Welcome to mirror list, hosted at ThFree Co, Russian Federation.

clockless_trinket.h « avr « platforms - github.com/FastLED/FastLED.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 5a9a96c6f0d1b512e8842a9c16081cdea0ab9df4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
#ifndef __INC_CLOCKLESS_TRINKET_H
#define __INC_CLOCKLESS_TRINKET_H

#include "controller.h"
#include "lib8tion.h"
#include <avr/interrupt.h> // for cli/se definitions

#if defined(FASTLED_AVR)

// Scaling macro choice
#ifndef TRINKET_SCALE
#define TRINKET_SCALE 1
// whether or not to use dithering
#define DITHER 1
#endif

#define US_PER_TICK (64 / (F_CPU/1000000))

// Variations on the functions in delay.h - w/a loop var passed in to preserve registers across calls by the optimizer/compiler
template<int CYCLES> inline void _dc(register uint8_t & loopvar);

template<int _LOOP, int PAD> inline void _dc_AVR(register uint8_t & loopvar) {
	_dc<PAD>(loopvar);
	// The convolution in here is to ensure that the state of the carry flag coming into the delay loop is preserved
	asm __volatile__ (  "BRCS L_PC%=\n\t"
						"        LDI %[loopvar], %[_LOOP]\n\tL_%=: DEC %[loopvar]\n\t BRNE L_%=\n\tBREQ L_DONE%=\n\t"
						"L_PC%=: LDI %[loopvar], %[_LOOP]\n\tLL_%=: DEC %[loopvar]\n\t BRNE LL_%=\n\tBSET 0\n\t"
						"L_DONE%=:\n\t"
						:
							[loopvar] "+a" (loopvar) : [_LOOP] "M" (_LOOP) : );
}

template<int CYCLES> __attribute__((always_inline)) inline void _dc(register uint8_t & loopvar) {
	_dc_AVR<CYCLES/6,CYCLES%6>(loopvar);
}
template<> __attribute__((always_inline)) inline void _dc<-6>(register uint8_t & loopvar) {}
template<> __attribute__((always_inline)) inline void _dc<-5>(register uint8_t & loopvar) {}
template<> __attribute__((always_inline)) inline void _dc<-4>(register uint8_t & loopvar) {}
template<> __attribute__((always_inline)) inline void _dc<-3>(register uint8_t & loopvar) {}
template<> __attribute__((always_inline)) inline void _dc<-2>(register uint8_t & loopvar) {}
template<> __attribute__((always_inline)) inline void _dc<-1>(register uint8_t & loopvar) {}
template<> __attribute__((always_inline)) inline void _dc<0>(register uint8_t & loopvar) {}
template<> __attribute__((always_inline)) inline void _dc<1>(register uint8_t & loopvar) {asm __volatile__("mov r0,r0":::);}
template<> __attribute__((always_inline)) inline void _dc<2>(register uint8_t & loopvar) {asm __volatile__("rjmp .+0":::);}
template<> __attribute__((always_inline)) inline void _dc<3>(register uint8_t & loopvar) { _dc<2>(loopvar); _dc<1>(loopvar); }
template<> __attribute__((always_inline)) inline void _dc<4>(register uint8_t & loopvar) { _dc<2>(loopvar); _dc<2>(loopvar); }
template<> __attribute__((always_inline)) inline void _dc<5>(register uint8_t & loopvar) { _dc<2>(loopvar); _dc<3>(loopvar); }
template<> __attribute__((always_inline)) inline void _dc<6>(register uint8_t & loopvar) { _dc<2>(loopvar); _dc<2>(loopvar); _dc<2>(loopvar);}
template<> __attribute__((always_inline)) inline void _dc<7>(register uint8_t & loopvar) { _dc<4>(loopvar); _dc<3>(loopvar); }
template<> __attribute__((always_inline)) inline void _dc<8>(register uint8_t & loopvar) { _dc<4>(loopvar); _dc<4>(loopvar); }
template<> __attribute__((always_inline)) inline void _dc<9>(register uint8_t & loopvar) { _dc<5>(loopvar); _dc<4>(loopvar); }
template<> __attribute__((always_inline)) inline void _dc<10>(register uint8_t & loopvar) { _dc<6>(loopvar); _dc<4>(loopvar); }

#define D1(ADJ) _dc<T1-(AVR_PIN_CYCLES(DATA_PIN)+ADJ)>(loopvar);
#define D2(ADJ) _dc<T2-(AVR_PIN_CYCLES(DATA_PIN)+ADJ)>(loopvar);
#define D3(ADJ) (T3-(AVR_PIN_CYCLES(DATA_PIN)+ADJ)>0) ? _dc<T3-(AVR_PIN_CYCLES(DATA_PIN)+ADJ)>(loopvar) : _dc<0>(loopvar);

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Base template for clockless controllers.  These controllers have 3 control points in their cycle for each bit.  The first point
// is where the line is raised hi.  The second point is where the line is dropped low for a zero.  The third point is where the
// line is dropped low for a one.  T1, T2, and T3 correspond to the timings for those three in clock cycles.
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#if (!defined(NO_CORRECTION) || (NO_CORRECTION == 0)) && (FASTLED_ALLOW_INTERRUPTS == 0)
static uint8_t gTimeErrorAccum256ths;
#endif

template <uint8_t DATA_PIN, int T1, int T2, int T3, EOrder RGB_ORDER = RGB, int XTRA0 = 0, bool FLIP = false, int WAIT_TIME = 10>
class ClocklessController : public CLEDController {
	typedef typename FastPin<DATA_PIN>::port_ptr_t data_ptr_t;
	typedef typename FastPin<DATA_PIN>::port_t data_t;

	CMinWait<WAIT_TIME> mWait;
public:
	virtual void init() {
		FastPin<DATA_PIN>::setOutput();
	}

	virtual void clearLeds(int nLeds) {
		CRGB zeros(0,0,0);
		showAdjTime((uint8_t*)&zeros, nLeds, zeros, false, 0);
	}

protected:

	// set all the leds on the controller to a given color
	virtual void showColor(const struct CRGB & rgbdata, int nLeds, CRGB scale) {
		showAdjTime((uint8_t*)&rgbdata, nLeds, scale, false, 0);
	}

	virtual void show(const struct CRGB *rgbdata, int nLeds, CRGB scale) {
		showAdjTime((uint8_t*)rgbdata, nLeds, scale, true, 0);
	}

#ifdef SUPPORT_ARGB
	virtual void show(const struct CARGB *rgbdata, int nLeds, CRGB scale) {
		showAdjTime((uint8_t*)rgbdata, nLeds, scale, true, 1);
	}
#endif

	void showAdjTime(const uint8_t *data, int nLeds, CRGB & scale, bool advance, int skip) {
		PixelController<RGB_ORDER> pixels(data, nLeds, scale, getDither(), advance, skip);

		mWait.wait();
		cli();

		showRGBInternal(pixels);

		// Adjust the timer
#if (!defined(NO_CORRECTION) || (NO_CORRECTION == 0)) && (FASTLED_ALLOW_INTERRUPTS == 0)
        uint32_t microsTaken = (uint32_t)nLeds * (uint32_t)CLKS_TO_MICROS(24 * (T1 + T2 + T3));

        // adust for approximate observed actal runtime (as of January 2015)
        // roughly 9.6 cycles per pixel, which is 0.6us/pixel at 16MHz
        // microsTaken += nLeds * 0.6 * CLKS_TO_MICROS(16);
        microsTaken += scale16by8(nLeds,(0.6 * 256) + 1) * CLKS_TO_MICROS(16);
        
        // if less than 1000us, there is NO timer impact,
        // this is because the ONE interrupt that might come in while interrupts
        // are disabled is queued up, and it will be serviced as soon as
        // interrupts are re-enabled.
        // This actually should technically also account for the runtime of the
        // interrupt handler itself, but we're just not going to worry about that.
        if( microsTaken > 1000) {
        
            // Since up to one timer tick will be queued, we don't need
            // to adjust the MS_COUNTER for that one.
            microsTaken -= 1000;
            
            // Now convert microseconds to 256ths of a second, approximately like this:
            // 250ths = (us/4)
            // 256ths = 250ths * (263/256);
            uint16_t x256ths = microsTaken >> 2;
            x256ths += scale16by8(x256ths,7);
            
            x256ths += gTimeErrorAccum256ths;
            MS_COUNTER += (x256ths >> 8);
            gTimeErrorAccum256ths = x256ths & 0xFF;
        }
        
#if 0
        // For pixel counts of 30 and under at 16Mhz, no correction is necessary.
        // For pixel counts of 15 and under at 8Mhz, no correction is necessary.
        //
        // This code, below, is smaller, and quicker clock correction, which drifts much
        // more significantly, but is a few bytes smaller.  Presented here for consideration
        // as an alternate on the ATtiny, which can't have more than about 150 pixels MAX
        // anyway, meaning that microsTaken will never be more than about 4,500, which fits in
        // a 16-bit variable.  The difference between /1000 and /1024 only starts showing
        // up in the range of about 100 pixels, so many ATtiny projects won't even
        // see a clock difference due to the approximation there.
		uint16_t microsTaken = (uint32_t)nLeds * (uint32_t)CLKS_TO_MICROS((24) * (T1 + T2 + T3));
        MS_COUNTER += (microsTaken >> 10);
#endif

#endif

		sei();
		mWait.mark();
	}
#define USE_ASM_MACROS

// The variables that our various asm statemetns use.  The same block of variables needs to be declared for
// all the asm blocks because GCC is pretty stupid and it would clobber variables happily or optimize code away too aggressively
#define ASM_VARS : /* write variables */				\
				[count] "+x" (count),					\
				[data] "+z" (data),						\
				[b0] "+a" (b0),							\
				[b1] "+a" (b1),							\
				[b2] "+a" (b2),							\
				[scale_base] "+a" (scale_base),			\
				[loopvar] "+a" (loopvar),				\
				[d0] "+r" (d0),							\
				[d1] "+r" (d1),							\
				[d2] "+r" (d2)							\
				: /* use variables */					\
				[ADV] "r" (advanceBy),					\
				[hi] "r" (hi),							\
				[lo] "r" (lo),							\
				[s0] "r" (s0),							\
				[s1] "r" (s1),							\
				[s2] "r" (s2),							\
				[PORT] "M" (FastPin<DATA_PIN>::port()-0x20),		\
				[O0] "M" (RGB_BYTE0(RGB_ORDER)),		\
				[O1] "M" (RGB_BYTE1(RGB_ORDER)),		\
				[O2] "M" (RGB_BYTE2(RGB_ORDER))		\
				: /* clobber registers */


// 1 cycle, write hi to the port
#define HI1 if((int)(FastPin<DATA_PIN>::port())-0x20 < 64) { asm __volatile__("out %[PORT], %[hi]" ASM_VARS ); } else { *FastPin<DATA_PIN>::port()=hi; }
// 1 cycle, write lo to the port
#define LO1 if((int)(FastPin<DATA_PIN>::port())-0x20 < 64) { asm __volatile__("out %[PORT], %[lo]" ASM_VARS ); } else { *FastPin<DATA_PIN>::port()=lo; }
// 2 cycles, sbrs on flipping the lne to lo if we're pushing out a 0
#define QLO2(B, N) asm __volatile__("sbrs %[" #B "], " #N ASM_VARS ); LO1;
// load a byte from ram into the given var with the given offset
#define LD2(B,O) asm __volatile__("ldd %[" #B "], Z + %[" #O "]" ASM_VARS );
// 4 cycles - load a byte from ram into the scaling scratch space with the given offset, clear the target var, clear carry
#define LDSCL4(B,O) asm __volatile__("ldd %[scale_base], Z + %[" #O "]\n\tclr %[" #B "]\n\tclc" ASM_VARS );
// 2 cycles - perform one step of the scaling (if a given bit is set in scale, add scale-base to the scratch space)
#define SCALE02(B, N) asm __volatile__("sbrc %[s0], " #N "\n\tadd %[" #B "], %[scale_base]" ASM_VARS );
#define SCALE12(B, N) asm __volatile__("sbrc %[s1], " #N "\n\tadd %[" #B "], %[scale_base]" ASM_VARS );
#define SCALE22(B, N) asm __volatile__("sbrc %[s2], " #N "\n\tadd %[" #B "], %[scale_base]" ASM_VARS );

// apply dithering value  before we do anything with scale_base
#define PRESCALE4(D) if(DITHER) { asm __volatile__("cpse %[scale_base], __zero_reg__\n\t add %[scale_base],%[" #D "]\n\tbrcc L_%=\n\tldi %[scale_base], 0xFF\n\tL_%=:\n\t" ASM_VARS); } \
				      else { _dc<4>(loopvar); }

// Do the add for the prescale
#define PRESCALEA2(D) if(DITHER) { asm __volatile__("cpse %[scale_base], __zero_reg__\n\t add %[scale_base],%[" #D "]\n\t" ASM_VARS); } \
				      else { _dc<2>(loopvar); }
// Do the clamp for the prescale, clear carry when we're done - NOTE: Must ensure carry flag state is preserved!
#define PRESCALEB3(D) if(DITHER) { asm __volatile__("brcc L_%=\n\tldi %[scale_base], 0xFF\n\tL_%=:\n\tCLC" ASM_VARS); } \
				      else { _dc<3>(loopvar); }


// 1 cycle - rotate right, pulling in from carry
#define ROR1(B) asm __volatile__("ror %[" #B "]" ASM_VARS );
// 1 cycle, clear the carry bit
#define CLC1 asm __volatile__("clc" ASM_VARS );
// 1 cycle, move one register to another
#define MOV1(B1, B2) asm __volatile__("mov %[" #B1 "], %[" #B2 "]" ASM_VARS );
// 4 cycles, rotate, clear carry, scale next bit
#define RORSC04(B, N) ROR1(B) CLC1 SCALE02(B, N)
#define RORSC14(B, N) ROR1(B) CLC1 SCALE12(B, N)
#define RORSC24(B, N) ROR1(B) CLC1 SCALE22(B, N)
// 4 cycles, scale bit, rotate, clear carry
#define SCROR04(B, N) SCALE02(B,N) ROR1(B) CLC1
#define SCROR14(B, N) SCALE12(B,N) ROR1(B) CLC1
#define SCROR24(B, N) SCALE22(B,N) ROR1(B) CLC1

/////////////////////////////////////////////////////////////////////////////////////
// Loop life cycle

// dither adjustment macro - should be kept in sync w/what's in stepDithering
#define ADJDITHER2(D, E) D = E - D;

// #define xstr(a) str(a)
// #define str(a) #a
// #define ADJDITHER2(D,E) asm __volatile__("subi %[" #D "], " xstr(DUSE) "\n\tand %[" #D "], %[" #E "]\n\t" ASM_VARS);

// define the beginning of the loop
#define LOOP asm __volatile__("1:" ASM_VARS );
// define the end of the loop
#define DONE asm __volatile__("2:" ASM_VARS );

// 2 cycles - increment the data pointer
#define IDATA2 asm __volatile__("add %A[data], %[ADV]\n\tadc %B[data], __zero_reg__"  ASM_VARS );
// 2 cycles - decrement the counter
#define DCOUNT2 asm __volatile__("sbiw %[count], 1" ASM_VARS );
// 2 cycles - jump to the beginning of the loop
#define JMPLOOP2 asm __volatile__("rjmp 1b" ASM_VARS );
// 2 cycles - jump out of the loop
#define BRLOOP1 asm __volatile__("breq 2f" ASM_VARS );

#define DADVANCE 3
#define DUSE (0xFF - (DADVANCE-1))

	// This method is made static to force making register Y available to use for data on AVR - if the method is non-static, then
	// gcc will use register Y for the this pointer.
	static void /*__attribute__ ((always_inline))*/  showRGBInternal(PixelController<RGB_ORDER> & pixels)  {
		uint8_t *data = (uint8_t*)pixels.mData;
		data_ptr_t port = FastPin<DATA_PIN>::port();
		data_t mask = FastPin<DATA_PIN>::mask();
		uint8_t scale_base = 0;

		// register uint8_t *end = data + nLeds;
		data_t hi = *port | mask;
		data_t lo = *port & ~mask;
		*port = lo;

		uint8_t b0 = 0;
		uint8_t b1 = 0;
		uint8_t b2 = 0;

		// Setup the pixel controller and load/scale the first byte
		pixels.preStepFirstByteDithering();
		b0 = pixels.loadAndScale0();

		// pull the dithering/adjustment values out of the pixels object for direct asm access

		uint8_t advanceBy = pixels.advanceBy();
		uint16_t count = pixels.mLen;

		uint8_t s0 = pixels.mScale.raw[RO(0)];
		uint8_t s1 = pixels.mScale.raw[RO(1)];
		uint8_t s2 = pixels.mScale.raw[RO(2)];
		uint8_t d0 = pixels.d[RO(0)];
		uint8_t d1 = pixels.d[RO(1)];
		uint8_t d2 = pixels.d[RO(2)];
		uint8_t e0 = pixels.e[RO(0)];
		uint8_t e1 = pixels.e[RO(1)];
		uint8_t e2 = pixels.e[RO(2)];

		uint8_t loopvar=0;

		#if (FASTLED_ALLOW_INTERRUPTS == 1)
		TCCR0A |= 0x30;
		OCR0B = (uint8_t)(TCNT0 + ((WAIT_TIME-INTERRUPT_THRESHOLD)/US_PER_TICK));
		TIFR0 = 0x04;
		#endif
		{
			while(count--)
			{
				// Loop beginning, does some stuff that's outside of the pixel write cycle, namely incrementing d0-2 and masking off
				// by the E values (see the definition )
				// LOOP;
				ADJDITHER2(d0,e0);
				ADJDITHER2(d1,e1);
				ADJDITHER2(d2,e2);
				NOP;
				#if (FASTLED_ALLOW_INTERRUPTS == 1)
				cli();
				if(TIFR0 & 0x04) {
					sei();
					TCCR0A &= ~0x30;
					return;
				}
				hi = *port | mask;
				lo = *port & ~mask;
				#endif

				// Sum of the clock counts across each row should be 10 for 8Mhz, WS2811
				// The values in the D1/D2/D3 indicate how many cycles the previous column takes
				// to allow things to line back up.
				//
				// While writing out byte 0, we're loading up byte 1, applying the dithering adjustment,
				// then scaling it using 8 cycles of shift/add interleaved in between writing the bits
				// out.  When doing byte 1, we're doing the above for byte 2.  When we're doing byte 2,
				// we're cycling back around and doing the above for byte 0.
#if TRINKET_SCALE
				// Inline scaling - RGB ordering
				HI1 D1(1) QLO2(b0, 7) LDSCL4(b1,O1) 	D2(4)	LO1	PRESCALEA2(d1)	D3(2)
				HI1	D1(1) QLO2(b0, 6) PRESCALEB3(d1)	D2(3)	LO1	SCALE12(b1,0)	D3(2)
				HI1 D1(1) QLO2(b0, 5) RORSC14(b1,1) 	D2(4)	LO1 ROR1(b1) CLC1	D3(2)
				HI1 D1(1) QLO2(b0, 4) SCROR14(b1,2)		D2(4)	LO1 SCALE12(b1,3)	D3(2)
				HI1 D1(1) QLO2(b0, 3) RORSC14(b1,4) 	D2(4)	LO1 ROR1(b1) CLC1	D3(2)
				HI1 D1(1) QLO2(b0, 2) SCROR14(b1,5) 	D2(4)	LO1 SCALE12(b1,6)	D3(2)
				HI1 D1(1) QLO2(b0, 1) RORSC14(b1,7) 	D2(4)	LO1 ROR1(b1) CLC1	D3(2)
				HI1 D1(1) QLO2(b0, 0) 				 	D2(0)	LO1 				D3(0)
				switch(XTRA0) {
					case 4: HI1 D1(1) QLO2(b0,0) D2(0) LO1 D3(0);
					case 3: HI1 D1(1) QLO2(b0,0) D2(0) LO1 D3(0);
					case 2: HI1 D1(1) QLO2(b0,0) D2(0) LO1 D3(0);
					case 1: HI1 D1(1) QLO2(b0,0) D2(0) LO1 D3(0);
				}
				HI1 D1(1) QLO2(b1, 7) LDSCL4(b2,O2) 	D2(4)	LO1	PRESCALEA2(d2)	D3(2)
				HI1	D1(1) QLO2(b1, 6) PRESCALEB3(d2)	D2(3)	LO1	SCALE22(b2,0)	D3(2)
				HI1 D1(1) QLO2(b1, 5) RORSC24(b2,1) 	D2(4)	LO1 ROR1(b2) CLC1	D3(2)
				HI1 D1(1) QLO2(b1, 4) SCROR24(b2,2)		D2(4)	LO1 SCALE22(b2,3)	D3(2)
				HI1 D1(1) QLO2(b1, 3) RORSC24(b2,4) 	D2(4)	LO1 ROR1(b2) CLC1	D3(2)
				HI1 D1(1) QLO2(b1, 2) SCROR24(b2,5) 	D2(4)	LO1 SCALE22(b2,6)	D3(2)
				HI1 D1(1) QLO2(b1, 1) RORSC24(b2,7) 	D2(4)	LO1 ROR1(b2) CLC1	D3(2)
				HI1 D1(1) QLO2(b1, 0) IDATA2 CLC1		D2(3) 	LO1 				D3(0)
				switch(XTRA0) {
					case 4: HI1 D1(1) QLO2(b1,0) D2(0) LO1 D3(0);
					case 3: HI1 D1(1) QLO2(b1,0) D2(0) LO1 D3(0);
					case 2: HI1 D1(1) QLO2(b1,0) D2(0) LO1 D3(0);
					case 1: HI1 D1(1) QLO2(b1,0) D2(0) LO1 D3(0);
				}
				HI1 D1(1) QLO2(b2, 7) LDSCL4(b0,O0) 	D2(4)	LO1	PRESCALEA2(d0)	D3(2)
				HI1	D1(1) QLO2(b2, 6) PRESCALEB3(d0)	D2(3)	LO1	SCALE02(b0,0)	D3(2)
				HI1 D1(1) QLO2(b2, 5) RORSC04(b0,1) 	D2(4)	LO1 ROR1(b0) CLC1	D3(2)
				HI1 D1(1) QLO2(b2, 4) SCROR04(b0,2)		D2(4)	LO1 SCALE02(b0,3)	D3(2)
				HI1 D1(1) QLO2(b2, 3) RORSC04(b0,4) 	D2(4)	LO1 ROR1(b0) CLC1	D3(2)
				HI1 D1(1) QLO2(b2, 2) SCROR04(b0,5) 	D2(4)	LO1 SCALE02(b0,6)	D3(2)
				HI1 D1(1) QLO2(b2, 1) RORSC04(b0,7) 	D2(4)	LO1 ROR1(b0) CLC1	D3(2)
				// HI1 D1(1) QLO2(b2, 0) DCOUNT2 BRLOOP1 	D2(3) 	LO1 D3(2) JMPLOOP2
				HI1 D1(1) QLO2(b2, 0) 					D2(0) 	LO1
				switch(XTRA0) {
					case 4: D3(0) HI1 D1(1) QLO2(b1,0) D2(0) LO1;
					case 3: D3(0) HI1 D1(1) QLO2(b1,0) D2(0) LO1;
					case 2: D3(0) HI1 D1(1) QLO2(b1,0) D2(0) LO1;
					case 1: D3(0) HI1 D1(1) QLO2(b1,0) D2(0) LO1;
				}
				D3(12);
#else
				// no inline scaling - non-straight RGB ordering
				HI1	D1(1) QLO2(b0, 7) LD2(b1,O1)	D2(2)	LO1 D3(0)
				HI1 D1(1) QLO2(b0, 6) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b0, 5) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b0, 4) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b0, 3) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b0, 2) 				D2(0)	LO1 D3(0)
				HI1 D1(1) QLO2(b0, 1) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b0, 0) 				D2(0) 	LO1 D3(0)
				HI1	D1(1) QLO2(b1, 7) LD2(b2,O2) 	D2(2)	LO1 D3(0)
				HI1 D1(1) QLO2(b1, 6) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b1, 5) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b1, 4) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b1, 3) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b1, 2) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b1, 1) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b1, 0) IDATA2 		D2(2)	LO1 D3(0)
				HI1	D1(1) QLO2(b2, 7) LD2(b0,O0) 	D2(2)	LO1 D3(0)
				HI1 D1(1) QLO2(b2, 6) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b2, 5) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b2, 4) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b2, 3) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b2, 2) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b2, 1) 				D2(0) 	LO1 D3(0)
				HI1 D1(1) QLO2(b2, 0) 				D2(0) 	LO1 D3(0)
#endif

				#if (FASTLED_ALLOW_INTERRUPTS == 1)
				// set the counter mark
				OCR0B = (uint8_t)(TCNT0 + ((WAIT_TIME-INTERRUPT_THRESHOLD)/US_PER_TICK));
				TIFR0 = 0x04;
				sei();
				#endif
			}
		}

		#if (FASTLED_ALLOW_INTERRUPTS == 1)
		// stop using the clock juggler
		TCCR0A &= ~0x30;
		#endif
	}

#ifdef SUPPORT_ARGB
	virtual void showARGB(struct CARGB *data, int nLeds) {
		// TODO: IMPLEMENTME
	}
#endif
};

#endif

#endif