Welcome to mirror list, hosted at ThFree Co, Russian Federation.

clockless_rmt_esp32.h « 32 « esp « platforms - github.com/FastLED/FastLED.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 1496dc19e6c71b6a9d0965322dc01f00ef08efea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
/*
 * Integration into FastLED ClocklessController
 * Copyright (c) 2018 Samuel Z. Guyer
 * Copyright (c) 2017 Thomas Basler
 * Copyright (c) 2017 Martin F. Falatic
 *
 * ESP32 support is provided using the RMT peripheral device -- a unit
 * on the chip designed specifically for generating (and receiving)
 * precisely-timed digital signals. Nominally for use in infrared
 * remote controls, we use it to generate the signals for clockless
 * LED strips. The main advantage of using the RMT device is that,
 * once programmed, it generates the signal asynchronously, allowing
 * the CPU to continue executing other code. It is also not vulnerable
 * to interrupts or other timing problems that could disrupt the signal.
 *
 * The implementation strategy is borrowed from previous work and from
 * the RMT support built into the ESP32 IDF. The RMT device has 8
 * channels, which can be programmed independently to send sequences
 * of high/low bits. Memory for each channel is limited, however, so
 * in order to send a long sequence of bits, we need to continuously
 * refill the buffer until all the data is sent. To do this, we fill
 * half the buffer and then set an interrupt to go off when that half
 * is sent. Then we refill that half while the second half is being
 * sent. This strategy effectively overlaps computation (by the CPU)
 * and communication (by the RMT).
 *
 * Since the RMT device only has 8 channels, we need a strategy to
 * allow more than 8 LED controllers. Our driver assigns controllers
 * to channels on the fly, queuing up controllers as necessary until a
 * channel is free. The main showPixels routine just fires off the
 * first 8 controllers; the interrupt handler starts new controllers
 * asynchronously as previous ones finish. So, for example, it can
 * send the data for 8 controllers simultaneously, but 16 controllers
 * would take approximately twice as much time.
 *
 * There is a #define that allows a program to control the total
 * number of channels that the driver is allowed to use. It defaults
 * to 8 -- use all the channels. Setting it to 1, for example, results
 * in fully serial output:
 *
 *     #define FASTLED_RMT_MAX_CHANNELS 1
 *
 * OTHER RMT APPLICATIONS
 *
 * The default FastLED driver takes over control of the RMT interrupt
 * handler, making it hard to use the RMT device for other
 * (non-FastLED) purposes. You can change it's behavior to use the ESP
 * core driver instead, allowing other RMT applications to
 * co-exist. To switch to this mode, add the following directive
 * before you include FastLED.h:
 *
 *      #define FASTLED_RMT_BUILTIN_DRIVER
 *
 * There may be a performance penalty for using this mode. We need to
 * compute the RMT signal for the entire LED strip ahead of time,
 * rather than overlapping it with communication. We also need a large
 * buffer to hold the signal specification. Each bit of pixel data is
 * represented by a 32-bit pulse specification, so it is a 32X blow-up
 * in memory use.
 *
 *
 * Based on public domain code created 19 Nov 2016 by Chris Osborn <fozztexx@fozztexx.com>
 * http://insentricity.com *
 *
 */
/*
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#pragma once

FASTLED_NAMESPACE_BEGIN

#ifdef __cplusplus
extern "C" {
#endif

#include "esp32-hal.h"
#include "esp_intr.h"
#include "driver/gpio.h"
#include "driver/rmt.h"
#include "driver/periph_ctrl.h"
#include "freertos/semphr.h"
#include "soc/rmt_struct.h"

#include "esp_log.h"

#ifdef __cplusplus
}
#endif

__attribute__ ((always_inline)) inline static uint32_t __clock_cycles() {
  uint32_t cyc;
  __asm__ __volatile__ ("rsr %0,ccount":"=a" (cyc));
  return cyc;
}

#define FASTLED_HAS_CLOCKLESS 1
#define NUM_COLOR_CHANNELS 3

// -- Set to true to print debugging information about timing
//    Useful for finding out if timing is being messed up by other things
//    on the processor (WiFi, for example)
#ifndef FASTLED_RMT_SHOW_TIMER
#define FASTLED_RMT_SHOW_TIMER false
#endif

// -- Configuration constants
#define DIVIDER             2 /* 4, 8 still seem to work, but timings become marginal */
<<<<<<< HEAD
#define MAX_PULSES         64 /* A channel has a 64 "pulse" buffer */
#define PULSES_PER_FILL    24 /* One pixel's worth of pulses */
=======
#define MAX_PULSES         32 /* A channel has a 64 "pulse" buffer - we use half per pass */
>>>>>>> upstream/master

// -- Convert ESP32 CPU cycles to RMT device cycles, taking into account the divider
#define F_CPU_RMT                   (  80000000L)
#define RMT_CYCLES_PER_SEC          (F_CPU_RMT/DIVIDER)
#define RMT_CYCLES_PER_ESP_CYCLE    (F_CPU / RMT_CYCLES_PER_SEC)
#define ESP_TO_RMT_CYCLES(n)        ((n) / (RMT_CYCLES_PER_ESP_CYCLE))

// -- Number of cycles to signal the strip to latch
#define NS_PER_CYCLE                ( 1000000000L / RMT_CYCLES_PER_SEC )
#define NS_TO_CYCLES(n)             ( (n) / NS_PER_CYCLE )
#define RMT_RESET_DURATION          NS_TO_CYCLES(50000)

// -- Core or custom driver
#ifndef FASTLED_RMT_BUILTIN_DRIVER
#define FASTLED_RMT_BUILTIN_DRIVER false
#endif

// -- Max number of controllers we can support
#ifndef FASTLED_RMT_MAX_CONTROLLERS
#define FASTLED_RMT_MAX_CONTROLLERS 32
#endif

// -- Number of RMT channels to use (up to 8)
//    Redefine this value to 1 to force serial output
#ifndef FASTLED_RMT_MAX_CHANNELS
#define FASTLED_RMT_MAX_CHANNELS 8
#endif

// -- Array of all controllers
static CLEDController * gControllers[FASTLED_RMT_MAX_CONTROLLERS];

// -- Current set of active controllers, indexed by the RMT
//    channel assigned to them.
static CLEDController * gOnChannel[FASTLED_RMT_MAX_CHANNELS];

static int gNumControllers = 0;
static int gNumStarted = 0;
static int gNumDone = 0;
static int gNext = 0;

static intr_handle_t gRMT_intr_handle = NULL;

// -- Global semaphore for the whole show process
//    Semaphore is not given until all data has been sent
static xSemaphoreHandle gTX_sem = NULL;

static bool gInitialized = false;

template <int DATA_PIN, int T1, int T2, int T3, EOrder RGB_ORDER = RGB, int XTRA0 = 0, bool FLIP = false, int WAIT_TIME = 5>
class ClocklessController : public CPixelLEDController<RGB_ORDER>
{
    // -- RMT has 8 channels, numbered 0 to 7
    rmt_channel_t  mRMT_channel;

    // -- Store the GPIO pin
    gpio_num_t     mPin;

    // -- This instantiation forces a check on the pin choice
    FastPin<DATA_PIN> mFastPin;

    // -- Timing values for zero and one bits, derived from T1, T2, and T3
    rmt_item32_t   mZero;
    rmt_item32_t   mOne;

    // -- Save the pixel controller
    PixelController<RGB_ORDER> * mPixels;
    int            mCurColor;
    uint16_t       mCurPulse;
    volatile uint32_t * mRMT_mem_ptr;

    // -- Buffer to hold all of the pulses. For the version that uses
    //    the RMT driver built into the ESP core.
    rmt_item32_t * mBuffer;
    uint16_t       mBufferSize;

public:

    void init()
    {
        // -- Allocate space to save the pixel controller
        //    during parallel output
        mPixels = (PixelController<RGB_ORDER> *) malloc(sizeof(PixelController<RGB_ORDER>));
        
        // -- Precompute rmt items corresponding to a zero bit and a one bit
        //    according to the timing values given in the template instantiation
        // T1H
        mOne.level0 = 1;
        mOne.duration0 = ESP_TO_RMT_CYCLES(T1+T2); // TO_RMT_CYCLES(T1+T2);
        // T1L
        mOne.level1 = 0;
        mOne.duration1 = ESP_TO_RMT_CYCLES(T3); // TO_RMT_CYCLES(T3);

        // T0H
        mZero.level0 = 1;
        mZero.duration0 = ESP_TO_RMT_CYCLES(T1); // TO_RMT_CYCLES(T1);
        // T0L
        mZero.level1 = 0;
        mZero.duration1 = ESP_TO_RMT_CYCLES(T2+T3); // TO_RMT_CYCLES(T2 + T3);

        gControllers[gNumControllers] = this;
        gNumControllers++;

        mPin = gpio_num_t(DATA_PIN);
    }

    virtual uint16_t getMaxRefreshRate() const { return 400; }

protected:

    void initRMT()
    {
        for (int i = 0; i < FASTLED_RMT_MAX_CHANNELS; i++) {
            gOnChannel[i] = NULL;

            // -- RMT configuration for transmission
            rmt_config_t rmt_tx;
            rmt_tx.channel = rmt_channel_t(i);
            rmt_tx.rmt_mode = RMT_MODE_TX;
            rmt_tx.gpio_num = mPin;  // The particular pin will be assigned later
            rmt_tx.mem_block_num = 1;
            rmt_tx.clk_div = DIVIDER;
            rmt_tx.tx_config.loop_en = false;
            rmt_tx.tx_config.carrier_level = RMT_CARRIER_LEVEL_LOW;
            rmt_tx.tx_config.carrier_en = false;
            rmt_tx.tx_config.idle_level = RMT_IDLE_LEVEL_LOW;
            rmt_tx.tx_config.idle_output_en = true;
                
            // -- Apply the configuration
            rmt_config(&rmt_tx);

            if (FASTLED_RMT_BUILTIN_DRIVER) {
                rmt_driver_install(rmt_channel_t(i), 0, 0);
            } else {
                // -- Set up the RMT to send 1 pixel of the pulse buffer and then
                //    generate an interrupt. When we get this interrupt we
                //    fill the other part in preparation (kind of like double-buffering)
                rmt_set_tx_thr_intr_en(rmt_channel_t(i), true, PULSES_PER_FILL);
            }
        }

        // -- Create a semaphore to block execution until all the controllers are done
        if (gTX_sem == NULL) {
            gTX_sem = xSemaphoreCreateBinary();
            xSemaphoreGive(gTX_sem);
        }
                
        if ( ! FASTLED_RMT_BUILTIN_DRIVER) {
            // -- Allocate the interrupt if we have not done so yet. This
            //    interrupt handler must work for all different kinds of
            //    strips, so it delegates to the refill function for each
            //    specific instantiation of ClocklessController.
            if (gRMT_intr_handle == NULL)
                esp_intr_alloc(ETS_RMT_INTR_SOURCE, ESP_INTR_FLAG_LEVEL3, interruptHandler, 0, &gRMT_intr_handle);
        }

        gInitialized = true;
    }

    // -- Show pixels
    //    This is the main entry point for the controller.
    virtual void IRAM_ATTR showPixels(PixelController<RGB_ORDER> & pixels)
    {
        if (gNumStarted == 0) {
            // -- First controller: make sure everything is set up
            // -- Only need to do this once
            if ( ! gInitialized) {
                initRMT();
            }
            xSemaphoreTake(gTX_sem, portMAX_DELAY);
        }

        if (FASTLED_RMT_BUILTIN_DRIVER)
            convertAllPixelData(pixels);
        else {
            // -- Initialize the local state, save a pointer to the pixel
            //    data. We need to make a copy because pixels is a local
            //    variable in the calling function, and this data structure
            //    needs to outlive this call to showPixels.
            (*mPixels) = pixels;
        }

        // -- Keep track of the number of strips we've seen
        gNumStarted++;

        // -- The last call to showPixels is the one responsible for doing
        //    all of the actual worl
        if (gNumStarted == gNumControllers) {
            gNext = 0;

            // -- First, fill all the available channels
            int channel = 0;
            while (channel < FASTLED_RMT_MAX_CHANNELS && gNext < gNumControllers) {
                startNext(channel);
                channel++;
            }

            // -- Start them all
            for (int i = 0; i < channel; i++) {
                ClocklessController * pController = static_cast<ClocklessController*>(gControllers[i]);
                rmt_tx_start(pController->mRMT_channel, true);
            }

            // -- Wait here while the rest of the data is sent. The interrupt handler
            //    will keep refilling the RMT buffers until it is all sent; then it
            //    gives the semaphore back.
            xSemaphoreTake(gTX_sem, portMAX_DELAY);
            xSemaphoreGive(gTX_sem);

            // -- Reset the counters
            gNumStarted = 0;
            gNumDone = 0;
            gNext = 0;
        }
    }

    // -- Convert all pixels to RMT pulses
    //    This function is only used when the user chooses to use the
    //    built-in RMT driver, which needs all of the RMT pulses
    //    up-front.
    void convertAllPixelData(PixelController<RGB_ORDER> & pixels)
    {
        // -- Compute the pulse values for the whole strip at once.
        //    Requires a large buffer
        mBufferSize = pixels.size() * 3 * 8;

        if (mBuffer == NULL) {
            mBuffer = (rmt_item32_t *) calloc( mBufferSize, sizeof(rmt_item32_t));
        }

        // -- Cycle through the R,G, and B values in the right order,
        //    storing the pulses in the big buffer
        mCurPulse = 0;

        uint32_t byteval;
        while (pixels.has(1)) {
            byteval = pixels.loadAndScale0();
            convertByte(byteval);
            byteval = pixels.loadAndScale1();
            convertByte(byteval);
            byteval = pixels.loadAndScale2();
            convertByte(byteval);
            pixels.advanceData();
            pixels.stepDithering();
        }

        mBuffer[mCurPulse-1].duration1 = RMT_RESET_DURATION;
        assert(mCurPulse == mBufferSize);
    }

    void convertByte(uint32_t byteval)
    {
        // -- Write one byte's worth of RMT pulses to the big buffer
        byteval <<= 24;
        for (register uint32_t j = 0; j < 8; j++) {
            mBuffer[mCurPulse] = (byteval & 0x80000000L) ? mOne : mZero;
            byteval <<= 1;
            mCurPulse++;
        }
    }

    // -- Start up the next controller
    //    This method is static so that it can dispatch to the
    //    appropriate startOnChannel method of the given controller.
    static void IRAM_ATTR startNext(int channel)
    {
        if (gNext < gNumControllers) {
            ClocklessController * pController = static_cast<ClocklessController*>(gControllers[gNext]);
            pController->startOnChannel(channel);
            gNext++;
        }
    }

    // -- Start this controller on the given channel
    //    This function just initiates the RMT write; it does not wait
    //    for it to finish.
    void IRAM_ATTR startOnChannel(int channel)
    {
        // -- Assign this channel and configure the RMT
        mRMT_channel = rmt_channel_t(channel);

        // -- Store a reference to this controller, so we can get it
        //    inside the interrupt handler
        gOnChannel[channel] = this;

        // -- Assign the pin to this channel
        rmt_set_pin(mRMT_channel, RMT_MODE_TX, mPin);

        if (FASTLED_RMT_BUILTIN_DRIVER) {
            // -- Use the built-in RMT driver to send all the data in one shot
            rmt_register_tx_end_callback(doneOnChannel, 0);
            rmt_write_items(mRMT_channel, mBuffer, mBufferSize, false);
        } else {
            // -- Use our custom driver to send the data incrementally

            // -- Initialize the counters that keep track of where we are in
            //    the pixel data.
            mRMT_mem_ptr = & (RMTMEM.chan[mRMT_channel].data32[0].val);
            mCurPulse = 0;
            mCurColor = 0;

            // -- Store 2 pixels worth of data (two "buffers" full)
            fillNext();
            fillNext();

            // -- Turn on the interrupts
            rmt_set_tx_intr_en(mRMT_channel, true);
        }
    }

    // -- A controller is done 
    //    This function is called when a controller finishes writing
    //    its data. It is called either by the custom interrupt
    //    handler (below), or as a callback from the built-in
    //    interrupt handler. It is static because we don't know which
    //    controller is done until we look it up.
    static void IRAM_ATTR doneOnChannel(rmt_channel_t channel, void * arg)
    {
        ClocklessController * controller = static_cast<ClocklessController*>(gOnChannel[channel]);
        portBASE_TYPE HPTaskAwoken = 0;

        // -- Turn off output on the pin
        gpio_matrix_out(controller->mPin, 0x100, 0, 0);

        gOnChannel[channel] = NULL;
        gNumDone++;

        if (gNumDone == gNumControllers) {
            // -- If this is the last controller, signal that we are all done
            xSemaphoreGiveFromISR(gTX_sem, &HPTaskAwoken);
            if(HPTaskAwoken == pdTRUE) portYIELD_FROM_ISR();
        } else {
            // -- Otherwise, if there are still controllers waiting, then
            //    start the next one on this channel
            if (gNext < gNumControllers) {
                startNext(channel);
                // -- Start the RMT TX operation
                //    (I'm not sure if this is necessary here)
                rmt_tx_start(controller->mRMT_channel, true);
            }
        }
    }
    
    // -- Custom interrupt handler
    //    This interrupt handler handles two cases: a controller is
    //    done writing its data, or a controller needs to fill the
    //    next half of the RMT buffer with data.
    static void IRAM_ATTR interruptHandler(void *arg)
    {
        // -- The basic structure of this code is borrowed from the
        //    interrupt handler in esp-idf/components/driver/rmt.c
        uint32_t intr_st = RMT.int_st.val;
        uint8_t channel;

        for (channel = 0; channel < FASTLED_RMT_MAX_CHANNELS; channel++) {
            int tx_done_bit = channel * 3;
            int tx_next_bit = channel + 24;

            if (gOnChannel[channel] != NULL) {

                // -- More to send on this channel
                if (intr_st & BIT(tx_next_bit)) {
                    RMT.int_clr.val |= BIT(tx_next_bit);
                    
                    // -- Refill the half of the buffer that we just finished,
                    //    allowing the other half to proceed.
                    ClocklessController * controller = static_cast<ClocklessController*>(gOnChannel[channel]);
                    controller->fillNext();
                } else {
                    // -- Transmission is complete on this channel
                    if (intr_st & BIT(tx_done_bit)) {
                        RMT.int_clr.val |= BIT(tx_done_bit);
                        doneOnChannel(rmt_channel_t(channel), 0);
                    }
                }
            }
        }
    }

<<<<<<< HEAD
    // -- Fill RMT buffer
    //    Puts one pixel's worth of data into the next 24 slots in the RMT memory
    void IRAM_ATTR fillNext()
    {
        if (mPixels->has(1)) {
            uint32_t t1 = __clock_cycles();
            
            uint32_t one_val = mOne.val;
            uint32_t zero_val = mZero.val;

            // -- Get a pixel's worth of data
            uint8_t byte0 = mPixels->loadAndScale0();
            uint8_t byte1 = mPixels->loadAndScale1();
            uint8_t byte2 = mPixels->loadAndScale2();
            mPixels->advanceData();
            mPixels->stepDithering();

            // -- Fill 24 slots in the RMT memory
            register uint32_t pixel = byte0 << 24 | byte1 << 16 | byte2 << 8;

            // -- Use locals for speed
            volatile register uint32_t * pItem =  mRMT_mem_ptr;
            register uint16_t curPulse = mCurPulse;
            
            // Shift bits out, MSB first, setting RMTMEM.chan[n].data32[x] to the 
            // rmt_item32_t value corresponding to the buffered bit value
            for (register uint32_t j = 0; j < 24; j++) {
                uint32_t val = (pixel & 0x80000000L) ? one_val : zero_val;
                *pItem++ = val;
                // Replaces: RMTMEM.chan[mRMT_channel].data32[mCurPulse].val = val;

                pixel <<= 1;
                curPulse++;

                if (curPulse == MAX_PULSES) {
                    pItem = & (RMTMEM.chan[mRMT_channel].data32[0].val);
                    curPulse = 0;
                }
            }

            // -- Store the new values back into the object
            mCurPulse = curPulse;
            mRMT_mem_ptr = pItem;
        } else {
            // -- No more data; signal to the RMT we are done
            for (uint32_t j = 0; j < 8; j++) {
                * mRMT_mem_ptr++ = 0;
            }
        }   
    }

    // NO LONGER USED
=======
>>>>>>> upstream/master
    uint8_t IRAM_ATTR getNextByte() __attribute__ ((always_inline))
    {
        uint8_t byte;

        // -- Cycle through the color channels
        switch (mCurColor) {
        case 0: 
            byte = mPixels->loadAndScale0();
            break;
        case 1: 
            byte = mPixels->loadAndScale1();
            break;
        case 2: 
            byte = mPixels->loadAndScale2();
            mPixels->advanceData();
            mPixels->stepDithering();
            break;
        default:
            // -- This is bad!
            byte = 0;
        }

        mCurColor++;
        if (mCurColor == NUM_COLOR_CHANNELS) mCurColor = 0;

        return byte;
    }


    // NO LONGER USED
    // -- Fill the RMT buffer
    //    This function fills the next 32 slots in the RMT write
    //    buffer with pixel data. It also handles the case where the
    //    pixel data is exhausted, so we need to fill the RMT buffer
    //    with zeros to signal that it's done.
    virtual void IRAM_ATTR fillHalfRMTBuffer()
    {
        uint32_t one_val = mOne.val;
        uint32_t zero_val = mZero.val;

        // -- Convert (up to) 32 bits of the raw pixel data into
        //    into RMT pulses that encode the zeros and ones.
        int pulses = 0;
        register uint32_t byteval;
        while (pulses < 32 && mPixels->has(1)) {
            // -- Get one byte
            // -- Cycle through the color channels
            switch (mCurColor) {
            case 0: 
                byteval = mPixels->loadAndScale0();
                break;
            case 1: 
                byteval = mPixels->loadAndScale1();
                break;
            case 2: 
                byteval = mPixels->loadAndScale2();
                mPixels->advanceData();
                mPixels->stepDithering();
                break;
            default:
                // -- This is bad!
                byteval = 0;
            }

            mCurColor++;
            if (mCurColor == NUM_COLOR_CHANNELS) mCurColor = 0;
        
            // byteval = getNextByte();
            byteval <<= 24;
            // Shift bits out, MSB first, setting RMTMEM.chan[n].data32[x] to the 
            // rmt_item32_t value corresponding to the buffered bit value
            for (register uint32_t j = 0; j < 8; j++) {
                uint32_t val = (byteval & 0x80000000L) ? one_val : zero_val;
                * mRMT_mem_ptr++ = val;
                // Replaces: RMTMEM.chan[mRMT_channel].data32[mCurPulse].val = val;
                byteval <<= 1;
                mCurPulse++;
            }
            pulses += 8;
        }

        // -- When we reach the end of the pixel data, fill the rest of the
        //    RMT buffer with 0's, which signals to the device that we're done.
        if ( ! mPixels->has(1) ) {
            while (pulses < 32) {
                * mRMT_mem_ptr++ = 0;
                // Replaces: RMTMEM.chan[mRMT_channel].data32[mCurPulse].val = 0;
                mCurPulse++;
                pulses++;
            }
        }
        
        // -- When we have filled the back half the buffer, reset the position to the first half
<<<<<<< HEAD
        if (mCurPulse == MAX_PULSES) {
            mRMT_mem_ptr = & (RMTMEM.chan[mRMT_channel].data32[0].val);
            mCurPulse = 0;
        }
=======
        if (mCurPulse >= MAX_PULSES*2) {
            mRMT_mem_ptr = & (RMTMEM.chan[mRMT_channel].data32[0].val);
            mCurPulse = 0;
        }            
>>>>>>> upstream/master
    }
};

FASTLED_NAMESPACE_END