_AVR(47, 4, L); _DEFPIN_AVR(48, 2, L); _DEFPIN_AVR(49, 1, L); _DEFPIN_AVR(50, 8, B); _DEFPIN_AVR(51, 4, B); _DEFPIN_AVR(52, 2, B); _DEFPIN_AVR(53, 1, B); _DEFPIN_AVR(54, 1, F); _DEFPIN_AVR(55, 2, F); _DEFPIN_AVR(56, 4, F); _DEFPIN_AVR(57, 8, F); _DEFPIN_AVR(58, 16, F); _DEFPIN_AVR(59, 32, F); _DEFPIN_AVR(60, 64, F); _DEFPIN_AVR(61, 128, F); _DEFPIN_AVR(62, 1, K); _DEFPIN_AVR(63, 2, K); _DEFPIN_AVR(64, 4, K); _DEFPIN_AVR(65, 8, K); _DEFPIN_AVR(66, 16, K); _DEFPIN_AVR(67, 32, K); _DEFPIN_AVR(68, 64, K); _DEFPIN_AVR(69, 128, K); #define SPI_DATA 51 #define SPI_CLOCK 52 #define SPI_SELECT 53 #define AVR_HARDWARE_SPI // Leonardo, teensy, blinkm #elif defined(__AVR_ATmega32U4__) && defined(CORE_TEENSY) // teensy defs _IO(B); _IO(C); _IO(D); _IO(E); _IO(F); _DEFPIN_AVR(0, 1, B); _DEFPIN_AVR(1, 2, B); _DEFPIN_AVR(2, 4, B); _DEFPIN_AVR(3, 8, B); _DEFPIN_AVR(4, 128, B); _DEFPIN_AVR(5, 1, D); _DEFPIN_AVR(6, 2, D); _DEFPIN_AVR(7, 4, D); _DEFPIN_AVR(8, 8, D); _DEFPIN_AVR(9, 64, C); _DEFPIN_AVR(10, 128, C); _DEFPIN_AVR(11, 64, D); _DEFPIN_AVR(12, 128, D); _DEFPIN_AVR(13, 16, B); _DEFPIN_AVR(14, 32, B); _DEFPIN_AVR(15, 64, B); _DEFPIN_AVR(16, 128, F); _DEFPIN_AVR(17, 64, F); _DEFPIN_AVR(18, 32, F); _DEFPIN_AVR(19, 16, F); _DEFPIN_AVR(20, 2, F); _DEFPIN_AVR(21, 1, F); _DEFPIN_AVR(22, 16, D); _DEFPIN_AVR(23, 32, D); #define SPI_DATA 2 #define SPI_CLOCK 1 #define SPI_SELECT 3 #define AVR_HARDWARE_SPI #elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__) // teensy++ 2 defs _IO(A); _IO(B); _IO(C); _IO(D); _IO(E); _IO(F); _DEFPIN_AVR(0, 1, D); _DEFPIN_AVR(1, 2, D); _DEFPIN_AVR(2, 4, D); _DEFPIN_AVR(3, 8, D); _DEFPIN_AVR(4, 16, D); _DEFPIN_AVR(5, 32, D); _DEFPIN_AVR(6, 64, D); _DEFPIN_AVR(7, 128, D); _DEFPIN_AVR(8, 1, E); _DEFPIN_AVR(9, 2, E); _DEFPIN_AVR(10, 1, C); _DEFPIN_AVR(11, 2, C); _DEFPIN_AVR(12, 4, C); _DEFPIN_AVR(13, 8, C); _DEFPIN_AVR(14, 16, C); _DEFPIN_AVR(15, 32, C); _DEFPIN_AVR(16, 64, C); _DEFPIN_AVR(17, 128, C); _DEFPIN_AVR(18, 64, E); _DEFPIN_AVR(19, 128, E); _DEFPIN_AVR(20, 1, B); _DEFPIN_AVR(21, 2, B); _DEFPIN_AVR(22, 4, B); _DEFPIN_AVR(23, 8, B); _DEFPIN_AVR(24, 16, B); _DEFPIN_AVR(25, 32, B); _DEFPIN_AVR(26, 64, B); _DEFPIN_AVR(27, 128, B); _DEFPIN_AVR(28, 1, A); _DEFPIN_AVR(29, 2, A); _DEFPIN_AVR(30, 4, A); _DEFPIN_AVR(31, 8, A); _DEFPIN_AVR(32, 16, A); _DEFPIN_AVR(33, 32, A); _DEFPIN_AVR(34, 64, A); _DEFPIN_AVR(35, 128, A); _DEFPIN_AVR(36, 16, E); _DEFPIN_AVR(37, 32, E); _DEFPIN_AVR(38, 1, F); _DEFPIN_AVR(39, 2, F); _DEFPIN_AVR(40, 4, F); _DEFPIN_AVR(41, 8, F); _DEFPIN_AVR(42, 16, F); _DEFPIN_AVR(43, 32, F); _DEFPIN_AVR(44, 64, F); _DEFPIN_AVR(45, 128, F); #define SPI_DATA 22 #define SPI_CLOCK 21 #define SPI_SELECT 20 #define AVR_HARDWARE_SPI #elif defined(__AVR_ATmega32U4__) // leonard defs _IO(B); _IO(C); _IO(D); _IO(E); _IO(F); _DEFPIN_AVR(0, 4, D); _DEFPIN_AVR(1, 8, D); _DEFPIN_AVR(2, 2, D); _DEFPIN_AVR(3, 1, D); _DEFPIN_AVR(4, 16, D); _DEFPIN_AVR(5, 64, C); _DEFPIN_AVR(6, 128, D); _DEFPIN_AVR(7, 64, E); _DEFPIN_AVR(8, 16, B); _DEFPIN_AVR(9, 32, B); _DEFPIN_AVR(10, 64, B); _DEFPIN_AVR(11, 128, B); _DEFPIN_AVR(12, 64, D); _DEFPIN_AVR(13, 128, C); _DEFPIN_AVR(14, 8, B); _DEFPIN_AVR(15, 2, B); _DEFPIN_AVR(16, 4, B); _DEFPIN_AVR(17, 1, B); _DEFPIN_AVR(18, 128, F); _DEFPIN_AVR(19, 64, F); _DEFPIN_AVR(20, 32, F); _DEFPIN_AVR(21, 16, F); _DEFPIN_AVR(22, 2, F); _DEFPIN_AVR(23, 0, F); #define SPI_DATA 16 #define SPI_CLOCK 15 #define AVR_HARDWARE_SPI #elif defined(__MK20DX128__) && defined(CORE_TEENSY) _IO32(A); _IO32(B); _IO32(C); _IO32(D); _IO32(E); _DEFPIN_ARM(0, 16, B); _DEFPIN_ARM(1, 17, B); _DEFPIN_ARM(2, 0, D); _DEFPIN_ARM(3, 12, A); _DEFPIN_ARM(4, 13, A); _DEFPIN_ARM(5, 7, D); _DEFPIN_ARM(6, 4, D); _DEFPIN_ARM(7, 2, D); _DEFPIN_ARM(8, 3, D); _DEFPIN_ARM(9, 3, C); _DEFPIN_ARM(10, 4, C); _DEFPIN_ARM(11, 6, C); _DEFPIN_ARM(12, 7, C); _DEFPIN_ARM(13, 5, C); _DEFPIN_ARM(14, 1, D); _DEFPIN_ARM(15, 0, C); _DEFPIN_ARM(16, 0, B); _DEFPIN_ARM(17, 1, B); _DEFPIN_ARM(18, 3, B); _DEFPIN_ARM(19, 2, B); _DEFPIN_ARM(20, 5, D); _DEFPIN_ARM(21, 6, D); _DEFPIN_ARM(22, 1, C); _DEFPIN_ARM(23, 2, C); _DEFPIN_ARM(24, 5, A); _DEFPIN_ARM(25, 19, B); _DEFPIN_ARM(26, 1, E); _DEFPIN_ARM(27, 9, C); _DEFPIN_ARM(28, 8, C); _DEFPIN_ARM(29, 10, C); _DEFPIN_ARM(30, 11, C); _DEFPIN_ARM(31, 0, E); _DEFPIN_ARM(32, 18, B); _DEFPIN_ARM(33, 4, A); #define SPI_DATA 11 #define SPI_CLOCK 13 #define ARM_HARDWARE_SPI #elif defined(__SAM3X8E__) DUE_IO32(A); DUE_IO32(B); DUE_IO32(C); DUE_IO32(D); _DEFPIN_DUE(0, 8, A); _DEFPIN_DUE(1, 9, A); _DEFPIN_DUE(2, 25, B); _DEFPIN_DUE(3, 28, C); _DEFPIN_DUE(4, 26, C); _DEFPIN_DUE(5, 25, C); _DEFPIN_DUE(6, 24, C); _DEFPIN_DUE(7, 23, C); _DEFPIN_DUE(8, 22, C); _DEFPIN_DUE(9, 21, C); _DEFPIN_DUE(10, 29, C); _DEFPIN_DUE(11, 7, D); _DEFPIN_DUE(12, 8, D); _DEFPIN_DUE(13, 27, B); _DEFPIN_DUE(14, 4, D); _DEFPIN_DUE(15, 5, D); _DEFPIN_DUE(16, 13, A); _DEFPIN_DUE(17, 12, A); _DEFPIN_DUE(18, 11, A); _DEFPIN_DUE(19, 10, A); _DEFPIN_DUE(20, 12, B); _DEFPIN_DUE(21, 13, B); _DEFPIN_DUE(22, 26, B); _DEFPIN_DUE(23, 14, A); _DEFPIN_DUE(24, 15, A); _DEFPIN_DUE(25, 0, D); _DEFPIN_DUE(26, 1, D); _DEFPIN_DUE(27, 2, D); _DEFPIN_DUE(28, 3, D); _DEFPIN_DUE(29, 6, D); _DEFPIN_DUE(30, 9, D); _DEFPIN_DUE(31, 7, A); _DEFPIN_DUE(32, 10, D); _DEFPIN_DUE(33, 1, C); _DEFPIN_DUE(34, 2, C); _DEFPIN_DUE(35, 3, C); _DEFPIN_DUE(36, 4, C); _DEFPIN_DUE(37, 5, C); _DEFPIN_DUE(38, 6, C); _DEFPIN_DUE(39, 7, C); _DEFPIN_DUE(40, 8, C); _DEFPIN_DUE(41, 9, C); _DEFPIN_DUE(42, 19, A); _DEFPIN_DUE(43, 20, A); _DEFPIN_DUE(44, 19, C); _DEFPIN_DUE(45, 18, C); _DEFPIN_DUE(46, 17, C); _DEFPIN_DUE(47, 16, C); _DEFPIN_DUE(48, 15, C); _DEFPIN_DUE(49, 14, C); _DEFPIN_DUE(50, 13, C); _DEFPIN_DUE(51, 12, C); _DEFPIN_DUE(52, 21, B); _DEFPIN_DUE(53, 14, B); _DEFPIN_DUE(54, 16, A); _DEFPIN_DUE(55, 24, A); _DEFPIN_DUE(56, 23, A); _DEFPIN_DUE(57, 22, A); _DEFPIN_DUE(58, 6, A); _DEFPIN_DUE(59, 4, A); _DEFPIN_DUE(60, 3, A); _DEFPIN_DUE(61, 2, A); _DEFPIN_DUE(62, 17, B); _DEFPIN_DUE(63, 18, B); _DEFPIN_DUE(64, 19, B); _DEFPIN_DUE(65, 20, B); _DEFPIN_DUE(66, 15, B); _DEFPIN_DUE(67, 16, B); _DEFPIN_DUE(68, 1, A); _DEFPIN_DUE(69, 0, A); _DEFPIN_DUE(70, 17, A); _DEFPIN_DUE(71, 18, A); _DEFPIN_DUE(72, 30, C); _DEFPIN_DUE(73, 21, A); _DEFPIN_DUE(74, 25, A); _DEFPIN_DUE(75, 26, A); _DEFPIN_DUE(76, 27, A); _DEFPIN_DUE(77, 28, A); _DEFPIN_DUE(78, 23, B); #else #warning "No pin/port mappings found, pin access will be slightly slower. See fastpin.h for info." #define NO_HARDWARE_PIN_SUPPORT #endif #endif