/** ****************************************************************************** * @file : main.c * @brief : Main program body * @verbatim ============================================================================== ##### IMPORTANT NOTE ##### ============================================================================== This application requests having the stm32wb5x_Zigbee_fw.bin binary flashed on the Wireless Coprocessor. If it is not the case, you need to use STM32CubeProgrammer to load the appropriate binary. All available binaries are located under following directory: /Projects/STM32_Copro_Wireless_Binaries Refer to UM2237 to learn how to use/install STM32CubeProgrammer. Refer to /Projects/STM32_Copro_Wireless_Binaries/ReleaseNote.html for the detailed procedure to change the Wireless Coprocessor binary. @endverbatim ****************************************************************************** * @attention * *

© Copyright (c) 2020 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under Ultimate Liberty license * SLA0044, the "License"; You may not use this file except in compliance with * the License. You may obtain a copy of the License at: * www.st.com/SLA0044 * * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "app_entry.h" /* Private includes ----------------------------------------------------------*/ #include "dbg_trace.h" #include "hw_conf.h" #include "otp.h" #include "stm32_seq.h" /* Private variables ---------------------------------------------------------*/ UART_HandleTypeDef hlpuart1; UART_HandleTypeDef huart1; DMA_HandleTypeDef hdma_lpuart1_tx; DMA_HandleTypeDef hdma_usart1_tx; RTC_HandleTypeDef hrtc; /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); void MX_LPUART1_UART_Init(void); void MX_USART1_UART_Init(void); static void MX_RF_Init(void); static void MX_RTC_Init(void); void PeriphClock_Config(void); static void Reset_Device(void); static void Reset_IPCC(void); static void Reset_BackupDomain(void); static void Init_Exti(void); static void Config_HSE(void); /** * @brief The application entry point. * @retval int */ int main(void) { /** * The OPTVERR flag is wrongly set at power on * It shall be cleared before using any HAL_FLASH_xxx() api */ __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_OPTVERR); /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); Reset_Device(); Config_HSE(); /* Configure the system clock */ SystemClock_Config(); PeriphClock_Config(); Init_Exti(); /**< Configure the system Power Mode */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_RF_Init(); MX_RTC_Init(); /* Init the full application */ APPE_Init(); /* Infinite loop */ while (1) { UTIL_SEQ_Run( UTIL_SEQ_DEFAULT ); } } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; /** Configure LSE Drive Capability */ __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW); /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE |RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK4|RCC_CLOCKTYPE_HCLK2 |RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.AHBCLK2Divider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.AHBCLK4Divider = RCC_SYSCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { Error_Handler(); } /** Initializes the peripherals clocks */ PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_SMPS|RCC_PERIPHCLK_RFWAKEUP |RCC_PERIPHCLK_RTC|RCC_PERIPHCLK_USART1 |RCC_PERIPHCLK_LPUART1; PeriphClkInitStruct.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2; PeriphClkInitStruct.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_PCLK1; PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE; PeriphClkInitStruct.RFWakeUpClockSelection = RCC_RFWKPCLKSOURCE_LSE; PeriphClkInitStruct.SmpsClockSelection = RCC_SMPSCLKSOURCE_HSE; PeriphClkInitStruct.SmpsDivSelection = RCC_SMPSCLKDIV_RANGE0; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { Error_Handler(); } } /** * @brief LPUART1 Initialization Function * @param None * @retval None */ void MX_LPUART1_UART_Init(void) { hlpuart1.Instance = LPUART1; hlpuart1.Init.BaudRate = 115200; hlpuart1.Init.WordLength = UART_WORDLENGTH_8B; hlpuart1.Init.StopBits = UART_STOPBITS_1; hlpuart1.Init.Parity = UART_PARITY_NONE; hlpuart1.Init.Mode = UART_MODE_TX_RX; hlpuart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; hlpuart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; hlpuart1.Init.ClockPrescaler = UART_PRESCALER_DIV1; hlpuart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; hlpuart1.FifoMode = UART_FIFOMODE_DISABLE; if (HAL_UART_Init(&hlpuart1) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&hlpuart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&hlpuart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_DisableFifoMode(&hlpuart1) != HAL_OK) { Error_Handler(); } } /** * @brief USART1 Initialization Function * @param None * @retval None */ void MX_USART1_UART_Init(void) { huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_8; huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK) { Error_Handler(); } } /** * @brief RF Initialization Function * @param None * @retval None */ static void MX_RF_Init(void) { } /** * @brief RTC Initialization Function * @param None * @retval None */ static void MX_RTC_Init(void) { /** Initialize RTC Only */ hrtc.Instance = RTC; hrtc.Init.HourFormat = RTC_HOURFORMAT_24; hrtc.Init.AsynchPrediv = CFG_RTC_ASYNCH_PRESCALER; hrtc.Init.SynchPrediv = CFG_RTC_SYNCH_PRESCALER; hrtc.Init.OutPut = RTC_OUTPUT_DISABLE; hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; if (HAL_RTC_Init(&hrtc) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN RTC_Init 2 */ /* USER CODE END RTC_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMAMUX1_CLK_ENABLE(); __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Channel1_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); /* DMA1_Channel2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); } /* USER CODE BEGIN 4 */ void PeriphClock_Config(void) { #if (CFG_USB_INTERFACE_ENABLE != 0) RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = { 0 }; RCC_CRSInitTypeDef RCC_CRSInitStruct = { 0 }; /** * This prevents the CPU2 to disable the HSI48 oscillator when * it does not use anymore the RNG IP */ LL_HSEM_1StepLock( HSEM, 5 ); LL_RCC_HSI48_Enable(); while(!LL_RCC_HSI48_IsReady()); /* Select HSI48 as USB clock source */ PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_USB; PeriphClkInitStruct.UsbClockSelection = RCC_USBCLKSOURCE_HSI48; HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct); /*Configure the clock recovery system (CRS)**********************************/ /* Enable CRS Clock */ __HAL_RCC_CRS_CLK_ENABLE(); /* Default Synchro Signal division factor (not divided) */ RCC_CRSInitStruct.Prescaler = RCC_CRS_SYNC_DIV1; /* Set the SYNCSRC[1:0] bits according to CRS_Source value */ RCC_CRSInitStruct.Source = RCC_CRS_SYNC_SOURCE_USB; /* HSI48 is synchronized with USB SOF at 1KHz rate */ RCC_CRSInitStruct.ReloadValue = RCC_CRS_RELOADVALUE_DEFAULT; RCC_CRSInitStruct.ErrorLimitValue = RCC_CRS_ERRORLIMIT_DEFAULT; RCC_CRSInitStruct.Polarity = RCC_CRS_SYNC_POLARITY_RISING; /* Set the TRIM[5:0] to the default value*/ RCC_CRSInitStruct.HSI48CalibrationValue = RCC_CRS_HSI48CALIBRATION_DEFAULT; /* Start automatic synchronization */ HAL_RCCEx_CRSConfig(&RCC_CRSInitStruct); #endif return; } /************************************************************* * * LOCAL FUNCTIONS * *************************************************************/ static void Config_HSE(void) { OTP_ID0_t * p_otp; /** * Read HSE_Tuning from OTP */ p_otp = (OTP_ID0_t *) OTP_Read(0); if (p_otp) { LL_RCC_HSE_SetCapacitorTuning(p_otp->hse_tuning); } return; } static void Reset_Device( void ) { #if ( CFG_HW_RESET_BY_FW == 1 ) Reset_BackupDomain(); Reset_IPCC(); #endif return; } static void Reset_IPCC( void ) { LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_IPCC); LL_C1_IPCC_ClearFlag_CHx( IPCC, LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4 | LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6); LL_C2_IPCC_ClearFlag_CHx( IPCC, LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4 | LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6); LL_C1_IPCC_DisableTransmitChannel( IPCC, LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4 | LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6); LL_C2_IPCC_DisableTransmitChannel( IPCC, LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4 | LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6); LL_C1_IPCC_DisableReceiveChannel( IPCC, LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4 | LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6); LL_C2_IPCC_DisableReceiveChannel( IPCC, LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4 | LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6); return; } static void Reset_BackupDomain( void ) { if ((LL_RCC_IsActiveFlag_PINRST() != FALSE) && (LL_RCC_IsActiveFlag_SFTRST() == FALSE)) { HAL_PWR_EnableBkUpAccess(); /**< Enable access to the RTC registers */ /** * Write twice the value to flush the APB-AHB bridge * This bit shall be written in the register before writing the next one */ HAL_PWR_EnableBkUpAccess(); __HAL_RCC_BACKUPRESET_FORCE(); __HAL_RCC_BACKUPRESET_RELEASE(); } return; } static void Init_Exti( void ) { /**< Disable all wakeup interrupt on CPU1 except IPCC(36), HSEM(38) */ LL_EXTI_DisableIT_0_31(~0); LL_EXTI_DisableIT_32_63( (~0) & (~(LL_EXTI_LINE_36 | LL_EXTI_LINE_38)) ); return; } /************************************************************* * * WRAP FUNCTIONS * *************************************************************/ void HAL_Delay(uint32_t Delay) { uint32_t tickstart = HAL_GetTick(); uint32_t wait = Delay; /* Add a freq to guarantee minimum wait */ if (wait < HAL_MAX_DELAY) { wait += HAL_GetTickFreq(); } while ((HAL_GetTick() - tickstart) < wait) { /************************************************************************************ * ENTER SLEEP MODE ***********************************************************************************/ LL_LPM_EnableSleep( ); /**< Clear SLEEPDEEP bit of Cortex System Control Register */ /** * This option is used to ensure that store operations are completed */ #if defined ( __CC_ARM) __force_stores(); #endif __WFI( ); } } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/