/* * FreeRTOS Kernel * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * https://www.FreeRTOS.org * https://github.com/FreeRTOS * */ /* Standard includes. */ #include #include /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining * all the API functions to use the MPU wrappers. That should only be done when * task.h is included from an application file. */ #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE /* FreeRTOS includes. */ #include "FreeRTOS.h" #include "task.h" #include "timers.h" #include "stack_macros.h" /* The default definitions are only available for non-MPU ports. The * reason is that the stack alignment requirements vary for different * architectures.*/ #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS != 0 ) ) #error configKERNEL_PROVIDED_STATIC_MEMORY cannot be set to 1 when using an MPU port. The vApplicationGet*TaskMemory() functions must be provided manually. #endif /* The MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined * for the header files above, but not in this file, in order to generate the * correct privileged Vs unprivileged linkage and placement. */ #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting * functions but without including stdio.h here. */ #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) /* At the bottom of this file are two optional functions that can be used * to generate human readable text from the raw data generated by the * uxTaskGetSystemState() function. Note the formatting functions are provided * for convenience only, and are NOT considered part of the kernel. */ #include #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */ #if ( configUSE_PREEMPTION == 0 ) /* If the cooperative scheduler is being used then a yield should not be * performed just because a higher priority task has been woken. */ #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) #else #if ( configNUMBER_OF_CORES == 1 ) /* This macro requests the running task pxTCB to yield. In single core * scheduler, a running task always runs on core 0 and portYIELD_WITHIN_API() * can be used to request the task running on core 0 to yield. Therefore, pxTCB * is not used in this macro. */ #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) \ do { \ ( void ) ( pxTCB ); \ portYIELD_WITHIN_API(); \ } while( 0 ) #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) \ do { \ if( pxCurrentTCB->uxPriority < ( pxTCB )->uxPriority ) \ { \ portYIELD_WITHIN_API(); \ } \ else \ { \ mtCOVERAGE_TEST_MARKER(); \ } \ } while( 0 ) #else /* if ( configNUMBER_OF_CORES == 1 ) */ /* Yield the core on which this task is running. */ #define taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ) prvYieldCore( ( pxTCB )->xTaskRunState ) /* Yield for the task if a running task has priority lower than this task. */ #define taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ) prvYieldForTask( pxTCB ) #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ #endif /* if ( configUSE_PREEMPTION == 0 ) */ /* Values that can be assigned to the ucNotifyState member of the TCB. */ #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */ #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 ) #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 ) /* * The value used to fill the stack of a task when the task is created. This * is used purely for checking the high water mark for tasks. */ #define tskSTACK_FILL_BYTE ( 0xa5U ) /* Bits used to record how a task's stack and TCB were allocated. */ #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 ) #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 ) #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 ) /* If any of the following are set then task stacks are filled with a known * value so the high water mark can be determined. If none of the following are * set then don't fill the stack so there is no unnecessary dependency on memset. */ #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1 #else #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0 #endif /* * Macros used by vListTask to indicate which state a task is in. */ #define tskRUNNING_CHAR ( 'X' ) #define tskBLOCKED_CHAR ( 'B' ) #define tskREADY_CHAR ( 'R' ) #define tskDELETED_CHAR ( 'D' ) #define tskSUSPENDED_CHAR ( 'S' ) /* * Some kernel aware debuggers require the data the debugger needs access to to * be global, rather than file scope. */ #ifdef portREMOVE_STATIC_QUALIFIER #define static #endif /* The name allocated to the Idle task. This can be overridden by defining * configIDLE_TASK_NAME in FreeRTOSConfig.h. */ #ifndef configIDLE_TASK_NAME #define configIDLE_TASK_NAME "IDLE" #endif #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is * performed in a generic way that is not optimised to any particular * microcontroller architecture. */ /* uxTopReadyPriority holds the priority of the highest priority ready * state task. */ #define taskRECORD_READY_PRIORITY( uxPriority ) \ do { \ if( ( uxPriority ) > uxTopReadyPriority ) \ { \ uxTopReadyPriority = ( uxPriority ); \ } \ } while( 0 ) /* taskRECORD_READY_PRIORITY */ /*-----------------------------------------------------------*/ #if ( configNUMBER_OF_CORES == 1 ) #define taskSELECT_HIGHEST_PRIORITY_TASK() \ do { \ UBaseType_t uxTopPriority = uxTopReadyPriority; \ \ /* Find the highest priority queue that contains ready tasks. */ \ while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \ { \ configASSERT( uxTopPriority ); \ --uxTopPriority; \ } \ \ /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \ * the same priority get an equal share of the processor time. */ \ listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \ uxTopReadyPriority = uxTopPriority; \ } while( 0 ) /* taskSELECT_HIGHEST_PRIORITY_TASK */ #else /* if ( configNUMBER_OF_CORES == 1 ) */ #define taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID ) prvSelectHighestPriorityTask( xCoreID ) #endif /* if ( configNUMBER_OF_CORES == 1 ) */ /*-----------------------------------------------------------*/ /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as * they are only required when a port optimised method of task selection is * being used. */ #define taskRESET_READY_PRIORITY( uxPriority ) #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority ) #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is * performed in a way that is tailored to the particular microcontroller * architecture being used. */ /* A port optimised version is provided. Call the port defined macros. */ #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( ( uxPriority ), uxTopReadyPriority ) /*-----------------------------------------------------------*/ #define taskSELECT_HIGHEST_PRIORITY_TASK() \ do { \ UBaseType_t uxTopPriority; \ \ /* Find the highest priority list that contains ready tasks. */ \ portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \ configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \ listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \ } while( 0 ) /*-----------------------------------------------------------*/ /* A port optimised version is provided, call it only if the TCB being reset * is being referenced from a ready list. If it is referenced from a delayed * or suspended list then it won't be in a ready list. */ #define taskRESET_READY_PRIORITY( uxPriority ) \ do { \ if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \ { \ portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \ } \ } while( 0 ) #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ /*-----------------------------------------------------------*/ /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick * count overflows. */ #define taskSWITCH_DELAYED_LISTS() \ do { \ List_t * pxTemp; \ \ /* The delayed tasks list should be empty when the lists are switched. */ \ configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \ \ pxTemp = pxDelayedTaskList; \ pxDelayedTaskList = pxOverflowDelayedTaskList; \ pxOverflowDelayedTaskList = pxTemp; \ xNumOfOverflows++; \ prvResetNextTaskUnblockTime(); \ } while( 0 ) /*-----------------------------------------------------------*/ /* * Place the task represented by pxTCB into the appropriate ready list for * the task. It is inserted at the end of the list. */ #define prvAddTaskToReadyList( pxTCB ) \ do { \ traceMOVED_TASK_TO_READY_STATE( pxTCB ); \ taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \ listINSERT_END( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \ tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB ); \ } while( 0 ) /*-----------------------------------------------------------*/ /* * Several functions take a TaskHandle_t parameter that can optionally be NULL, * where NULL is used to indicate that the handle of the currently executing * task should be used in place of the parameter. This macro simply checks to * see if the parameter is NULL and returns a pointer to the appropriate TCB. */ #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) ) /* The item value of the event list item is normally used to hold the priority * of the task to which it belongs (coded to allow it to be held in reverse * priority order). However, it is occasionally borrowed for other purposes. It * is important its value is not updated due to a task priority change while it is * being used for another purpose. The following bit definition is used to inform * the scheduler that the value should not be changed - in which case it is the * responsibility of whichever module is using the value to ensure it gets set back * to its original value when it is released. */ #if ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_16_BITS ) #define taskEVENT_LIST_ITEM_VALUE_IN_USE ( ( uint16_t ) 0x8000U ) #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_32_BITS ) #define taskEVENT_LIST_ITEM_VALUE_IN_USE ( ( uint32_t ) 0x80000000UL ) #elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_64_BITS ) #define taskEVENT_LIST_ITEM_VALUE_IN_USE ( ( uint64_t ) 0x8000000000000000ULL ) #endif /* Indicates that the task is not actively running on any core. */ #define taskTASK_NOT_RUNNING ( ( BaseType_t ) ( -1 ) ) /* Indicates that the task is actively running but scheduled to yield. */ #define taskTASK_SCHEDULED_TO_YIELD ( ( BaseType_t ) ( -2 ) ) /* Returns pdTRUE if the task is actively running and not scheduled to yield. */ #if ( configNUMBER_OF_CORES == 1 ) #define taskTASK_IS_RUNNING( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) ) #define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCB ) ? ( pdTRUE ) : ( pdFALSE ) ) #else #define taskTASK_IS_RUNNING( pxTCB ) ( ( ( ( pxTCB )->xTaskRunState >= ( BaseType_t ) 0 ) && ( ( pxTCB )->xTaskRunState < ( BaseType_t ) configNUMBER_OF_CORES ) ) ? ( pdTRUE ) : ( pdFALSE ) ) #define taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) ( ( ( pxTCB )->xTaskRunState != taskTASK_NOT_RUNNING ) ? ( pdTRUE ) : ( pdFALSE ) ) #endif /* Indicates that the task is an Idle task. */ #define taskATTRIBUTE_IS_IDLE ( UBaseType_t ) ( 1UL << 0UL ) #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) ) #define portGET_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting ) #define portSET_CRITICAL_NESTING_COUNT( x ) ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting = ( x ) ) #define portINCREMENT_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting++ ) #define portDECREMENT_CRITICAL_NESTING_COUNT() ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxCriticalNesting-- ) #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( portCRITICAL_NESTING_IN_TCB == 1 ) ) */ #define taskBITS_PER_BYTE ( ( size_t ) 8 ) #if ( configNUMBER_OF_CORES > 1 ) /* Yields the given core. This must be called from a critical section and xCoreID * must be valid. This macro is not required in single core since there is only * one core to yield. */ #define prvYieldCore( xCoreID ) \ do { \ if( ( xCoreID ) == ( BaseType_t ) portGET_CORE_ID() ) \ { \ /* Pending a yield for this core since it is in the critical section. */ \ xYieldPendings[ ( xCoreID ) ] = pdTRUE; \ } \ else \ { \ /* Request other core to yield if it is not requested before. */ \ if( pxCurrentTCBs[ ( xCoreID ) ]->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD ) \ { \ portYIELD_CORE( xCoreID ); \ pxCurrentTCBs[ ( xCoreID ) ]->xTaskRunState = taskTASK_SCHEDULED_TO_YIELD; \ } \ } \ } while( 0 ) #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ /*-----------------------------------------------------------*/ /* * Task control block. A task control block (TCB) is allocated for each task, * and stores task state information, including a pointer to the task's context * (the task's run time environment, including register values) */ typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */ { volatile StackType_t * pxTopOfStack; /**< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */ #if ( portUSING_MPU_WRAPPERS == 1 ) xMPU_SETTINGS xMPUSettings; /**< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */ #endif #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) UBaseType_t uxCoreAffinityMask; /**< Used to link the task to certain cores. UBaseType_t must have greater than or equal to the number of bits as configNUMBER_OF_CORES. */ #endif ListItem_t xStateListItem; /**< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */ ListItem_t xEventListItem; /**< Used to reference a task from an event list. */ UBaseType_t uxPriority; /**< The priority of the task. 0 is the lowest priority. */ StackType_t * pxStack; /**< Points to the start of the stack. */ #if ( configNUMBER_OF_CORES > 1 ) volatile BaseType_t xTaskRunState; /**< Used to identify the core the task is running on, if the task is running. Otherwise, identifies the task's state - not running or yielding. */ UBaseType_t uxTaskAttributes; /**< Task's attributes - currently used to identify the idle tasks. */ #endif char pcTaskName[ configMAX_TASK_NAME_LEN ]; /**< Descriptive name given to the task when created. Facilitates debugging only. */ #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) BaseType_t xPreemptionDisable; /**< Used to prevent the task from being preempted. */ #endif #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) ) StackType_t * pxEndOfStack; /**< Points to the highest valid address for the stack. */ #endif #if ( portCRITICAL_NESTING_IN_TCB == 1 ) UBaseType_t uxCriticalNesting; /**< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */ #endif #if ( configUSE_TRACE_FACILITY == 1 ) UBaseType_t uxTCBNumber; /**< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */ UBaseType_t uxTaskNumber; /**< Stores a number specifically for use by third party trace code. */ #endif #if ( configUSE_MUTEXES == 1 ) UBaseType_t uxBasePriority; /**< The priority last assigned to the task - used by the priority inheritance mechanism. */ UBaseType_t uxMutexesHeld; #endif #if ( configUSE_APPLICATION_TASK_TAG == 1 ) TaskHookFunction_t pxTaskTag; #endif #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ]; #endif #if ( configGENERATE_RUN_TIME_STATS == 1 ) configRUN_TIME_COUNTER_TYPE ulRunTimeCounter; /**< Stores the amount of time the task has spent in the Running state. */ #endif #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) configTLS_BLOCK_TYPE xTLSBlock; /**< Memory block used as Thread Local Storage (TLS) Block for the task. */ #endif #if ( configUSE_TASK_NOTIFICATIONS == 1 ) volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ]; volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ]; #endif /* See the comments in FreeRTOS.h with the definition of * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */ #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) uint8_t ucStaticallyAllocated; /**< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */ #endif #if ( INCLUDE_xTaskAbortDelay == 1 ) uint8_t ucDelayAborted; #endif #if ( configUSE_POSIX_ERRNO == 1 ) int iTaskErrno; #endif } tskTCB; /* The old tskTCB name is maintained above then typedefed to the new TCB_t name * below to enable the use of older kernel aware debuggers. */ typedef tskTCB TCB_t; #if ( configNUMBER_OF_CORES == 1 ) /* MISRA Ref 8.4.1 [Declaration shall be visible] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */ /* coverity[misra_c_2012_rule_8_4_violation] */ portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL; #else /* MISRA Ref 8.4.1 [Declaration shall be visible] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-84 */ /* coverity[misra_c_2012_rule_8_4_violation] */ portDONT_DISCARD PRIVILEGED_DATA TCB_t * volatile pxCurrentTCBs[ configNUMBER_OF_CORES ]; #define pxCurrentTCB xTaskGetCurrentTaskHandle() #endif /* Lists for ready and blocked tasks. -------------------- * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but * doing so breaks some kernel aware debuggers and debuggers that rely on removing * the static qualifier. */ PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /**< Prioritised ready tasks. */ PRIVILEGED_DATA static List_t xDelayedTaskList1; /**< Delayed tasks. */ PRIVILEGED_DATA static List_t xDelayedTaskList2; /**< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */ PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /**< Points to the delayed task list currently being used. */ PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /**< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */ PRIVILEGED_DATA static List_t xPendingReadyList; /**< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */ #if ( INCLUDE_vTaskDelete == 1 ) PRIVILEGED_DATA static List_t xTasksWaitingTermination; /**< Tasks that have been deleted - but their memory not yet freed. */ PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U; #endif #if ( INCLUDE_vTaskSuspend == 1 ) PRIVILEGED_DATA static List_t xSuspendedTaskList; /**< Tasks that are currently suspended. */ #endif /* Global POSIX errno. Its value is changed upon context switching to match * the errno of the currently running task. */ #if ( configUSE_POSIX_ERRNO == 1 ) int FreeRTOS_errno = 0; #endif /* Other file private variables. --------------------------------*/ PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U; PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT; PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY; PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE; PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U; PRIVILEGED_DATA static volatile BaseType_t xYieldPendings[ configNUMBER_OF_CORES ] = { pdFALSE }; PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0; PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U; PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */ PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandles[ configNUMBER_OF_CORES ]; /**< Holds the handles of the idle tasks. The idle tasks are created automatically when the scheduler is started. */ /* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists. * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority * to determine the number of priority lists to read back from the remote target. */ static const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U; /* Context switches are held pending while the scheduler is suspended. Also, * interrupts must not manipulate the xStateListItem of a TCB, or any of the * lists the xStateListItem can be referenced from, if the scheduler is suspended. * If an interrupt needs to unblock a task while the scheduler is suspended then it * moves the task's event list item into the xPendingReadyList, ready for the * kernel to move the task from the pending ready list into the real ready list * when the scheduler is unsuspended. The pending ready list itself can only be * accessed from a critical section. * * Updates to uxSchedulerSuspended must be protected by both the task lock and the ISR lock * and must not be done from an ISR. Reads must be protected by either lock and may be done * from either an ISR or a task. */ PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) 0U; #if ( configGENERATE_RUN_TIME_STATS == 1 ) /* Do not move these variables to function scope as doing so prevents the * code working with debuggers that need to remove the static qualifier. */ PRIVILEGED_DATA static configRUN_TIME_COUNTER_TYPE ulTaskSwitchedInTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the value of a timer/counter the last time a task was switched in. */ PRIVILEGED_DATA static volatile configRUN_TIME_COUNTER_TYPE ulTotalRunTime[ configNUMBER_OF_CORES ] = { 0U }; /**< Holds the total amount of execution time as defined by the run time counter clock. */ #endif /*-----------------------------------------------------------*/ /* File private functions. --------------------------------*/ /* * Creates the idle tasks during scheduler start. */ static BaseType_t prvCreateIdleTasks( void ); #if ( configNUMBER_OF_CORES > 1 ) /* * Checks to see if another task moved the current task out of the ready * list while it was waiting to enter a critical section and yields, if so. */ static void prvCheckForRunStateChange( void ); #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ #if ( configNUMBER_OF_CORES > 1 ) /* * Yields a core, or cores if multiple priorities are not allowed to run * simultaneously, to allow the task pxTCB to run. */ static void prvYieldForTask( const TCB_t * pxTCB ); #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ #if ( configNUMBER_OF_CORES > 1 ) /* * Selects the highest priority available task for the given core. */ static void prvSelectHighestPriorityTask( BaseType_t xCoreID ); #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ /** * Utility task that simply returns pdTRUE if the task referenced by xTask is * currently in the Suspended state, or pdFALSE if the task referenced by xTask * is in any other state. */ #if ( INCLUDE_vTaskSuspend == 1 ) static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION; #endif /* INCLUDE_vTaskSuspend */ /* * Utility to ready all the lists used by the scheduler. This is called * automatically upon the creation of the first task. */ static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION; /* * The idle task, which as all tasks is implemented as a never ending loop. * The idle task is automatically created and added to the ready lists upon * creation of the first user task. * * In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks are also * created to ensure that each core has an idle task to run when no other * task is available to run. * * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific * language extensions. The equivalent prototype for these functions are: * * void prvIdleTask( void *pvParameters ); * void prvPassiveIdleTask( void *pvParameters ); * */ static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION; #if ( configNUMBER_OF_CORES > 1 ) static portTASK_FUNCTION_PROTO( prvPassiveIdleTask, pvParameters ) PRIVILEGED_FUNCTION; #endif /* * Utility to free all memory allocated by the scheduler to hold a TCB, * including the stack pointed to by the TCB. * * This does not free memory allocated by the task itself (i.e. memory * allocated by calls to pvPortMalloc from within the tasks application code). */ #if ( INCLUDE_vTaskDelete == 1 ) static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION; #endif /* * Used only by the idle task. This checks to see if anything has been placed * in the list of tasks waiting to be deleted. If so the task is cleaned up * and its TCB deleted. */ static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION; /* * The currently executing task is entering the Blocked state. Add the task to * either the current or the overflow delayed task list. */ static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait, const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION; /* * Fills an TaskStatus_t structure with information on each task that is * referenced from the pxList list (which may be a ready list, a delayed list, * a suspended list, etc.). * * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM * NORMAL APPLICATION CODE. */ #if ( configUSE_TRACE_FACILITY == 1 ) static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray, List_t * pxList, eTaskState eState ) PRIVILEGED_FUNCTION; #endif /* * Searches pxList for a task with name pcNameToQuery - returning a handle to * the task if it is found, or NULL if the task is not found. */ #if ( INCLUDE_xTaskGetHandle == 1 ) static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList, const char pcNameToQuery[] ) PRIVILEGED_FUNCTION; #endif /* * When a task is created, the stack of the task is filled with a known value. * This function determines the 'high water mark' of the task stack by * determining how much of the stack remains at the original preset value. */ #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION; #endif /* * Return the amount of time, in ticks, that will pass before the kernel will * next move a task from the Blocked state to the Running state. * * This conditional compilation should use inequality to 0, not equality to 1. * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user * defined low power mode implementations require configUSE_TICKLESS_IDLE to be * set to a value other than 1. */ #if ( configUSE_TICKLESS_IDLE != 0 ) static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION; #endif /* * Set xNextTaskUnblockTime to the time at which the next Blocked state task * will exit the Blocked state. */ static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION; #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) /* * Helper function used to pad task names with spaces when printing out * human readable tables of task information. */ static char * prvWriteNameToBuffer( char * pcBuffer, const char * pcTaskName ) PRIVILEGED_FUNCTION; #endif /* * Called after a Task_t structure has been allocated either statically or * dynamically to fill in the structure's members. */ static void prvInitialiseNewTask( TaskFunction_t pxTaskCode, const char * const pcName, const uint32_t ulStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask, TCB_t * pxNewTCB, const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION; /* * Called after a new task has been created and initialised to place the task * under the control of the scheduler. */ static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION; /* * Create a task with static buffer for both TCB and stack. Returns a handle to * the task if it is created successfully. Otherwise, returns NULL. */ #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode, const char * const pcName, const uint32_t ulStackDepth, void * const pvParameters, UBaseType_t uxPriority, StackType_t * const puxStackBuffer, StaticTask_t * const pxTaskBuffer, TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION; #endif /* #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */ /* * Create a restricted task with static buffer for both TCB and stack. Returns * a handle to the task if it is created successfully. Otherwise, returns NULL. */ #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION; #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */ /* * Create a restricted task with static buffer for task stack and allocated buffer * for TCB. Returns a handle to the task if it is created successfully. Otherwise, * returns NULL. */ #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION; #endif /* #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */ /* * Create a task with allocated buffer for both TCB and stack. Returns a handle to * the task if it is created successfully. Otherwise, returns NULL. */ #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode, const char * const pcName, const configSTACK_DEPTH_TYPE usStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask ) PRIVILEGED_FUNCTION; #endif /* #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) */ /* * freertos_tasks_c_additions_init() should only be called if the user definable * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro * called by the function. */ #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION; #endif #if ( configUSE_PASSIVE_IDLE_HOOK == 1 ) extern void vApplicationPassiveIdleHook( void ); #endif /* #if ( configUSE_PASSIVE_IDLE_HOOK == 1 ) */ #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) /* * Convert the snprintf return value to the number of characters * written. The following are the possible cases: * * 1. The buffer supplied to snprintf is large enough to hold the * generated string. The return value in this case is the number * of characters actually written, not counting the terminating * null character. * 2. The buffer supplied to snprintf is NOT large enough to hold * the generated string. The return value in this case is the * number of characters that would have been written if the * buffer had been sufficiently large, not counting the * terminating null character. * 3. Encoding error. The return value in this case is a negative * number. * * From 1 and 2 above ==> Only when the return value is non-negative * and less than the supplied buffer length, the string has been * completely written. */ static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue, size_t n ); #endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */ /*-----------------------------------------------------------*/ #if ( configNUMBER_OF_CORES > 1 ) static void prvCheckForRunStateChange( void ) { UBaseType_t uxPrevCriticalNesting; const TCB_t * pxThisTCB; /* This must only be called from within a task. */ portASSERT_IF_IN_ISR(); /* This function is always called with interrupts disabled * so this is safe. */ pxThisTCB = pxCurrentTCBs[ portGET_CORE_ID() ]; while( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD ) { /* We are only here if we just entered a critical section * or if we just suspended the scheduler, and another task * has requested that we yield. * * This is slightly complicated since we need to save and restore * the suspension and critical nesting counts, as well as release * and reacquire the correct locks. And then, do it all over again * if our state changed again during the reacquisition. */ uxPrevCriticalNesting = portGET_CRITICAL_NESTING_COUNT(); if( uxPrevCriticalNesting > 0U ) { portSET_CRITICAL_NESTING_COUNT( 0U ); portRELEASE_ISR_LOCK(); } else { /* The scheduler is suspended. uxSchedulerSuspended is updated * only when the task is not requested to yield. */ mtCOVERAGE_TEST_MARKER(); } portRELEASE_TASK_LOCK(); portMEMORY_BARRIER(); configASSERT( pxThisTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD ); portENABLE_INTERRUPTS(); /* Enabling interrupts should cause this core to immediately * service the pending interrupt and yield. If the run state is still * yielding here then that is a problem. */ configASSERT( pxThisTCB->xTaskRunState != taskTASK_SCHEDULED_TO_YIELD ); portDISABLE_INTERRUPTS(); portGET_TASK_LOCK(); portGET_ISR_LOCK(); portSET_CRITICAL_NESTING_COUNT( uxPrevCriticalNesting ); if( uxPrevCriticalNesting == 0U ) { portRELEASE_ISR_LOCK(); } } } #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ /*-----------------------------------------------------------*/ #if ( configNUMBER_OF_CORES > 1 ) static void prvYieldForTask( const TCB_t * pxTCB ) { BaseType_t xLowestPriorityToPreempt; BaseType_t xCurrentCoreTaskPriority; BaseType_t xLowestPriorityCore = ( BaseType_t ) -1; BaseType_t xCoreID; #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) BaseType_t xYieldCount = 0; #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */ /* This must be called from a critical section. */ configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U ); #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) /* No task should yield for this one if it is a lower priority * than priority level of currently ready tasks. */ if( pxTCB->uxPriority >= uxTopReadyPriority ) #else /* Yield is not required for a task which is already running. */ if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE ) #endif { xLowestPriorityToPreempt = ( BaseType_t ) pxTCB->uxPriority; /* xLowestPriorityToPreempt will be decremented to -1 if the priority of pxTCB * is 0. This is ok as we will give system idle tasks a priority of -1 below. */ --xLowestPriorityToPreempt; for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ ) { xCurrentCoreTaskPriority = ( BaseType_t ) pxCurrentTCBs[ xCoreID ]->uxPriority; /* System idle tasks are being assigned a priority of tskIDLE_PRIORITY - 1 here. */ if( ( pxCurrentTCBs[ xCoreID ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U ) { xCurrentCoreTaskPriority = xCurrentCoreTaskPriority - 1; } if( ( taskTASK_IS_RUNNING( pxCurrentTCBs[ xCoreID ] ) != pdFALSE ) && ( xYieldPendings[ xCoreID ] == pdFALSE ) ) { #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) if( taskTASK_IS_RUNNING( pxTCB ) == pdFALSE ) #endif { if( xCurrentCoreTaskPriority <= xLowestPriorityToPreempt ) { #if ( configUSE_CORE_AFFINITY == 1 ) if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U ) #endif { #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE ) #endif { xLowestPriorityToPreempt = xCurrentCoreTaskPriority; xLowestPriorityCore = xCoreID; } } } else { mtCOVERAGE_TEST_MARKER(); } } #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) { /* Yield all currently running non-idle tasks with a priority lower than * the task that needs to run. */ if( ( xCurrentCoreTaskPriority > ( ( BaseType_t ) tskIDLE_PRIORITY - 1 ) ) && ( xCurrentCoreTaskPriority < ( BaseType_t ) pxTCB->uxPriority ) ) { prvYieldCore( xCoreID ); xYieldCount++; } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */ } else { mtCOVERAGE_TEST_MARKER(); } } #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) if( ( xYieldCount == 0 ) && ( xLowestPriorityCore >= 0 ) ) #else /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */ if( xLowestPriorityCore >= 0 ) #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */ { prvYieldCore( xLowestPriorityCore ); } #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) /* Verify that the calling core always yields to higher priority tasks. */ if( ( ( pxCurrentTCBs[ portGET_CORE_ID() ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0U ) && ( pxTCB->uxPriority > pxCurrentTCBs[ portGET_CORE_ID() ]->uxPriority ) ) { configASSERT( ( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE ) || ( taskTASK_IS_RUNNING( pxCurrentTCBs[ portGET_CORE_ID() ] ) == pdFALSE ) ); } #endif } } #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ /*-----------------------------------------------------------*/ #if ( configNUMBER_OF_CORES > 1 ) static void prvSelectHighestPriorityTask( BaseType_t xCoreID ) { UBaseType_t uxCurrentPriority = uxTopReadyPriority; BaseType_t xTaskScheduled = pdFALSE; BaseType_t xDecrementTopPriority = pdTRUE; #if ( configUSE_CORE_AFFINITY == 1 ) const TCB_t * pxPreviousTCB = NULL; #endif #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) BaseType_t xPriorityDropped = pdFALSE; #endif /* This function should be called when scheduler is running. */ configASSERT( xSchedulerRunning == pdTRUE ); /* A new task is created and a running task with the same priority yields * itself to run the new task. When a running task yields itself, it is still * in the ready list. This running task will be selected before the new task * since the new task is always added to the end of the ready list. * The other problem is that the running task still in the same position of * the ready list when it yields itself. It is possible that it will be selected * earlier then other tasks which waits longer than this task. * * To fix these problems, the running task should be put to the end of the * ready list before searching for the ready task in the ready list. */ if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ), &pxCurrentTCBs[ xCoreID ]->xStateListItem ) == pdTRUE ) { ( void ) uxListRemove( &pxCurrentTCBs[ xCoreID ]->xStateListItem ); vListInsertEnd( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ), &pxCurrentTCBs[ xCoreID ]->xStateListItem ); } while( xTaskScheduled == pdFALSE ) { #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) { if( uxCurrentPriority < uxTopReadyPriority ) { /* We can't schedule any tasks, other than idle, that have a * priority lower than the priority of a task currently running * on another core. */ uxCurrentPriority = tskIDLE_PRIORITY; } } #endif if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxCurrentPriority ] ) ) == pdFALSE ) { const List_t * const pxReadyList = &( pxReadyTasksLists[ uxCurrentPriority ] ); const ListItem_t * pxEndMarker = listGET_END_MARKER( pxReadyList ); ListItem_t * pxIterator; /* The ready task list for uxCurrentPriority is not empty, so uxTopReadyPriority * must not be decremented any further. */ xDecrementTopPriority = pdFALSE; for( pxIterator = listGET_HEAD_ENTRY( pxReadyList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) ) { /* MISRA Ref 11.5.3 [Void pointer assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ TCB_t * pxTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxIterator ); #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) { /* When falling back to the idle priority because only one priority * level is allowed to run at a time, we should ONLY schedule the true * idle tasks, not user tasks at the idle priority. */ if( uxCurrentPriority < uxTopReadyPriority ) { if( ( pxTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) == 0U ) { continue; } } } #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */ if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING ) { #if ( configUSE_CORE_AFFINITY == 1 ) if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U ) #endif { /* If the task is not being executed by any core swap it in. */ pxCurrentTCBs[ xCoreID ]->xTaskRunState = taskTASK_NOT_RUNNING; #if ( configUSE_CORE_AFFINITY == 1 ) pxPreviousTCB = pxCurrentTCBs[ xCoreID ]; #endif pxTCB->xTaskRunState = xCoreID; pxCurrentTCBs[ xCoreID ] = pxTCB; xTaskScheduled = pdTRUE; } } else if( pxTCB == pxCurrentTCBs[ xCoreID ] ) { configASSERT( ( pxTCB->xTaskRunState == xCoreID ) || ( pxTCB->xTaskRunState == taskTASK_SCHEDULED_TO_YIELD ) ); #if ( configUSE_CORE_AFFINITY == 1 ) if( ( pxTCB->uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U ) #endif { /* The task is already running on this core, mark it as scheduled. */ pxTCB->xTaskRunState = xCoreID; xTaskScheduled = pdTRUE; } } else { /* This task is running on the core other than xCoreID. */ mtCOVERAGE_TEST_MARKER(); } if( xTaskScheduled != pdFALSE ) { /* A task has been selected to run on this core. */ break; } } } else { if( xDecrementTopPriority != pdFALSE ) { uxTopReadyPriority--; #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) { xPriorityDropped = pdTRUE; } #endif } } /* There are configNUMBER_OF_CORES Idle tasks created when scheduler started. * The scheduler should be able to select a task to run when uxCurrentPriority * is tskIDLE_PRIORITY. uxCurrentPriority is never decreased to value blow * tskIDLE_PRIORITY. */ if( uxCurrentPriority > tskIDLE_PRIORITY ) { uxCurrentPriority--; } else { /* This function is called when idle task is not created. Break the * loop to prevent uxCurrentPriority overrun. */ break; } } #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) { if( xTaskScheduled == pdTRUE ) { if( xPriorityDropped != pdFALSE ) { /* There may be several ready tasks that were being prevented from running because there was * a higher priority task running. Now that the last of the higher priority tasks is no longer * running, make sure all the other idle tasks yield. */ BaseType_t x; for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configNUMBER_OF_CORES; x++ ) { if( ( pxCurrentTCBs[ x ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U ) { prvYieldCore( x ); } } } } } #endif /* #if ( configRUN_MULTIPLE_PRIORITIES == 0 ) */ #if ( configUSE_CORE_AFFINITY == 1 ) { if( xTaskScheduled == pdTRUE ) { if( ( pxPreviousTCB != NULL ) && ( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxPreviousTCB->uxPriority ] ), &( pxPreviousTCB->xStateListItem ) ) != pdFALSE ) ) { /* A ready task was just evicted from this core. See if it can be * scheduled on any other core. */ UBaseType_t uxCoreMap = pxPreviousTCB->uxCoreAffinityMask; BaseType_t xLowestPriority = ( BaseType_t ) pxPreviousTCB->uxPriority; BaseType_t xLowestPriorityCore = -1; BaseType_t x; if( ( pxPreviousTCB->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U ) { xLowestPriority = xLowestPriority - 1; } if( ( uxCoreMap & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) != 0U ) { /* pxPreviousTCB was removed from this core and this core is not excluded * from it's core affinity mask. * * pxPreviousTCB is preempted by the new higher priority task * pxCurrentTCBs[ xCoreID ]. When searching a new core for pxPreviousTCB, * we do not need to look at the cores on which pxCurrentTCBs[ xCoreID ] * is allowed to run. The reason is - when more than one cores are * eligible for an incoming task, we preempt the core with the minimum * priority task. Because this core (i.e. xCoreID) was preempted for * pxCurrentTCBs[ xCoreID ], this means that all the others cores * where pxCurrentTCBs[ xCoreID ] can run, are running tasks with priority * no lower than pxPreviousTCB's priority. Therefore, the only cores where * which can be preempted for pxPreviousTCB are the ones where * pxCurrentTCBs[ xCoreID ] is not allowed to run (and obviously, * pxPreviousTCB is allowed to run). * * This is an optimization which reduces the number of cores needed to be * searched for pxPreviousTCB to run. */ uxCoreMap &= ~( pxCurrentTCBs[ xCoreID ]->uxCoreAffinityMask ); } else { /* pxPreviousTCB's core affinity mask is changed and it is no longer * allowed to run on this core. Searching all the cores in pxPreviousTCB's * new core affinity mask to find a core on which it can run. */ } uxCoreMap &= ( ( 1U << configNUMBER_OF_CORES ) - 1U ); for( x = ( ( BaseType_t ) configNUMBER_OF_CORES - 1 ); x >= ( BaseType_t ) 0; x-- ) { UBaseType_t uxCore = ( UBaseType_t ) x; BaseType_t xTaskPriority; if( ( uxCoreMap & ( ( UBaseType_t ) 1U << uxCore ) ) != 0U ) { xTaskPriority = ( BaseType_t ) pxCurrentTCBs[ uxCore ]->uxPriority; if( ( pxCurrentTCBs[ uxCore ]->uxTaskAttributes & taskATTRIBUTE_IS_IDLE ) != 0U ) { xTaskPriority = xTaskPriority - ( BaseType_t ) 1; } uxCoreMap &= ~( ( UBaseType_t ) 1U << uxCore ); if( ( xTaskPriority < xLowestPriority ) && ( taskTASK_IS_RUNNING( pxCurrentTCBs[ uxCore ] ) != pdFALSE ) && ( xYieldPendings[ uxCore ] == pdFALSE ) ) { #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) if( pxCurrentTCBs[ uxCore ]->xPreemptionDisable == pdFALSE ) #endif { xLowestPriority = xTaskPriority; xLowestPriorityCore = ( BaseType_t ) uxCore; } } } } if( xLowestPriorityCore >= 0 ) { prvYieldCore( xLowestPriorityCore ); } } } } #endif /* #if ( configUSE_CORE_AFFINITY == 1 ) */ } #endif /* ( configNUMBER_OF_CORES > 1 ) */ /*-----------------------------------------------------------*/ #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) static TCB_t * prvCreateStaticTask( TaskFunction_t pxTaskCode, const char * const pcName, const uint32_t ulStackDepth, void * const pvParameters, UBaseType_t uxPriority, StackType_t * const puxStackBuffer, StaticTask_t * const pxTaskBuffer, TaskHandle_t * const pxCreatedTask ) { TCB_t * pxNewTCB; configASSERT( puxStackBuffer != NULL ); configASSERT( pxTaskBuffer != NULL ); #if ( configASSERT_DEFINED == 1 ) { /* Sanity check that the size of the structure used to declare a * variable of type StaticTask_t equals the size of the real task * structure. */ volatile size_t xSize = sizeof( StaticTask_t ); configASSERT( xSize == sizeof( TCB_t ) ); ( void ) xSize; /* Prevent unused variable warning when configASSERT() is not used. */ } #endif /* configASSERT_DEFINED */ if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) ) { /* The memory used for the task's TCB and stack are passed into this * function - use them. */ /* MISRA Ref 11.3.1 [Misaligned access] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */ /* coverity[misra_c_2012_rule_11_3_violation] */ pxNewTCB = ( TCB_t * ) pxTaskBuffer; ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) ); pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer; #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) { /* Tasks can be created statically or dynamically, so note this * task was created statically in case the task is later deleted. */ pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB; } #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */ prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL ); } else { pxNewTCB = NULL; } return pxNewTCB; } /*-----------------------------------------------------------*/ TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode, const char * const pcName, const uint32_t ulStackDepth, void * const pvParameters, UBaseType_t uxPriority, StackType_t * const puxStackBuffer, StaticTask_t * const pxTaskBuffer ) { TaskHandle_t xReturn = NULL; TCB_t * pxNewTCB; traceENTER_xTaskCreateStatic( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer ); pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn ); if( pxNewTCB != NULL ) { #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) { /* Set the task's affinity before scheduling it. */ pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY; } #endif prvAddNewTaskToReadyList( pxNewTCB ); } else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_xTaskCreateStatic( xReturn ); return xReturn; } /*-----------------------------------------------------------*/ #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) TaskHandle_t xTaskCreateStaticAffinitySet( TaskFunction_t pxTaskCode, const char * const pcName, const uint32_t ulStackDepth, void * const pvParameters, UBaseType_t uxPriority, StackType_t * const puxStackBuffer, StaticTask_t * const pxTaskBuffer, UBaseType_t uxCoreAffinityMask ) { TaskHandle_t xReturn = NULL; TCB_t * pxNewTCB; traceENTER_xTaskCreateStaticAffinitySet( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, uxCoreAffinityMask ); pxNewTCB = prvCreateStaticTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, &xReturn ); if( pxNewTCB != NULL ) { /* Set the task's affinity before scheduling it. */ pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask; prvAddNewTaskToReadyList( pxNewTCB ); } else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_xTaskCreateStaticAffinitySet( xReturn ); return xReturn; } #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */ #endif /* SUPPORT_STATIC_ALLOCATION */ /*-----------------------------------------------------------*/ #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) static TCB_t * prvCreateRestrictedStaticTask( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t * const pxCreatedTask ) { TCB_t * pxNewTCB; configASSERT( pxTaskDefinition->puxStackBuffer != NULL ); configASSERT( pxTaskDefinition->pxTaskBuffer != NULL ); if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) ) { /* Allocate space for the TCB. Where the memory comes from depends * on the implementation of the port malloc function and whether or * not static allocation is being used. */ pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer; ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) ); /* Store the stack location in the TCB. */ pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer; #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) { /* Tasks can be created statically or dynamically, so note this * task was created statically in case the task is later deleted. */ pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB; } #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */ prvInitialiseNewTask( pxTaskDefinition->pvTaskCode, pxTaskDefinition->pcName, ( uint32_t ) pxTaskDefinition->usStackDepth, pxTaskDefinition->pvParameters, pxTaskDefinition->uxPriority, pxCreatedTask, pxNewTCB, pxTaskDefinition->xRegions ); } else { pxNewTCB = NULL; } return pxNewTCB; } /*-----------------------------------------------------------*/ BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t * pxCreatedTask ) { TCB_t * pxNewTCB; BaseType_t xReturn; traceENTER_xTaskCreateRestrictedStatic( pxTaskDefinition, pxCreatedTask ); configASSERT( pxTaskDefinition != NULL ); pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask ); if( pxNewTCB != NULL ) { #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) { /* Set the task's affinity before scheduling it. */ pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY; } #endif prvAddNewTaskToReadyList( pxNewTCB ); xReturn = pdPASS; } else { xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; } traceRETURN_xTaskCreateRestrictedStatic( xReturn ); return xReturn; } /*-----------------------------------------------------------*/ #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) BaseType_t xTaskCreateRestrictedStaticAffinitySet( const TaskParameters_t * const pxTaskDefinition, UBaseType_t uxCoreAffinityMask, TaskHandle_t * pxCreatedTask ) { TCB_t * pxNewTCB; BaseType_t xReturn; traceENTER_xTaskCreateRestrictedStaticAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask ); configASSERT( pxTaskDefinition != NULL ); pxNewTCB = prvCreateRestrictedStaticTask( pxTaskDefinition, pxCreatedTask ); if( pxNewTCB != NULL ) { /* Set the task's affinity before scheduling it. */ pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask; prvAddNewTaskToReadyList( pxNewTCB ); xReturn = pdPASS; } else { xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; } traceRETURN_xTaskCreateRestrictedStaticAffinitySet( xReturn ); return xReturn; } #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */ #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */ /*-----------------------------------------------------------*/ #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) static TCB_t * prvCreateRestrictedTask( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t * const pxCreatedTask ) { TCB_t * pxNewTCB; configASSERT( pxTaskDefinition->puxStackBuffer ); if( pxTaskDefinition->puxStackBuffer != NULL ) { /* MISRA Ref 11.5.1 [Malloc memory assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); if( pxNewTCB != NULL ) { ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) ); /* Store the stack location in the TCB. */ pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer; #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) { /* Tasks can be created statically or dynamically, so note * this task had a statically allocated stack in case it is * later deleted. The TCB was allocated dynamically. */ pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY; } #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */ prvInitialiseNewTask( pxTaskDefinition->pvTaskCode, pxTaskDefinition->pcName, ( uint32_t ) pxTaskDefinition->usStackDepth, pxTaskDefinition->pvParameters, pxTaskDefinition->uxPriority, pxCreatedTask, pxNewTCB, pxTaskDefinition->xRegions ); } } else { pxNewTCB = NULL; } return pxNewTCB; } /*-----------------------------------------------------------*/ BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t * pxCreatedTask ) { TCB_t * pxNewTCB; BaseType_t xReturn; traceENTER_xTaskCreateRestricted( pxTaskDefinition, pxCreatedTask ); pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask ); if( pxNewTCB != NULL ) { #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) { /* Set the task's affinity before scheduling it. */ pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY; } #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */ prvAddNewTaskToReadyList( pxNewTCB ); xReturn = pdPASS; } else { xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; } traceRETURN_xTaskCreateRestricted( xReturn ); return xReturn; } /*-----------------------------------------------------------*/ #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) BaseType_t xTaskCreateRestrictedAffinitySet( const TaskParameters_t * const pxTaskDefinition, UBaseType_t uxCoreAffinityMask, TaskHandle_t * pxCreatedTask ) { TCB_t * pxNewTCB; BaseType_t xReturn; traceENTER_xTaskCreateRestrictedAffinitySet( pxTaskDefinition, uxCoreAffinityMask, pxCreatedTask ); pxNewTCB = prvCreateRestrictedTask( pxTaskDefinition, pxCreatedTask ); if( pxNewTCB != NULL ) { /* Set the task's affinity before scheduling it. */ pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask; prvAddNewTaskToReadyList( pxNewTCB ); xReturn = pdPASS; } else { xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; } traceRETURN_xTaskCreateRestrictedAffinitySet( xReturn ); return xReturn; } #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */ #endif /* portUSING_MPU_WRAPPERS */ /*-----------------------------------------------------------*/ #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) static TCB_t * prvCreateTask( TaskFunction_t pxTaskCode, const char * const pcName, const configSTACK_DEPTH_TYPE usStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask ) { TCB_t * pxNewTCB; /* If the stack grows down then allocate the stack then the TCB so the stack * does not grow into the TCB. Likewise if the stack grows up then allocate * the TCB then the stack. */ #if ( portSTACK_GROWTH > 0 ) { /* Allocate space for the TCB. Where the memory comes from depends on * the implementation of the port malloc function and whether or not static * allocation is being used. */ /* MISRA Ref 11.5.1 [Malloc memory assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); if( pxNewTCB != NULL ) { ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) ); /* Allocate space for the stack used by the task being created. * The base of the stack memory stored in the TCB so the task can * be deleted later if required. */ /* MISRA Ref 11.5.1 [Malloc memory assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); if( pxNewTCB->pxStack == NULL ) { /* Could not allocate the stack. Delete the allocated TCB. */ vPortFree( pxNewTCB ); pxNewTCB = NULL; } } } #else /* portSTACK_GROWTH */ { StackType_t * pxStack; /* Allocate space for the stack used by the task being created. */ /* MISRA Ref 11.5.1 [Malloc memory assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ pxStack = pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); if( pxStack != NULL ) { /* Allocate space for the TCB. */ /* MISRA Ref 11.5.1 [Malloc memory assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); if( pxNewTCB != NULL ) { ( void ) memset( ( void * ) pxNewTCB, 0x00, sizeof( TCB_t ) ); /* Store the stack location in the TCB. */ pxNewTCB->pxStack = pxStack; } else { /* The stack cannot be used as the TCB was not created. Free * it again. */ vPortFreeStack( pxStack ); } } else { pxNewTCB = NULL; } } #endif /* portSTACK_GROWTH */ if( pxNewTCB != NULL ) { #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) { /* Tasks can be created statically or dynamically, so note this * task was created dynamically in case it is later deleted. */ pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB; } #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */ prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL ); } return pxNewTCB; } /*-----------------------------------------------------------*/ BaseType_t xTaskCreate( TaskFunction_t pxTaskCode, const char * const pcName, const configSTACK_DEPTH_TYPE usStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask ) { TCB_t * pxNewTCB; BaseType_t xReturn; traceENTER_xTaskCreate( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask ); pxNewTCB = prvCreateTask( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask ); if( pxNewTCB != NULL ) { #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) { /* Set the task's affinity before scheduling it. */ pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY; } #endif prvAddNewTaskToReadyList( pxNewTCB ); xReturn = pdPASS; } else { xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; } traceRETURN_xTaskCreate( xReturn ); return xReturn; } /*-----------------------------------------------------------*/ #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) BaseType_t xTaskCreateAffinitySet( TaskFunction_t pxTaskCode, const char * const pcName, const configSTACK_DEPTH_TYPE usStackDepth, void * const pvParameters, UBaseType_t uxPriority, UBaseType_t uxCoreAffinityMask, TaskHandle_t * const pxCreatedTask ) { TCB_t * pxNewTCB; BaseType_t xReturn; traceENTER_xTaskCreateAffinitySet( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, uxCoreAffinityMask, pxCreatedTask ); pxNewTCB = prvCreateTask( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask ); if( pxNewTCB != NULL ) { /* Set the task's affinity before scheduling it. */ pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask; prvAddNewTaskToReadyList( pxNewTCB ); xReturn = pdPASS; } else { xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; } traceRETURN_xTaskCreateAffinitySet( xReturn ); return xReturn; } #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */ #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ /*-----------------------------------------------------------*/ static void prvInitialiseNewTask( TaskFunction_t pxTaskCode, const char * const pcName, const uint32_t ulStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask, TCB_t * pxNewTCB, const MemoryRegion_t * const xRegions ) { StackType_t * pxTopOfStack; UBaseType_t x; #if ( portUSING_MPU_WRAPPERS == 1 ) /* Should the task be created in privileged mode? */ BaseType_t xRunPrivileged; if( ( uxPriority & portPRIVILEGE_BIT ) != 0U ) { xRunPrivileged = pdTRUE; } else { xRunPrivileged = pdFALSE; } uxPriority &= ~portPRIVILEGE_BIT; #endif /* portUSING_MPU_WRAPPERS == 1 */ /* Avoid dependency on memset() if it is not required. */ #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 ) { /* Fill the stack with a known value to assist debugging. */ ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) ); } #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */ /* Calculate the top of stack address. This depends on whether the stack * grows from high memory to low (as per the 80x86) or vice versa. * portSTACK_GROWTH is used to make the result positive or negative as required * by the port. */ #if ( portSTACK_GROWTH < 0 ) { pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] ); pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /* Check the alignment of the calculated top of stack is correct. */ configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) ); #if ( configRECORD_STACK_HIGH_ADDRESS == 1 ) { /* Also record the stack's high address, which may assist * debugging. */ pxNewTCB->pxEndOfStack = pxTopOfStack; } #endif /* configRECORD_STACK_HIGH_ADDRESS */ } #else /* portSTACK_GROWTH */ { pxTopOfStack = pxNewTCB->pxStack; pxTopOfStack = ( StackType_t * ) ( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) + portBYTE_ALIGNMENT_MASK ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /* Check the alignment of the calculated top of stack is correct. */ configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) ); /* The other extreme of the stack space is required if stack checking is * performed. */ pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 ); } #endif /* portSTACK_GROWTH */ /* Store the task name in the TCB. */ if( pcName != NULL ) { for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ ) { pxNewTCB->pcTaskName[ x ] = pcName[ x ]; /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than * configMAX_TASK_NAME_LEN characters just in case the memory after the * string is not accessible (extremely unlikely). */ if( pcName[ x ] == ( char ) 0x00 ) { break; } else { mtCOVERAGE_TEST_MARKER(); } } /* Ensure the name string is terminated in the case that the string length * was greater or equal to configMAX_TASK_NAME_LEN. */ pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1U ] = '\0'; } else { mtCOVERAGE_TEST_MARKER(); } /* This is used as an array index so must ensure it's not too large. */ configASSERT( uxPriority < configMAX_PRIORITIES ); if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES ) { uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U; } else { mtCOVERAGE_TEST_MARKER(); } pxNewTCB->uxPriority = uxPriority; #if ( configUSE_MUTEXES == 1 ) { pxNewTCB->uxBasePriority = uxPriority; } #endif /* configUSE_MUTEXES */ vListInitialiseItem( &( pxNewTCB->xStateListItem ) ); vListInitialiseItem( &( pxNewTCB->xEventListItem ) ); /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get * back to the containing TCB from a generic item in a list. */ listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB ); /* Event lists are always in priority order. */ listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB ); #if ( portUSING_MPU_WRAPPERS == 1 ) { vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth ); } #else { /* Avoid compiler warning about unreferenced parameter. */ ( void ) xRegions; } #endif #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) { /* Allocate and initialize memory for the task's TLS Block. */ configINIT_TLS_BLOCK( pxNewTCB->xTLSBlock, pxTopOfStack ); } #endif /* Initialize the TCB stack to look as if the task was already running, * but had been interrupted by the scheduler. The return address is set * to the start of the task function. Once the stack has been initialised * the top of stack variable is updated. */ #if ( portUSING_MPU_WRAPPERS == 1 ) { /* If the port has capability to detect stack overflow, * pass the stack end address to the stack initialization * function as well. */ #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 ) { #if ( portSTACK_GROWTH < 0 ) { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) ); } #else /* portSTACK_GROWTH */ { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) ); } #endif /* portSTACK_GROWTH */ } #else /* portHAS_STACK_OVERFLOW_CHECKING */ { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged, &( pxNewTCB->xMPUSettings ) ); } #endif /* portHAS_STACK_OVERFLOW_CHECKING */ } #else /* portUSING_MPU_WRAPPERS */ { /* If the port has capability to detect stack overflow, * pass the stack end address to the stack initialization * function as well. */ #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 ) { #if ( portSTACK_GROWTH < 0 ) { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters ); } #else /* portSTACK_GROWTH */ { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters ); } #endif /* portSTACK_GROWTH */ } #else /* portHAS_STACK_OVERFLOW_CHECKING */ { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters ); } #endif /* portHAS_STACK_OVERFLOW_CHECKING */ } #endif /* portUSING_MPU_WRAPPERS */ /* Initialize task state and task attributes. */ #if ( configNUMBER_OF_CORES > 1 ) { pxNewTCB->xTaskRunState = taskTASK_NOT_RUNNING; /* Is this an idle task? */ if( ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvIdleTask ) || ( ( TaskFunction_t ) pxTaskCode == ( TaskFunction_t ) prvPassiveIdleTask ) ) { pxNewTCB->uxTaskAttributes |= taskATTRIBUTE_IS_IDLE; } } #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ if( pxCreatedTask != NULL ) { /* Pass the handle out in an anonymous way. The handle can be used to * change the created task's priority, delete the created task, etc.*/ *pxCreatedTask = ( TaskHandle_t ) pxNewTCB; } else { mtCOVERAGE_TEST_MARKER(); } } /*-----------------------------------------------------------*/ #if ( configNUMBER_OF_CORES == 1 ) static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) { /* Ensure interrupts don't access the task lists while the lists are being * updated. */ taskENTER_CRITICAL(); { uxCurrentNumberOfTasks++; if( pxCurrentTCB == NULL ) { /* There are no other tasks, or all the other tasks are in * the suspended state - make this the current task. */ pxCurrentTCB = pxNewTCB; if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 ) { /* This is the first task to be created so do the preliminary * initialisation required. We will not recover if this call * fails, but we will report the failure. */ prvInitialiseTaskLists(); } else { mtCOVERAGE_TEST_MARKER(); } } else { /* If the scheduler is not already running, make this task the * current task if it is the highest priority task to be created * so far. */ if( xSchedulerRunning == pdFALSE ) { if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority ) { pxCurrentTCB = pxNewTCB; } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } uxTaskNumber++; #if ( configUSE_TRACE_FACILITY == 1 ) { /* Add a counter into the TCB for tracing only. */ pxNewTCB->uxTCBNumber = uxTaskNumber; } #endif /* configUSE_TRACE_FACILITY */ traceTASK_CREATE( pxNewTCB ); prvAddTaskToReadyList( pxNewTCB ); portSETUP_TCB( pxNewTCB ); } taskEXIT_CRITICAL(); if( xSchedulerRunning != pdFALSE ) { /* If the created task is of a higher priority than the current task * then it should run now. */ taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB ); } else { mtCOVERAGE_TEST_MARKER(); } } #else /* #if ( configNUMBER_OF_CORES == 1 ) */ static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) { /* Ensure interrupts don't access the task lists while the lists are being * updated. */ taskENTER_CRITICAL(); { uxCurrentNumberOfTasks++; if( xSchedulerRunning == pdFALSE ) { if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 ) { /* This is the first task to be created so do the preliminary * initialisation required. We will not recover if this call * fails, but we will report the failure. */ prvInitialiseTaskLists(); } else { mtCOVERAGE_TEST_MARKER(); } /* All the cores start with idle tasks before the SMP scheduler * is running. Idle tasks are assigned to cores when they are * created in prvCreateIdleTasks(). */ } uxTaskNumber++; #if ( configUSE_TRACE_FACILITY == 1 ) { /* Add a counter into the TCB for tracing only. */ pxNewTCB->uxTCBNumber = uxTaskNumber; } #endif /* configUSE_TRACE_FACILITY */ traceTASK_CREATE( pxNewTCB ); prvAddTaskToReadyList( pxNewTCB ); portSETUP_TCB( pxNewTCB ); if( xSchedulerRunning != pdFALSE ) { /* If the created task is of a higher priority than another * currently running task and preemption is on then it should * run now. */ taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxNewTCB ); } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL(); } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ /*-----------------------------------------------------------*/ #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) static size_t prvSnprintfReturnValueToCharsWritten( int iSnprintfReturnValue, size_t n ) { size_t uxCharsWritten; if( iSnprintfReturnValue < 0 ) { /* Encoding error - Return 0 to indicate that nothing * was written to the buffer. */ uxCharsWritten = 0; } else if( iSnprintfReturnValue >= ( int ) n ) { /* This is the case when the supplied buffer is not * large to hold the generated string. Return the * number of characters actually written without * counting the terminating NULL character. */ uxCharsWritten = n - 1U; } else { /* Complete string was written to the buffer. */ uxCharsWritten = ( size_t ) iSnprintfReturnValue; } return uxCharsWritten; } #endif /* #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskDelete == 1 ) void vTaskDelete( TaskHandle_t xTaskToDelete ) { TCB_t * pxTCB; BaseType_t xDeleteTCBInIdleTask = pdFALSE; traceENTER_vTaskDelete( xTaskToDelete ); taskENTER_CRITICAL(); { /* If null is passed in here then it is the calling task that is * being deleted. */ pxTCB = prvGetTCBFromHandle( xTaskToDelete ); /* Remove task from the ready/delayed list. */ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { taskRESET_READY_PRIORITY( pxTCB->uxPriority ); } else { mtCOVERAGE_TEST_MARKER(); } /* Is the task waiting on an event also? */ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) { ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); } else { mtCOVERAGE_TEST_MARKER(); } /* Increment the uxTaskNumber also so kernel aware debuggers can * detect that the task lists need re-generating. This is done before * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will * not return. */ uxTaskNumber++; /* If the task is running (or yielding), we must add it to the * termination list so that an idle task can delete it when it is * no longer running. */ if( taskTASK_IS_RUNNING_OR_SCHEDULED_TO_YIELD( pxTCB ) != pdFALSE ) { /* A running task or a task which is scheduled to yield is being * deleted. This cannot complete when the task is still running * on a core, as a context switch to another task is required. * Place the task in the termination list. The idle task will check * the termination list and free up any memory allocated by the * scheduler for the TCB and stack of the deleted task. */ vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) ); /* Increment the ucTasksDeleted variable so the idle task knows * there is a task that has been deleted and that it should therefore * check the xTasksWaitingTermination list. */ ++uxDeletedTasksWaitingCleanUp; /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */ traceTASK_DELETE( pxTCB ); /* Delete the task TCB in idle task. */ xDeleteTCBInIdleTask = pdTRUE; /* The pre-delete hook is primarily for the Windows simulator, * in which Windows specific clean up operations are performed, * after which it is not possible to yield away from this task - * hence xYieldPending is used to latch that a context switch is * required. */ #if ( configNUMBER_OF_CORES == 1 ) portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ 0 ] ) ); #else portPRE_TASK_DELETE_HOOK( pxTCB, &( xYieldPendings[ pxTCB->xTaskRunState ] ) ); #endif } else { --uxCurrentNumberOfTasks; traceTASK_DELETE( pxTCB ); /* Reset the next expected unblock time in case it referred to * the task that has just been deleted. */ prvResetNextTaskUnblockTime(); } } taskEXIT_CRITICAL(); /* If the task is not deleting itself, call prvDeleteTCB from outside of * critical section. If a task deletes itself, prvDeleteTCB is called * from prvCheckTasksWaitingTermination which is called from Idle task. */ if( xDeleteTCBInIdleTask != pdTRUE ) { prvDeleteTCB( pxTCB ); } /* Force a reschedule if it is the currently running task that has just * been deleted. */ if( xSchedulerRunning != pdFALSE ) { #if ( configNUMBER_OF_CORES == 1 ) { if( pxTCB == pxCurrentTCB ) { configASSERT( uxSchedulerSuspended == 0 ); taskYIELD_WITHIN_API(); } else { mtCOVERAGE_TEST_MARKER(); } } #else /* #if ( configNUMBER_OF_CORES == 1 ) */ { /* It is important to use critical section here because * checking run state of a task must be done inside a * critical section. */ taskENTER_CRITICAL(); { if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) { if( pxTCB->xTaskRunState == ( BaseType_t ) portGET_CORE_ID() ) { configASSERT( uxSchedulerSuspended == 0 ); taskYIELD_WITHIN_API(); } else { prvYieldCore( pxTCB->xTaskRunState ); } } } taskEXIT_CRITICAL(); } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ } traceRETURN_vTaskDelete(); } #endif /* INCLUDE_vTaskDelete */ /*-----------------------------------------------------------*/ #if ( INCLUDE_xTaskDelayUntil == 1 ) BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement ) { TickType_t xTimeToWake; BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE; traceENTER_xTaskDelayUntil( pxPreviousWakeTime, xTimeIncrement ); configASSERT( pxPreviousWakeTime ); configASSERT( ( xTimeIncrement > 0U ) ); vTaskSuspendAll(); { /* Minor optimisation. The tick count cannot change in this * block. */ const TickType_t xConstTickCount = xTickCount; configASSERT( uxSchedulerSuspended == 1U ); /* Generate the tick time at which the task wants to wake. */ xTimeToWake = *pxPreviousWakeTime + xTimeIncrement; if( xConstTickCount < *pxPreviousWakeTime ) { /* The tick count has overflowed since this function was * lasted called. In this case the only time we should ever * actually delay is if the wake time has also overflowed, * and the wake time is greater than the tick time. When this * is the case it is as if neither time had overflowed. */ if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) ) { xShouldDelay = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } else { /* The tick time has not overflowed. In this case we will * delay if either the wake time has overflowed, and/or the * tick time is less than the wake time. */ if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) ) { xShouldDelay = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } /* Update the wake time ready for the next call. */ *pxPreviousWakeTime = xTimeToWake; if( xShouldDelay != pdFALSE ) { traceTASK_DELAY_UNTIL( xTimeToWake ); /* prvAddCurrentTaskToDelayedList() needs the block time, not * the time to wake, so subtract the current tick count. */ prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE ); } else { mtCOVERAGE_TEST_MARKER(); } } xAlreadyYielded = xTaskResumeAll(); /* Force a reschedule if xTaskResumeAll has not already done so, we may * have put ourselves to sleep. */ if( xAlreadyYielded == pdFALSE ) { taskYIELD_WITHIN_API(); } else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_xTaskDelayUntil( xShouldDelay ); return xShouldDelay; } #endif /* INCLUDE_xTaskDelayUntil */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskDelay == 1 ) void vTaskDelay( const TickType_t xTicksToDelay ) { BaseType_t xAlreadyYielded = pdFALSE; traceENTER_vTaskDelay( xTicksToDelay ); /* A delay time of zero just forces a reschedule. */ if( xTicksToDelay > ( TickType_t ) 0U ) { vTaskSuspendAll(); { configASSERT( uxSchedulerSuspended == 1U ); traceTASK_DELAY(); /* A task that is removed from the event list while the * scheduler is suspended will not get placed in the ready * list or removed from the blocked list until the scheduler * is resumed. * * This task cannot be in an event list as it is the currently * executing task. */ prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE ); } xAlreadyYielded = xTaskResumeAll(); } else { mtCOVERAGE_TEST_MARKER(); } /* Force a reschedule if xTaskResumeAll has not already done so, we may * have put ourselves to sleep. */ if( xAlreadyYielded == pdFALSE ) { taskYIELD_WITHIN_API(); } else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_vTaskDelay(); } #endif /* INCLUDE_vTaskDelay */ /*-----------------------------------------------------------*/ #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) ) eTaskState eTaskGetState( TaskHandle_t xTask ) { eTaskState eReturn; List_t const * pxStateList; List_t const * pxEventList; List_t const * pxDelayedList; List_t const * pxOverflowedDelayedList; const TCB_t * const pxTCB = xTask; traceENTER_eTaskGetState( xTask ); configASSERT( pxTCB ); #if ( configNUMBER_OF_CORES == 1 ) if( pxTCB == pxCurrentTCB ) { /* The task calling this function is querying its own state. */ eReturn = eRunning; } else #endif { taskENTER_CRITICAL(); { pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) ); pxEventList = listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ); pxDelayedList = pxDelayedTaskList; pxOverflowedDelayedList = pxOverflowDelayedTaskList; } taskEXIT_CRITICAL(); if( pxEventList == &xPendingReadyList ) { /* The task has been placed on the pending ready list, so its * state is eReady regardless of what list the task's state list * item is currently placed on. */ eReturn = eReady; } else if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) ) { /* The task being queried is referenced from one of the Blocked * lists. */ eReturn = eBlocked; } #if ( INCLUDE_vTaskSuspend == 1 ) else if( pxStateList == &xSuspendedTaskList ) { /* The task being queried is referenced from the suspended * list. Is it genuinely suspended or is it blocked * indefinitely? */ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ) { #if ( configUSE_TASK_NOTIFICATIONS == 1 ) { BaseType_t x; /* The task does not appear on the event list item of * and of the RTOS objects, but could still be in the * blocked state if it is waiting on its notification * rather than waiting on an object. If not, is * suspended. */ eReturn = eSuspended; for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ ) { if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION ) { eReturn = eBlocked; break; } } } #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */ { eReturn = eSuspended; } #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */ } else { eReturn = eBlocked; } } #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */ #if ( INCLUDE_vTaskDelete == 1 ) else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) ) { /* The task being queried is referenced from the deleted * tasks list, or it is not referenced from any lists at * all. */ eReturn = eDeleted; } #endif else { #if ( configNUMBER_OF_CORES == 1 ) { /* If the task is not in any other state, it must be in the * Ready (including pending ready) state. */ eReturn = eReady; } #else /* #if ( configNUMBER_OF_CORES == 1 ) */ { if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) { /* Is it actively running on a core? */ eReturn = eRunning; } else { /* If the task is not in any other state, it must be in the * Ready (including pending ready) state. */ eReturn = eReady; } } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ } } traceRETURN_eTaskGetState( eReturn ); return eReturn; } #endif /* INCLUDE_eTaskGetState */ /*-----------------------------------------------------------*/ #if ( INCLUDE_uxTaskPriorityGet == 1 ) UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask ) { TCB_t const * pxTCB; UBaseType_t uxReturn; traceENTER_uxTaskPriorityGet( xTask ); taskENTER_CRITICAL(); { /* If null is passed in here then it is the priority of the task * that called uxTaskPriorityGet() that is being queried. */ pxTCB = prvGetTCBFromHandle( xTask ); uxReturn = pxTCB->uxPriority; } taskEXIT_CRITICAL(); traceRETURN_uxTaskPriorityGet( uxReturn ); return uxReturn; } #endif /* INCLUDE_uxTaskPriorityGet */ /*-----------------------------------------------------------*/ #if ( INCLUDE_uxTaskPriorityGet == 1 ) UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask ) { TCB_t const * pxTCB; UBaseType_t uxReturn; UBaseType_t uxSavedInterruptStatus; traceENTER_uxTaskPriorityGetFromISR( xTask ); /* RTOS ports that support interrupt nesting have the concept of a * maximum system call (or maximum API call) interrupt priority. * Interrupts that are above the maximum system call priority are keep * permanently enabled, even when the RTOS kernel is in a critical section, * but cannot make any calls to FreeRTOS API functions. If configASSERT() * is defined in FreeRTOSConfig.h then * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion * failure if a FreeRTOS API function is called from an interrupt that has * been assigned a priority above the configured maximum system call * priority. Only FreeRTOS functions that end in FromISR can be called * from interrupts that have been assigned a priority at or (logically) * below the maximum system call interrupt priority. FreeRTOS maintains a * separate interrupt safe API to ensure interrupt entry is as fast and as * simple as possible. More information (albeit Cortex-M specific) is * provided on the following link: * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR(); { /* If null is passed in here then it is the priority of the calling * task that is being queried. */ pxTCB = prvGetTCBFromHandle( xTask ); uxReturn = pxTCB->uxPriority; } taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus ); traceRETURN_uxTaskPriorityGetFromISR( uxReturn ); return uxReturn; } #endif /* INCLUDE_uxTaskPriorityGet */ /*-----------------------------------------------------------*/ #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) UBaseType_t uxTaskBasePriorityGet( const TaskHandle_t xTask ) { TCB_t const * pxTCB; UBaseType_t uxReturn; traceENTER_uxTaskBasePriorityGet( xTask ); taskENTER_CRITICAL(); { /* If null is passed in here then it is the base priority of the task * that called uxTaskBasePriorityGet() that is being queried. */ pxTCB = prvGetTCBFromHandle( xTask ); uxReturn = pxTCB->uxBasePriority; } taskEXIT_CRITICAL(); traceRETURN_uxTaskBasePriorityGet( uxReturn ); return uxReturn; } #endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) UBaseType_t uxTaskBasePriorityGetFromISR( const TaskHandle_t xTask ) { TCB_t const * pxTCB; UBaseType_t uxReturn; UBaseType_t uxSavedInterruptStatus; traceENTER_uxTaskBasePriorityGetFromISR( xTask ); /* RTOS ports that support interrupt nesting have the concept of a * maximum system call (or maximum API call) interrupt priority. * Interrupts that are above the maximum system call priority are keep * permanently enabled, even when the RTOS kernel is in a critical section, * but cannot make any calls to FreeRTOS API functions. If configASSERT() * is defined in FreeRTOSConfig.h then * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion * failure if a FreeRTOS API function is called from an interrupt that has * been assigned a priority above the configured maximum system call * priority. Only FreeRTOS functions that end in FromISR can be called * from interrupts that have been assigned a priority at or (logically) * below the maximum system call interrupt priority. FreeRTOS maintains a * separate interrupt safe API to ensure interrupt entry is as fast and as * simple as possible. More information (albeit Cortex-M specific) is * provided on the following link: * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR(); { /* If null is passed in here then it is the base priority of the calling * task that is being queried. */ pxTCB = prvGetTCBFromHandle( xTask ); uxReturn = pxTCB->uxBasePriority; } taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus ); traceRETURN_uxTaskBasePriorityGetFromISR( uxReturn ); return uxReturn; } #endif /* #if ( ( INCLUDE_uxTaskPriorityGet == 1 ) && ( configUSE_MUTEXES == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskPrioritySet == 1 ) void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority ) { TCB_t * pxTCB; UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry; BaseType_t xYieldRequired = pdFALSE; #if ( configNUMBER_OF_CORES > 1 ) BaseType_t xYieldForTask = pdFALSE; #endif traceENTER_vTaskPrioritySet( xTask, uxNewPriority ); configASSERT( uxNewPriority < configMAX_PRIORITIES ); /* Ensure the new priority is valid. */ if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES ) { uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U; } else { mtCOVERAGE_TEST_MARKER(); } taskENTER_CRITICAL(); { /* If null is passed in here then it is the priority of the calling * task that is being changed. */ pxTCB = prvGetTCBFromHandle( xTask ); traceTASK_PRIORITY_SET( pxTCB, uxNewPriority ); #if ( configUSE_MUTEXES == 1 ) { uxCurrentBasePriority = pxTCB->uxBasePriority; } #else { uxCurrentBasePriority = pxTCB->uxPriority; } #endif if( uxCurrentBasePriority != uxNewPriority ) { /* The priority change may have readied a task of higher * priority than a running task. */ if( uxNewPriority > uxCurrentBasePriority ) { #if ( configNUMBER_OF_CORES == 1 ) { if( pxTCB != pxCurrentTCB ) { /* The priority of a task other than the currently * running task is being raised. Is the priority being * raised above that of the running task? */ if( uxNewPriority > pxCurrentTCB->uxPriority ) { xYieldRequired = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } else { /* The priority of the running task is being raised, * but the running task must already be the highest * priority task able to run so no yield is required. */ } } #else /* #if ( configNUMBER_OF_CORES == 1 ) */ { /* The priority of a task is being raised so * perform a yield for this task later. */ xYieldForTask = pdTRUE; } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ } else if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) { /* Setting the priority of a running task down means * there may now be another task of higher priority that * is ready to execute. */ #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) if( pxTCB->xPreemptionDisable == pdFALSE ) #endif { xYieldRequired = pdTRUE; } } else { /* Setting the priority of any other task down does not * require a yield as the running task must be above the * new priority of the task being modified. */ } /* Remember the ready list the task might be referenced from * before its uxPriority member is changed so the * taskRESET_READY_PRIORITY() macro can function correctly. */ uxPriorityUsedOnEntry = pxTCB->uxPriority; #if ( configUSE_MUTEXES == 1 ) { /* Only change the priority being used if the task is not * currently using an inherited priority or the new priority * is bigger than the inherited priority. */ if( ( pxTCB->uxBasePriority == pxTCB->uxPriority ) || ( uxNewPriority > pxTCB->uxPriority ) ) { pxTCB->uxPriority = uxNewPriority; } else { mtCOVERAGE_TEST_MARKER(); } /* The base priority gets set whatever. */ pxTCB->uxBasePriority = uxNewPriority; } #else /* if ( configUSE_MUTEXES == 1 ) */ { pxTCB->uxPriority = uxNewPriority; } #endif /* if ( configUSE_MUTEXES == 1 ) */ /* Only reset the event list item value if the value is not * being used for anything else. */ if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0UL ) ) { listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); } else { mtCOVERAGE_TEST_MARKER(); } /* If the task is in the blocked or suspended list we need do * nothing more than change its priority variable. However, if * the task is in a ready list it needs to be removed and placed * in the list appropriate to its new priority. */ if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE ) { /* The task is currently in its ready list - remove before * adding it to its new ready list. As we are in a critical * section we can do this even if the scheduler is suspended. */ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { /* It is known that the task is in its ready list so * there is no need to check again and the port level * reset macro can be called directly. */ portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority ); } else { mtCOVERAGE_TEST_MARKER(); } prvAddTaskToReadyList( pxTCB ); } else { #if ( configNUMBER_OF_CORES == 1 ) { mtCOVERAGE_TEST_MARKER(); } #else { /* It's possible that xYieldForTask was already set to pdTRUE because * its priority is being raised. However, since it is not in a ready list * we don't actually need to yield for it. */ xYieldForTask = pdFALSE; } #endif } if( xYieldRequired != pdFALSE ) { /* The running task priority is set down. Request the task to yield. */ taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxTCB ); } else { #if ( configNUMBER_OF_CORES > 1 ) if( xYieldForTask != pdFALSE ) { /* The priority of the task is being raised. If a running * task has priority lower than this task, it should yield * for this task. */ taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ); } else #endif /* if ( configNUMBER_OF_CORES > 1 ) */ { mtCOVERAGE_TEST_MARKER(); } } /* Remove compiler warning about unused variables when the port * optimised task selection is not being used. */ ( void ) uxPriorityUsedOnEntry; } } taskEXIT_CRITICAL(); traceRETURN_vTaskPrioritySet(); } #endif /* INCLUDE_vTaskPrioritySet */ /*-----------------------------------------------------------*/ #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) void vTaskCoreAffinitySet( const TaskHandle_t xTask, UBaseType_t uxCoreAffinityMask ) { TCB_t * pxTCB; BaseType_t xCoreID; UBaseType_t uxPrevCoreAffinityMask; #if ( configUSE_PREEMPTION == 1 ) UBaseType_t uxPrevNotAllowedCores; #endif traceENTER_vTaskCoreAffinitySet( xTask, uxCoreAffinityMask ); taskENTER_CRITICAL(); { pxTCB = prvGetTCBFromHandle( xTask ); uxPrevCoreAffinityMask = pxTCB->uxCoreAffinityMask; pxTCB->uxCoreAffinityMask = uxCoreAffinityMask; if( xSchedulerRunning != pdFALSE ) { if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) { xCoreID = ( BaseType_t ) pxTCB->xTaskRunState; /* If the task can no longer run on the core it was running, * request the core to yield. */ if( ( uxCoreAffinityMask & ( ( UBaseType_t ) 1U << ( UBaseType_t ) xCoreID ) ) == 0U ) { prvYieldCore( xCoreID ); } } else { #if ( configUSE_PREEMPTION == 1 ) { /* Calculate the cores on which this task was not allowed to * run previously. */ uxPrevNotAllowedCores = ( ~uxPrevCoreAffinityMask ) & ( ( 1U << configNUMBER_OF_CORES ) - 1U ); /* Does the new core mask enables this task to run on any of the * previously not allowed cores? If yes, check if this task can be * scheduled on any of those cores. */ if( ( uxPrevNotAllowedCores & uxCoreAffinityMask ) != 0U ) { prvYieldForTask( pxTCB ); } } #else /* #if( configUSE_PREEMPTION == 1 ) */ { mtCOVERAGE_TEST_MARKER(); } #endif /* #if( configUSE_PREEMPTION == 1 ) */ } } } taskEXIT_CRITICAL(); traceRETURN_vTaskCoreAffinitySet(); } #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) UBaseType_t vTaskCoreAffinityGet( ConstTaskHandle_t xTask ) { const TCB_t * pxTCB; UBaseType_t uxCoreAffinityMask; traceENTER_vTaskCoreAffinityGet( xTask ); taskENTER_CRITICAL(); { pxTCB = prvGetTCBFromHandle( xTask ); uxCoreAffinityMask = pxTCB->uxCoreAffinityMask; } taskEXIT_CRITICAL(); traceRETURN_vTaskCoreAffinityGet( uxCoreAffinityMask ); return uxCoreAffinityMask; } #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) void vTaskPreemptionDisable( const TaskHandle_t xTask ) { TCB_t * pxTCB; traceENTER_vTaskPreemptionDisable( xTask ); taskENTER_CRITICAL(); { pxTCB = prvGetTCBFromHandle( xTask ); pxTCB->xPreemptionDisable = pdTRUE; } taskEXIT_CRITICAL(); traceRETURN_vTaskPreemptionDisable(); } #endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) void vTaskPreemptionEnable( const TaskHandle_t xTask ) { TCB_t * pxTCB; BaseType_t xCoreID; traceENTER_vTaskPreemptionEnable( xTask ); taskENTER_CRITICAL(); { pxTCB = prvGetTCBFromHandle( xTask ); pxTCB->xPreemptionDisable = pdFALSE; if( xSchedulerRunning != pdFALSE ) { if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) { xCoreID = ( BaseType_t ) pxTCB->xTaskRunState; prvYieldCore( xCoreID ); } } } taskEXIT_CRITICAL(); traceRETURN_vTaskPreemptionEnable(); } #endif /* #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskSuspend == 1 ) void vTaskSuspend( TaskHandle_t xTaskToSuspend ) { TCB_t * pxTCB; traceENTER_vTaskSuspend( xTaskToSuspend ); taskENTER_CRITICAL(); { /* If null is passed in here then it is the running task that is * being suspended. */ pxTCB = prvGetTCBFromHandle( xTaskToSuspend ); traceTASK_SUSPEND( pxTCB ); /* Remove task from the ready/delayed list and place in the * suspended list. */ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { taskRESET_READY_PRIORITY( pxTCB->uxPriority ); } else { mtCOVERAGE_TEST_MARKER(); } /* Is the task waiting on an event also? */ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) { ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); } else { mtCOVERAGE_TEST_MARKER(); } vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ); #if ( configUSE_TASK_NOTIFICATIONS == 1 ) { BaseType_t x; for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ ) { if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION ) { /* The task was blocked to wait for a notification, but is * now suspended, so no notification was received. */ pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION; } } } #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */ } taskEXIT_CRITICAL(); if( xSchedulerRunning != pdFALSE ) { /* Reset the next expected unblock time in case it referred to the * task that is now in the Suspended state. */ taskENTER_CRITICAL(); { prvResetNextTaskUnblockTime(); } taskEXIT_CRITICAL(); } else { mtCOVERAGE_TEST_MARKER(); } #if ( configNUMBER_OF_CORES == 1 ) { if( pxTCB == pxCurrentTCB ) { if( xSchedulerRunning != pdFALSE ) { /* The current task has just been suspended. */ configASSERT( uxSchedulerSuspended == 0 ); portYIELD_WITHIN_API(); } else { /* The scheduler is not running, but the task that was pointed * to by pxCurrentTCB has just been suspended and pxCurrentTCB * must be adjusted to point to a different task. */ if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) { /* No other tasks are ready, so set pxCurrentTCB back to * NULL so when the next task is created pxCurrentTCB will * be set to point to it no matter what its relative priority * is. */ pxCurrentTCB = NULL; } else { vTaskSwitchContext(); } } } else { mtCOVERAGE_TEST_MARKER(); } } #else /* #if ( configNUMBER_OF_CORES == 1 ) */ { /* Enter critical section here to check run state of a task. */ taskENTER_CRITICAL(); { if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) { if( xSchedulerRunning != pdFALSE ) { if( pxTCB->xTaskRunState == ( BaseType_t ) portGET_CORE_ID() ) { /* The current task has just been suspended. */ configASSERT( uxSchedulerSuspended == 0 ); vTaskYieldWithinAPI(); } else { prvYieldCore( pxTCB->xTaskRunState ); } } else { /* This code path is not possible because only Idle tasks are * assigned a core before the scheduler is started ( i.e. * taskTASK_IS_RUNNING is only true for idle tasks before * the scheduler is started ) and idle tasks cannot be * suspended. */ mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL(); } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ traceRETURN_vTaskSuspend(); } #endif /* INCLUDE_vTaskSuspend */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskSuspend == 1 ) static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) { BaseType_t xReturn = pdFALSE; const TCB_t * const pxTCB = xTask; /* Accesses xPendingReadyList so must be called from a critical * section. */ /* It does not make sense to check if the calling task is suspended. */ configASSERT( xTask ); /* Is the task being resumed actually in the suspended list? */ if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE ) { /* Has the task already been resumed from within an ISR? */ if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE ) { /* Is it in the suspended list because it is in the Suspended * state, or because it is blocked with no timeout? */ if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) { #if ( configUSE_TASK_NOTIFICATIONS == 1 ) { BaseType_t x; /* The task does not appear on the event list item of * and of the RTOS objects, but could still be in the * blocked state if it is waiting on its notification * rather than waiting on an object. If not, is * suspended. */ xReturn = pdTRUE; for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ ) { if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION ) { xReturn = pdFALSE; break; } } } #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */ { xReturn = pdTRUE; } #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */ } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } return xReturn; } #endif /* INCLUDE_vTaskSuspend */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskSuspend == 1 ) void vTaskResume( TaskHandle_t xTaskToResume ) { TCB_t * const pxTCB = xTaskToResume; traceENTER_vTaskResume( xTaskToResume ); /* It does not make sense to resume the calling task. */ configASSERT( xTaskToResume ); #if ( configNUMBER_OF_CORES == 1 ) /* The parameter cannot be NULL as it is impossible to resume the * currently executing task. */ if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) ) #else /* The parameter cannot be NULL as it is impossible to resume the * currently executing task. It is also impossible to resume a task * that is actively running on another core but it is not safe * to check their run state here. Therefore, we get into a critical * section and check if the task is actually suspended or not. */ if( pxTCB != NULL ) #endif { taskENTER_CRITICAL(); { if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE ) { traceTASK_RESUME( pxTCB ); /* The ready list can be accessed even if the scheduler is * suspended because this is inside a critical section. */ ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); /* This yield may not cause the task just resumed to run, * but will leave the lists in the correct state for the * next yield. */ taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ); } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL(); } else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_vTaskResume(); } #endif /* INCLUDE_vTaskSuspend */ /*-----------------------------------------------------------*/ #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume ) { BaseType_t xYieldRequired = pdFALSE; TCB_t * const pxTCB = xTaskToResume; UBaseType_t uxSavedInterruptStatus; traceENTER_xTaskResumeFromISR( xTaskToResume ); configASSERT( xTaskToResume ); /* RTOS ports that support interrupt nesting have the concept of a * maximum system call (or maximum API call) interrupt priority. * Interrupts that are above the maximum system call priority are keep * permanently enabled, even when the RTOS kernel is in a critical section, * but cannot make any calls to FreeRTOS API functions. If configASSERT() * is defined in FreeRTOSConfig.h then * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion * failure if a FreeRTOS API function is called from an interrupt that has * been assigned a priority above the configured maximum system call * priority. Only FreeRTOS functions that end in FromISR can be called * from interrupts that have been assigned a priority at or (logically) * below the maximum system call interrupt priority. FreeRTOS maintains a * separate interrupt safe API to ensure interrupt entry is as fast and as * simple as possible. More information (albeit Cortex-M specific) is * provided on the following link: * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR(); { if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE ) { traceTASK_RESUME_FROM_ISR( pxTCB ); /* Check the ready lists can be accessed. */ if( uxSchedulerSuspended == ( UBaseType_t ) 0U ) { #if ( configNUMBER_OF_CORES == 1 ) { /* Ready lists can be accessed so move the task from the * suspended list to the ready list directly. */ if( pxTCB->uxPriority > pxCurrentTCB->uxPriority ) { xYieldRequired = pdTRUE; /* Mark that a yield is pending in case the user is not * using the return value to initiate a context switch * from the ISR using the port specific portYIELD_FROM_ISR(). */ xYieldPendings[ 0 ] = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); } else { /* The delayed or ready lists cannot be accessed so the task * is held in the pending ready list until the scheduler is * unsuspended. */ vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) ); } #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) ) { prvYieldForTask( pxTCB ); if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE ) { xYieldRequired = pdTRUE; } } #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PREEMPTION == 1 ) ) */ } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus ); traceRETURN_xTaskResumeFromISR( xYieldRequired ); return xYieldRequired; } #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */ /*-----------------------------------------------------------*/ static BaseType_t prvCreateIdleTasks( void ) { BaseType_t xReturn = pdPASS; BaseType_t xCoreID; char cIdleName[ configMAX_TASK_NAME_LEN ]; TaskFunction_t pxIdleTaskFunction = NULL; BaseType_t xIdleTaskNameIndex; for( xIdleTaskNameIndex = ( BaseType_t ) 0; xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN; xIdleTaskNameIndex++ ) { cIdleName[ xIdleTaskNameIndex ] = configIDLE_TASK_NAME[ xIdleTaskNameIndex ]; /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than * configMAX_TASK_NAME_LEN characters just in case the memory after the * string is not accessible (extremely unlikely). */ if( cIdleName[ xIdleTaskNameIndex ] == ( char ) 0x00 ) { break; } else { mtCOVERAGE_TEST_MARKER(); } } /* Add each idle task at the lowest priority. */ for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ ) { #if ( configNUMBER_OF_CORES == 1 ) { pxIdleTaskFunction = prvIdleTask; } #else /* #if ( configNUMBER_OF_CORES == 1 ) */ { /* In the FreeRTOS SMP, configNUMBER_OF_CORES - 1 passive idle tasks * are also created to ensure that each core has an idle task to * run when no other task is available to run. */ if( xCoreID == 0 ) { pxIdleTaskFunction = prvIdleTask; } else { pxIdleTaskFunction = prvPassiveIdleTask; } } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ /* Update the idle task name with suffix to differentiate the idle tasks. * This function is not required in single core FreeRTOS since there is * only one idle task. */ #if ( configNUMBER_OF_CORES > 1 ) { /* Append the idle task number to the end of the name if there is space. */ if( xIdleTaskNameIndex < ( BaseType_t ) configMAX_TASK_NAME_LEN ) { cIdleName[ xIdleTaskNameIndex ] = ( char ) ( xCoreID + '0' ); /* And append a null character if there is space. */ if( ( xIdleTaskNameIndex + 1 ) < ( BaseType_t ) configMAX_TASK_NAME_LEN ) { cIdleName[ xIdleTaskNameIndex + 1 ] = '\0'; } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* if ( configNUMBER_OF_CORES > 1 ) */ #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) { StaticTask_t * pxIdleTaskTCBBuffer = NULL; StackType_t * pxIdleTaskStackBuffer = NULL; uint32_t ulIdleTaskStackSize; /* The Idle task is created using user provided RAM - obtain the * address of the RAM then create the idle task. */ #if ( configNUMBER_OF_CORES == 1 ) { vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize ); } #else { if( xCoreID == 0 ) { vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize ); } else { vApplicationGetPassiveIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize, xCoreID - 1 ); } } #endif /* if ( configNUMBER_OF_CORES == 1 ) */ xIdleTaskHandles[ xCoreID ] = xTaskCreateStatic( pxIdleTaskFunction, cIdleName, ulIdleTaskStackSize, ( void * ) NULL, portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */ pxIdleTaskStackBuffer, pxIdleTaskTCBBuffer ); if( xIdleTaskHandles[ xCoreID ] != NULL ) { xReturn = pdPASS; } else { xReturn = pdFAIL; } } #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */ { /* The Idle task is being created using dynamically allocated RAM. */ xReturn = xTaskCreate( pxIdleTaskFunction, cIdleName, configMINIMAL_STACK_SIZE, ( void * ) NULL, portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */ &xIdleTaskHandles[ xCoreID ] ); } #endif /* configSUPPORT_STATIC_ALLOCATION */ /* Break the loop if any of the idle task is failed to be created. */ if( xReturn == pdFAIL ) { break; } else { #if ( configNUMBER_OF_CORES == 1 ) { mtCOVERAGE_TEST_MARKER(); } #else { /* Assign idle task to each core before SMP scheduler is running. */ xIdleTaskHandles[ xCoreID ]->xTaskRunState = xCoreID; pxCurrentTCBs[ xCoreID ] = xIdleTaskHandles[ xCoreID ]; } #endif } } return xReturn; } /*-----------------------------------------------------------*/ void vTaskStartScheduler( void ) { BaseType_t xReturn; traceENTER_vTaskStartScheduler(); #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) { /* Sanity check that the UBaseType_t must have greater than or equal to * the number of bits as confNUMBER_OF_CORES. */ configASSERT( ( sizeof( UBaseType_t ) * taskBITS_PER_BYTE ) >= configNUMBER_OF_CORES ); } #endif /* #if ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) */ xReturn = prvCreateIdleTasks(); #if ( configUSE_TIMERS == 1 ) { if( xReturn == pdPASS ) { xReturn = xTimerCreateTimerTask(); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* configUSE_TIMERS */ if( xReturn == pdPASS ) { /* freertos_tasks_c_additions_init() should only be called if the user * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is * the only macro called by the function. */ #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT { freertos_tasks_c_additions_init(); } #endif /* Interrupts are turned off here, to ensure a tick does not occur * before or during the call to xPortStartScheduler(). The stacks of * the created tasks contain a status word with interrupts switched on * so interrupts will automatically get re-enabled when the first task * starts to run. */ portDISABLE_INTERRUPTS(); #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) { /* Switch C-Runtime's TLS Block to point to the TLS * block specific to the task that will run first. */ configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock ); } #endif xNextTaskUnblockTime = portMAX_DELAY; xSchedulerRunning = pdTRUE; xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT; /* If configGENERATE_RUN_TIME_STATS is defined then the following * macro must be defined to configure the timer/counter used to generate * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS * is set to 0 and the following line fails to build then ensure you do not * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your * FreeRTOSConfig.h file. */ portCONFIGURE_TIMER_FOR_RUN_TIME_STATS(); traceTASK_SWITCHED_IN(); /* Setting up the timer tick is hardware specific and thus in the * portable interface. */ /* The return value for xPortStartScheduler is not required * hence using a void datatype. */ ( void ) xPortStartScheduler(); /* In most cases, xPortStartScheduler() will not return. If it * returns pdTRUE then there was not enough heap memory available * to create either the Idle or the Timer task. If it returned * pdFALSE, then the application called xTaskEndScheduler(). * Most ports don't implement xTaskEndScheduler() as there is * nothing to return to. */ } else { /* This line will only be reached if the kernel could not be started, * because there was not enough FreeRTOS heap to create the idle task * or the timer task. */ configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY ); } /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0, * meaning xIdleTaskHandles are not used anywhere else. */ ( void ) xIdleTaskHandles; /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority * from getting optimized out as it is no longer used by the kernel. */ ( void ) uxTopUsedPriority; traceRETURN_vTaskStartScheduler(); } /*-----------------------------------------------------------*/ void vTaskEndScheduler( void ) { traceENTER_vTaskEndScheduler(); /* Stop the scheduler interrupts and call the portable scheduler end * routine so the original ISRs can be restored if necessary. The port * layer must ensure interrupts enable bit is left in the correct state. */ portDISABLE_INTERRUPTS(); xSchedulerRunning = pdFALSE; vPortEndScheduler(); traceRETURN_vTaskEndScheduler(); } /*----------------------------------------------------------*/ void vTaskSuspendAll( void ) { traceENTER_vTaskSuspendAll(); #if ( configNUMBER_OF_CORES == 1 ) { /* A critical section is not required as the variable is of type * BaseType_t. Please read Richard Barry's reply in the following link to a * post in the FreeRTOS support forum before reporting this as a bug! - * https://goo.gl/wu4acr */ /* portSOFTWARE_BARRIER() is only implemented for emulated/simulated ports that * do not otherwise exhibit real time behaviour. */ portSOFTWARE_BARRIER(); /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment * is used to allow calls to vTaskSuspendAll() to nest. */ ++uxSchedulerSuspended; /* Enforces ordering for ports and optimised compilers that may otherwise place * the above increment elsewhere. */ portMEMORY_BARRIER(); } #else /* #if ( configNUMBER_OF_CORES == 1 ) */ { UBaseType_t ulState; /* This must only be called from within a task. */ portASSERT_IF_IN_ISR(); if( xSchedulerRunning != pdFALSE ) { /* Writes to uxSchedulerSuspended must be protected by both the task AND ISR locks. * We must disable interrupts before we grab the locks in the event that this task is * interrupted and switches context before incrementing uxSchedulerSuspended. * It is safe to re-enable interrupts after releasing the ISR lock and incrementing * uxSchedulerSuspended since that will prevent context switches. */ ulState = portSET_INTERRUPT_MASK(); /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that * do not otherwise exhibit real time behaviour. */ portSOFTWARE_BARRIER(); portGET_TASK_LOCK(); /* uxSchedulerSuspended is increased after prvCheckForRunStateChange. The * purpose is to prevent altering the variable when fromISR APIs are readying * it. */ if( uxSchedulerSuspended == 0U ) { if( portGET_CRITICAL_NESTING_COUNT() == 0U ) { prvCheckForRunStateChange(); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } portGET_ISR_LOCK(); /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment * is used to allow calls to vTaskSuspendAll() to nest. */ ++uxSchedulerSuspended; portRELEASE_ISR_LOCK(); portCLEAR_INTERRUPT_MASK( ulState ); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ traceRETURN_vTaskSuspendAll(); } /*----------------------------------------------------------*/ #if ( configUSE_TICKLESS_IDLE != 0 ) static TickType_t prvGetExpectedIdleTime( void ) { TickType_t xReturn; UBaseType_t uxHigherPriorityReadyTasks = pdFALSE; /* uxHigherPriorityReadyTasks takes care of the case where * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority * task that are in the Ready state, even though the idle task is * running. */ #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) { if( uxTopReadyPriority > tskIDLE_PRIORITY ) { uxHigherPriorityReadyTasks = pdTRUE; } } #else { const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01; /* When port optimised task selection is used the uxTopReadyPriority * variable is used as a bit map. If bits other than the least * significant bit are set then there are tasks that have a priority * above the idle priority that are in the Ready state. This takes * care of the case where the co-operative scheduler is in use. */ if( uxTopReadyPriority > uxLeastSignificantBit ) { uxHigherPriorityReadyTasks = pdTRUE; } } #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */ if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY ) { xReturn = 0; } else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1U ) { /* There are other idle priority tasks in the ready state. If * time slicing is used then the very next tick interrupt must be * processed. */ xReturn = 0; } else if( uxHigherPriorityReadyTasks != pdFALSE ) { /* There are tasks in the Ready state that have a priority above the * idle priority. This path can only be reached if * configUSE_PREEMPTION is 0. */ xReturn = 0; } else { xReturn = xNextTaskUnblockTime; xReturn -= xTickCount; } return xReturn; } #endif /* configUSE_TICKLESS_IDLE */ /*----------------------------------------------------------*/ BaseType_t xTaskResumeAll( void ) { TCB_t * pxTCB = NULL; BaseType_t xAlreadyYielded = pdFALSE; traceENTER_xTaskResumeAll(); #if ( configNUMBER_OF_CORES > 1 ) if( xSchedulerRunning != pdFALSE ) #endif { /* It is possible that an ISR caused a task to be removed from an event * list while the scheduler was suspended. If this was the case then the * removed task will have been added to the xPendingReadyList. Once the * scheduler has been resumed it is safe to move all the pending ready * tasks from this list into their appropriate ready list. */ taskENTER_CRITICAL(); { BaseType_t xCoreID; xCoreID = ( BaseType_t ) portGET_CORE_ID(); /* If uxSchedulerSuspended is zero then this function does not match a * previous call to vTaskSuspendAll(). */ configASSERT( uxSchedulerSuspended != 0U ); --uxSchedulerSuspended; portRELEASE_TASK_LOCK(); if( uxSchedulerSuspended == ( UBaseType_t ) 0U ) { if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U ) { /* Move any readied tasks from the pending list into the * appropriate ready list. */ while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE ) { /* MISRA Ref 11.5.3 [Void pointer assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); listREMOVE_ITEM( &( pxTCB->xEventListItem ) ); portMEMORY_BARRIER(); listREMOVE_ITEM( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); #if ( configNUMBER_OF_CORES == 1 ) { /* If the moved task has a priority higher than the current * task then a yield must be performed. */ if( pxTCB->uxPriority > pxCurrentTCB->uxPriority ) { xYieldPendings[ xCoreID ] = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } #else /* #if ( configNUMBER_OF_CORES == 1 ) */ { /* All appropriate tasks yield at the moment a task is added to xPendingReadyList. * If the current core yielded then vTaskSwitchContext() has already been called * which sets xYieldPendings for the current core to pdTRUE. */ } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ } if( pxTCB != NULL ) { /* A task was unblocked while the scheduler was suspended, * which may have prevented the next unblock time from being * re-calculated, in which case re-calculate it now. Mainly * important for low power tickless implementations, where * this can prevent an unnecessary exit from low power * state. */ prvResetNextTaskUnblockTime(); } /* If any ticks occurred while the scheduler was suspended then * they should be processed now. This ensures the tick count does * not slip, and that any delayed tasks are resumed at the correct * time. * * It should be safe to call xTaskIncrementTick here from any core * since we are in a critical section and xTaskIncrementTick itself * protects itself within a critical section. Suspending the scheduler * from any core causes xTaskIncrementTick to increment uxPendedCounts. */ { TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */ if( xPendedCounts > ( TickType_t ) 0U ) { do { if( xTaskIncrementTick() != pdFALSE ) { /* Other cores are interrupted from * within xTaskIncrementTick(). */ xYieldPendings[ xCoreID ] = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } --xPendedCounts; } while( xPendedCounts > ( TickType_t ) 0U ); xPendedTicks = 0; } else { mtCOVERAGE_TEST_MARKER(); } } if( xYieldPendings[ xCoreID ] != pdFALSE ) { #if ( configUSE_PREEMPTION != 0 ) { xAlreadyYielded = pdTRUE; } #endif /* #if ( configUSE_PREEMPTION != 0 ) */ #if ( configNUMBER_OF_CORES == 1 ) { taskYIELD_TASK_CORE_IF_USING_PREEMPTION( pxCurrentTCB ); } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ } else { mtCOVERAGE_TEST_MARKER(); } } } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL(); } traceRETURN_xTaskResumeAll( xAlreadyYielded ); return xAlreadyYielded; } /*-----------------------------------------------------------*/ TickType_t xTaskGetTickCount( void ) { TickType_t xTicks; traceENTER_xTaskGetTickCount(); /* Critical section required if running on a 16 bit processor. */ portTICK_TYPE_ENTER_CRITICAL(); { xTicks = xTickCount; } portTICK_TYPE_EXIT_CRITICAL(); traceRETURN_xTaskGetTickCount( xTicks ); return xTicks; } /*-----------------------------------------------------------*/ TickType_t xTaskGetTickCountFromISR( void ) { TickType_t xReturn; UBaseType_t uxSavedInterruptStatus; traceENTER_xTaskGetTickCountFromISR(); /* RTOS ports that support interrupt nesting have the concept of a maximum * system call (or maximum API call) interrupt priority. Interrupts that are * above the maximum system call priority are kept permanently enabled, even * when the RTOS kernel is in a critical section, but cannot make any calls to * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion * failure if a FreeRTOS API function is called from an interrupt that has been * assigned a priority above the configured maximum system call priority. * Only FreeRTOS functions that end in FromISR can be called from interrupts * that have been assigned a priority at or (logically) below the maximum * system call interrupt priority. FreeRTOS maintains a separate interrupt * safe API to ensure interrupt entry is as fast and as simple as possible. * More information (albeit Cortex-M specific) is provided on the following * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR(); { xReturn = xTickCount; } portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); traceRETURN_xTaskGetTickCountFromISR( xReturn ); return xReturn; } /*-----------------------------------------------------------*/ UBaseType_t uxTaskGetNumberOfTasks( void ) { traceENTER_uxTaskGetNumberOfTasks(); /* A critical section is not required because the variables are of type * BaseType_t. */ traceRETURN_uxTaskGetNumberOfTasks( uxCurrentNumberOfTasks ); return uxCurrentNumberOfTasks; } /*-----------------------------------------------------------*/ char * pcTaskGetName( TaskHandle_t xTaskToQuery ) { TCB_t * pxTCB; traceENTER_pcTaskGetName( xTaskToQuery ); /* If null is passed in here then the name of the calling task is being * queried. */ pxTCB = prvGetTCBFromHandle( xTaskToQuery ); configASSERT( pxTCB ); traceRETURN_pcTaskGetName( &( pxTCB->pcTaskName[ 0 ] ) ); return &( pxTCB->pcTaskName[ 0 ] ); } /*-----------------------------------------------------------*/ #if ( INCLUDE_xTaskGetHandle == 1 ) #if ( configNUMBER_OF_CORES == 1 ) static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList, const char pcNameToQuery[] ) { TCB_t * pxNextTCB; TCB_t * pxFirstTCB; TCB_t * pxReturn = NULL; UBaseType_t x; char cNextChar; BaseType_t xBreakLoop; /* This function is called with the scheduler suspended. */ if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 ) { /* MISRA Ref 11.5.3 [Void pointer assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); do { /* MISRA Ref 11.5.3 [Void pointer assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /* Check each character in the name looking for a match or * mismatch. */ xBreakLoop = pdFALSE; for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ ) { cNextChar = pxNextTCB->pcTaskName[ x ]; if( cNextChar != pcNameToQuery[ x ] ) { /* Characters didn't match. */ xBreakLoop = pdTRUE; } else if( cNextChar == ( char ) 0x00 ) { /* Both strings terminated, a match must have been * found. */ pxReturn = pxNextTCB; xBreakLoop = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } if( xBreakLoop != pdFALSE ) { break; } } if( pxReturn != NULL ) { /* The handle has been found. */ break; } } while( pxNextTCB != pxFirstTCB ); } else { mtCOVERAGE_TEST_MARKER(); } return pxReturn; } #else /* if ( configNUMBER_OF_CORES == 1 ) */ static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList, const char pcNameToQuery[] ) { TCB_t * pxReturn = NULL; UBaseType_t x; char cNextChar; BaseType_t xBreakLoop; const ListItem_t * pxEndMarker = listGET_END_MARKER( pxList ); ListItem_t * pxIterator; /* This function is called with the scheduler suspended. */ if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 ) { for( pxIterator = listGET_HEAD_ENTRY( pxList ); pxIterator != pxEndMarker; pxIterator = listGET_NEXT( pxIterator ) ) { /* MISRA Ref 11.5.3 [Void pointer assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ TCB_t * pxTCB = listGET_LIST_ITEM_OWNER( pxIterator ); /* Check each character in the name looking for a match or * mismatch. */ xBreakLoop = pdFALSE; for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ ) { cNextChar = pxTCB->pcTaskName[ x ]; if( cNextChar != pcNameToQuery[ x ] ) { /* Characters didn't match. */ xBreakLoop = pdTRUE; } else if( cNextChar == ( char ) 0x00 ) { /* Both strings terminated, a match must have been * found. */ pxReturn = pxTCB; xBreakLoop = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } if( xBreakLoop != pdFALSE ) { break; } } if( pxReturn != NULL ) { /* The handle has been found. */ break; } } } else { mtCOVERAGE_TEST_MARKER(); } return pxReturn; } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ #endif /* INCLUDE_xTaskGetHandle */ /*-----------------------------------------------------------*/ #if ( INCLUDE_xTaskGetHandle == 1 ) TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) { UBaseType_t uxQueue = configMAX_PRIORITIES; TCB_t * pxTCB; traceENTER_xTaskGetHandle( pcNameToQuery ); /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */ configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN ); vTaskSuspendAll(); { /* Search the ready lists. */ do { uxQueue--; pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery ); if( pxTCB != NULL ) { /* Found the handle. */ break; } } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /* Search the delayed lists. */ if( pxTCB == NULL ) { pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery ); } if( pxTCB == NULL ) { pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery ); } #if ( INCLUDE_vTaskSuspend == 1 ) { if( pxTCB == NULL ) { /* Search the suspended list. */ pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery ); } } #endif #if ( INCLUDE_vTaskDelete == 1 ) { if( pxTCB == NULL ) { /* Search the deleted list. */ pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery ); } } #endif } ( void ) xTaskResumeAll(); traceRETURN_xTaskGetHandle( pxTCB ); return pxTCB; } #endif /* INCLUDE_xTaskGetHandle */ /*-----------------------------------------------------------*/ #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask, StackType_t ** ppuxStackBuffer, StaticTask_t ** ppxTaskBuffer ) { BaseType_t xReturn; TCB_t * pxTCB; traceENTER_xTaskGetStaticBuffers( xTask, ppuxStackBuffer, ppxTaskBuffer ); configASSERT( ppuxStackBuffer != NULL ); configASSERT( ppxTaskBuffer != NULL ); pxTCB = prvGetTCBFromHandle( xTask ); #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 ) { if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB ) { *ppuxStackBuffer = pxTCB->pxStack; /* MISRA Ref 11.3.1 [Misaligned access] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-113 */ /* coverity[misra_c_2012_rule_11_3_violation] */ *ppxTaskBuffer = ( StaticTask_t * ) pxTCB; xReturn = pdTRUE; } else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY ) { *ppuxStackBuffer = pxTCB->pxStack; *ppxTaskBuffer = NULL; xReturn = pdTRUE; } else { xReturn = pdFALSE; } } #else /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */ { *ppuxStackBuffer = pxTCB->pxStack; *ppxTaskBuffer = ( StaticTask_t * ) pxTCB; xReturn = pdTRUE; } #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */ traceRETURN_xTaskGetStaticBuffers( xReturn ); return xReturn; } #endif /* configSUPPORT_STATIC_ALLOCATION */ /*-----------------------------------------------------------*/ #if ( configUSE_TRACE_FACILITY == 1 ) UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, configRUN_TIME_COUNTER_TYPE * const pulTotalRunTime ) { UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES; traceENTER_uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, pulTotalRunTime ); vTaskSuspendAll(); { /* Is there a space in the array for each task in the system? */ if( uxArraySize >= uxCurrentNumberOfTasks ) { /* Fill in an TaskStatus_t structure with information on each * task in the Ready state. */ do { uxQueue--; uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady ) ); } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /* Fill in an TaskStatus_t structure with information on each * task in the Blocked state. */ uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked ) ); uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked ) ); #if ( INCLUDE_vTaskDelete == 1 ) { /* Fill in an TaskStatus_t structure with information on * each task that has been deleted but not yet cleaned up. */ uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted ) ); } #endif #if ( INCLUDE_vTaskSuspend == 1 ) { /* Fill in an TaskStatus_t structure with information on * each task in the Suspended state. */ uxTask = ( UBaseType_t ) ( uxTask + prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended ) ); } #endif #if ( configGENERATE_RUN_TIME_STATS == 1 ) { if( pulTotalRunTime != NULL ) { #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) ); #else *pulTotalRunTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE(); #endif } } #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */ { if( pulTotalRunTime != NULL ) { *pulTotalRunTime = 0; } } #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */ } else { mtCOVERAGE_TEST_MARKER(); } } ( void ) xTaskResumeAll(); traceRETURN_uxTaskGetSystemState( uxTask ); return uxTask; } #endif /* configUSE_TRACE_FACILITY */ /*----------------------------------------------------------*/ #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) #if ( configNUMBER_OF_CORES == 1 ) TaskHandle_t xTaskGetIdleTaskHandle( void ) { traceENTER_xTaskGetIdleTaskHandle(); /* If xTaskGetIdleTaskHandle() is called before the scheduler has been * started, then xIdleTaskHandles will be NULL. */ configASSERT( ( xIdleTaskHandles[ 0 ] != NULL ) ); traceRETURN_xTaskGetIdleTaskHandle( xIdleTaskHandles[ 0 ] ); return xIdleTaskHandles[ 0 ]; } #endif /* if ( configNUMBER_OF_CORES == 1 ) */ TaskHandle_t xTaskGetIdleTaskHandleForCore( BaseType_t xCoreID ) { traceENTER_xTaskGetIdleTaskHandleForCore( xCoreID ); /* Ensure the core ID is valid. */ configASSERT( taskVALID_CORE_ID( xCoreID ) == pdTRUE ); /* If xTaskGetIdleTaskHandle() is called before the scheduler has been * started, then xIdleTaskHandles will be NULL. */ configASSERT( ( xIdleTaskHandles[ xCoreID ] != NULL ) ); traceRETURN_xTaskGetIdleTaskHandleForCore( xIdleTaskHandles[ xCoreID ] ); return xIdleTaskHandles[ xCoreID ]; } #endif /* INCLUDE_xTaskGetIdleTaskHandle */ /*----------------------------------------------------------*/ /* This conditional compilation should use inequality to 0, not equality to 1. * This is to ensure vTaskStepTick() is available when user defined low power mode * implementations require configUSE_TICKLESS_IDLE to be set to a value other than * 1. */ #if ( configUSE_TICKLESS_IDLE != 0 ) void vTaskStepTick( TickType_t xTicksToJump ) { TickType_t xUpdatedTickCount; traceENTER_vTaskStepTick( xTicksToJump ); /* Correct the tick count value after a period during which the tick * was suppressed. Note this does *not* call the tick hook function for * each stepped tick. */ xUpdatedTickCount = xTickCount + xTicksToJump; configASSERT( xUpdatedTickCount <= xNextTaskUnblockTime ); if( xUpdatedTickCount == xNextTaskUnblockTime ) { /* Arrange for xTickCount to reach xNextTaskUnblockTime in * xTaskIncrementTick() when the scheduler resumes. This ensures * that any delayed tasks are resumed at the correct time. */ configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U ); configASSERT( xTicksToJump != ( TickType_t ) 0 ); /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */ taskENTER_CRITICAL(); { xPendedTicks++; } taskEXIT_CRITICAL(); xTicksToJump--; } else { mtCOVERAGE_TEST_MARKER(); } xTickCount += xTicksToJump; traceINCREASE_TICK_COUNT( xTicksToJump ); traceRETURN_vTaskStepTick(); } #endif /* configUSE_TICKLESS_IDLE */ /*----------------------------------------------------------*/ BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp ) { BaseType_t xYieldOccurred; traceENTER_xTaskCatchUpTicks( xTicksToCatchUp ); /* Must not be called with the scheduler suspended as the implementation * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */ configASSERT( uxSchedulerSuspended == ( UBaseType_t ) 0U ); /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */ vTaskSuspendAll(); /* Prevent the tick interrupt modifying xPendedTicks simultaneously. */ taskENTER_CRITICAL(); { xPendedTicks += xTicksToCatchUp; } taskEXIT_CRITICAL(); xYieldOccurred = xTaskResumeAll(); traceRETURN_xTaskCatchUpTicks( xYieldOccurred ); return xYieldOccurred; } /*----------------------------------------------------------*/ #if ( INCLUDE_xTaskAbortDelay == 1 ) BaseType_t xTaskAbortDelay( TaskHandle_t xTask ) { TCB_t * pxTCB = xTask; BaseType_t xReturn; traceENTER_xTaskAbortDelay( xTask ); configASSERT( pxTCB ); vTaskSuspendAll(); { /* A task can only be prematurely removed from the Blocked state if * it is actually in the Blocked state. */ if( eTaskGetState( xTask ) == eBlocked ) { xReturn = pdPASS; /* Remove the reference to the task from the blocked list. An * interrupt won't touch the xStateListItem because the * scheduler is suspended. */ ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); /* Is the task waiting on an event also? If so remove it from * the event list too. Interrupts can touch the event list item, * even though the scheduler is suspended, so a critical section * is used. */ taskENTER_CRITICAL(); { if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) { ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); /* This lets the task know it was forcibly removed from the * blocked state so it should not re-evaluate its block time and * then block again. */ pxTCB->ucDelayAborted = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL(); /* Place the unblocked task into the appropriate ready list. */ prvAddTaskToReadyList( pxTCB ); /* A task being unblocked cannot cause an immediate context * switch if preemption is turned off. */ #if ( configUSE_PREEMPTION == 1 ) { #if ( configNUMBER_OF_CORES == 1 ) { /* Preemption is on, but a context switch should only be * performed if the unblocked task has a priority that is * higher than the currently executing task. */ if( pxTCB->uxPriority > pxCurrentTCB->uxPriority ) { /* Pend the yield to be performed when the scheduler * is unsuspended. */ xYieldPendings[ 0 ] = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } #else /* #if ( configNUMBER_OF_CORES == 1 ) */ { taskENTER_CRITICAL(); { prvYieldForTask( pxTCB ); } taskEXIT_CRITICAL(); } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ } #endif /* #if ( configUSE_PREEMPTION == 1 ) */ } else { xReturn = pdFAIL; } } ( void ) xTaskResumeAll(); traceRETURN_xTaskAbortDelay( xReturn ); return xReturn; } #endif /* INCLUDE_xTaskAbortDelay */ /*----------------------------------------------------------*/ BaseType_t xTaskIncrementTick( void ) { TCB_t * pxTCB; TickType_t xItemValue; BaseType_t xSwitchRequired = pdFALSE; #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 ) BaseType_t xYieldRequiredForCore[ configNUMBER_OF_CORES ] = { pdFALSE }; #endif /* #if ( configUSE_PREEMPTION == 1 ) && ( configNUMBER_OF_CORES > 1 ) */ traceENTER_xTaskIncrementTick(); /* Called by the portable layer each time a tick interrupt occurs. * Increments the tick then checks to see if the new tick value will cause any * tasks to be unblocked. */ traceTASK_INCREMENT_TICK( xTickCount ); /* Tick increment should occur on every kernel timer event. Core 0 has the * responsibility to increment the tick, or increment the pended ticks if the * scheduler is suspended. If pended ticks is greater than zero, the core that * calls xTaskResumeAll has the responsibility to increment the tick. */ if( uxSchedulerSuspended == ( UBaseType_t ) 0U ) { /* Minor optimisation. The tick count cannot change in this * block. */ const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1; /* Increment the RTOS tick, switching the delayed and overflowed * delayed lists if it wraps to 0. */ xTickCount = xConstTickCount; if( xConstTickCount == ( TickType_t ) 0U ) { taskSWITCH_DELAYED_LISTS(); } else { mtCOVERAGE_TEST_MARKER(); } /* See if this tick has made a timeout expire. Tasks are stored in * the queue in the order of their wake time - meaning once one task * has been found whose block time has not expired there is no need to * look any further down the list. */ if( xConstTickCount >= xNextTaskUnblockTime ) { for( ; ; ) { if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE ) { /* The delayed list is empty. Set xNextTaskUnblockTime * to the maximum possible value so it is extremely * unlikely that the * if( xTickCount >= xNextTaskUnblockTime ) test will pass * next time through. */ xNextTaskUnblockTime = portMAX_DELAY; break; } else { /* The delayed list is not empty, get the value of the * item at the head of the delayed list. This is the time * at which the task at the head of the delayed list must * be removed from the Blocked state. */ /* MISRA Ref 11.5.3 [Void pointer assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) ); if( xConstTickCount < xItemValue ) { /* It is not time to unblock this item yet, but the * item value is the time at which the task at the head * of the blocked list must be removed from the Blocked * state - so record the item value in * xNextTaskUnblockTime. */ xNextTaskUnblockTime = xItemValue; break; } else { mtCOVERAGE_TEST_MARKER(); } /* It is time to remove the item from the Blocked state. */ listREMOVE_ITEM( &( pxTCB->xStateListItem ) ); /* Is the task waiting on an event also? If so remove * it from the event list. */ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) { listREMOVE_ITEM( &( pxTCB->xEventListItem ) ); } else { mtCOVERAGE_TEST_MARKER(); } /* Place the unblocked task into the appropriate ready * list. */ prvAddTaskToReadyList( pxTCB ); /* A task being unblocked cannot cause an immediate * context switch if preemption is turned off. */ #if ( configUSE_PREEMPTION == 1 ) { #if ( configNUMBER_OF_CORES == 1 ) { /* Preemption is on, but a context switch should * only be performed if the unblocked task's * priority is higher than the currently executing * task. * The case of equal priority tasks sharing * processing time (which happens when both * preemption and time slicing are on) is * handled below.*/ if( pxTCB->uxPriority > pxCurrentTCB->uxPriority ) { xSwitchRequired = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } #else /* #if( configNUMBER_OF_CORES == 1 ) */ { prvYieldForTask( pxTCB ); } #endif /* #if( configNUMBER_OF_CORES == 1 ) */ } #endif /* #if ( configUSE_PREEMPTION == 1 ) */ } } } /* Tasks of equal priority to the currently running task will share * processing time (time slice) if preemption is on, and the application * writer has not explicitly turned time slicing off. */ #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) { #if ( configNUMBER_OF_CORES == 1 ) { if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > 1U ) { xSwitchRequired = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } #else /* #if ( configNUMBER_OF_CORES == 1 ) */ { BaseType_t xCoreID; for( xCoreID = 0; xCoreID < ( ( BaseType_t ) configNUMBER_OF_CORES ); xCoreID++ ) { if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCBs[ xCoreID ]->uxPriority ] ) ) > 1U ) { xYieldRequiredForCore[ xCoreID ] = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ } #endif /* #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */ #if ( configUSE_TICK_HOOK == 1 ) { /* Guard against the tick hook being called when the pended tick * count is being unwound (when the scheduler is being unlocked). */ if( xPendedTicks == ( TickType_t ) 0 ) { vApplicationTickHook(); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* configUSE_TICK_HOOK */ #if ( configUSE_PREEMPTION == 1 ) { #if ( configNUMBER_OF_CORES == 1 ) { /* For single core the core ID is always 0. */ if( xYieldPendings[ 0 ] != pdFALSE ) { xSwitchRequired = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } #else /* #if ( configNUMBER_OF_CORES == 1 ) */ { BaseType_t xCoreID, xCurrentCoreID; xCurrentCoreID = ( BaseType_t ) portGET_CORE_ID(); for( xCoreID = 0; xCoreID < ( BaseType_t ) configNUMBER_OF_CORES; xCoreID++ ) { #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 ) if( pxCurrentTCBs[ xCoreID ]->xPreemptionDisable == pdFALSE ) #endif { if( ( xYieldRequiredForCore[ xCoreID ] != pdFALSE ) || ( xYieldPendings[ xCoreID ] != pdFALSE ) ) { if( xCoreID == xCurrentCoreID ) { xSwitchRequired = pdTRUE; } else { prvYieldCore( xCoreID ); } } else { mtCOVERAGE_TEST_MARKER(); } } } } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ } #endif /* #if ( configUSE_PREEMPTION == 1 ) */ } else { ++xPendedTicks; /* The tick hook gets called at regular intervals, even if the * scheduler is locked. */ #if ( configUSE_TICK_HOOK == 1 ) { vApplicationTickHook(); } #endif } traceRETURN_xTaskIncrementTick( xSwitchRequired ); return xSwitchRequired; } /*-----------------------------------------------------------*/ #if ( configUSE_APPLICATION_TASK_TAG == 1 ) void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction ) { TCB_t * xTCB; traceENTER_vTaskSetApplicationTaskTag( xTask, pxHookFunction ); /* If xTask is NULL then it is the task hook of the calling task that is * getting set. */ if( xTask == NULL ) { xTCB = ( TCB_t * ) pxCurrentTCB; } else { xTCB = xTask; } /* Save the hook function in the TCB. A critical section is required as * the value can be accessed from an interrupt. */ taskENTER_CRITICAL(); { xTCB->pxTaskTag = pxHookFunction; } taskEXIT_CRITICAL(); traceRETURN_vTaskSetApplicationTaskTag(); } #endif /* configUSE_APPLICATION_TASK_TAG */ /*-----------------------------------------------------------*/ #if ( configUSE_APPLICATION_TASK_TAG == 1 ) TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask ) { TCB_t * pxTCB; TaskHookFunction_t xReturn; traceENTER_xTaskGetApplicationTaskTag( xTask ); /* If xTask is NULL then set the calling task's hook. */ pxTCB = prvGetTCBFromHandle( xTask ); /* Save the hook function in the TCB. A critical section is required as * the value can be accessed from an interrupt. */ taskENTER_CRITICAL(); { xReturn = pxTCB->pxTaskTag; } taskEXIT_CRITICAL(); traceRETURN_xTaskGetApplicationTaskTag( xReturn ); return xReturn; } #endif /* configUSE_APPLICATION_TASK_TAG */ /*-----------------------------------------------------------*/ #if ( configUSE_APPLICATION_TASK_TAG == 1 ) TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask ) { TCB_t * pxTCB; TaskHookFunction_t xReturn; UBaseType_t uxSavedInterruptStatus; traceENTER_xTaskGetApplicationTaskTagFromISR( xTask ); /* If xTask is NULL then set the calling task's hook. */ pxTCB = prvGetTCBFromHandle( xTask ); /* Save the hook function in the TCB. A critical section is required as * the value can be accessed from an interrupt. */ uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR(); { xReturn = pxTCB->pxTaskTag; } taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus ); traceRETURN_xTaskGetApplicationTaskTagFromISR( xReturn ); return xReturn; } #endif /* configUSE_APPLICATION_TASK_TAG */ /*-----------------------------------------------------------*/ #if ( configUSE_APPLICATION_TASK_TAG == 1 ) BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void * pvParameter ) { TCB_t * xTCB; BaseType_t xReturn; traceENTER_xTaskCallApplicationTaskHook( xTask, pvParameter ); /* If xTask is NULL then we are calling our own task hook. */ if( xTask == NULL ) { xTCB = pxCurrentTCB; } else { xTCB = xTask; } if( xTCB->pxTaskTag != NULL ) { xReturn = xTCB->pxTaskTag( pvParameter ); } else { xReturn = pdFAIL; } traceRETURN_xTaskCallApplicationTaskHook( xReturn ); return xReturn; } #endif /* configUSE_APPLICATION_TASK_TAG */ /*-----------------------------------------------------------*/ #if ( configNUMBER_OF_CORES == 1 ) void vTaskSwitchContext( void ) { traceENTER_vTaskSwitchContext(); if( uxSchedulerSuspended != ( UBaseType_t ) 0U ) { /* The scheduler is currently suspended - do not allow a context * switch. */ xYieldPendings[ 0 ] = pdTRUE; } else { xYieldPendings[ 0 ] = pdFALSE; traceTASK_SWITCHED_OUT(); #if ( configGENERATE_RUN_TIME_STATS == 1 ) { #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ 0 ] ); #else ulTotalRunTime[ 0 ] = portGET_RUN_TIME_COUNTER_VALUE(); #endif /* Add the amount of time the task has been running to the * accumulated time so far. The time the task started running was * stored in ulTaskSwitchedInTime. Note that there is no overflow * protection here so count values are only valid until the timer * overflows. The guard against negative values is to protect * against suspect run time stat counter implementations - which * are provided by the application, not the kernel. */ if( ulTotalRunTime[ 0 ] > ulTaskSwitchedInTime[ 0 ] ) { pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime[ 0 ] - ulTaskSwitchedInTime[ 0 ] ); } else { mtCOVERAGE_TEST_MARKER(); } ulTaskSwitchedInTime[ 0 ] = ulTotalRunTime[ 0 ]; } #endif /* configGENERATE_RUN_TIME_STATS */ /* Check for stack overflow, if configured. */ taskCHECK_FOR_STACK_OVERFLOW(); /* Before the currently running task is switched out, save its errno. */ #if ( configUSE_POSIX_ERRNO == 1 ) { pxCurrentTCB->iTaskErrno = FreeRTOS_errno; } #endif /* Select a new task to run using either the generic C or port * optimised asm code. */ /* MISRA Ref 11.5.3 [Void pointer assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ taskSELECT_HIGHEST_PRIORITY_TASK(); traceTASK_SWITCHED_IN(); /* Macro to inject port specific behaviour immediately after * switching tasks, such as setting an end of stack watchpoint * or reconfiguring the MPU. */ portTASK_SWITCH_HOOK( pxCurrentTCB ); /* After the new task is switched in, update the global errno. */ #if ( configUSE_POSIX_ERRNO == 1 ) { FreeRTOS_errno = pxCurrentTCB->iTaskErrno; } #endif #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) { /* Switch C-Runtime's TLS Block to point to the TLS * Block specific to this task. */ configSET_TLS_BLOCK( pxCurrentTCB->xTLSBlock ); } #endif } traceRETURN_vTaskSwitchContext(); } #else /* if ( configNUMBER_OF_CORES == 1 ) */ void vTaskSwitchContext( BaseType_t xCoreID ) { traceENTER_vTaskSwitchContext(); /* Acquire both locks: * - The ISR lock protects the ready list from simultaneous access by * both other ISRs and tasks. * - We also take the task lock to pause here in case another core has * suspended the scheduler. We don't want to simply set xYieldPending * and move on if another core suspended the scheduler. We should only * do that if the current core has suspended the scheduler. */ portGET_TASK_LOCK(); /* Must always acquire the task lock first. */ portGET_ISR_LOCK(); { /* vTaskSwitchContext() must never be called from within a critical section. * This is not necessarily true for single core FreeRTOS, but it is for this * SMP port. */ configASSERT( portGET_CRITICAL_NESTING_COUNT() == 0 ); if( uxSchedulerSuspended != ( UBaseType_t ) 0U ) { /* The scheduler is currently suspended - do not allow a context * switch. */ xYieldPendings[ xCoreID ] = pdTRUE; } else { xYieldPendings[ xCoreID ] = pdFALSE; traceTASK_SWITCHED_OUT(); #if ( configGENERATE_RUN_TIME_STATS == 1 ) { #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime[ xCoreID ] ); #else ulTotalRunTime[ xCoreID ] = portGET_RUN_TIME_COUNTER_VALUE(); #endif /* Add the amount of time the task has been running to the * accumulated time so far. The time the task started running was * stored in ulTaskSwitchedInTime. Note that there is no overflow * protection here so count values are only valid until the timer * overflows. The guard against negative values is to protect * against suspect run time stat counter implementations - which * are provided by the application, not the kernel. */ if( ulTotalRunTime[ xCoreID ] > ulTaskSwitchedInTime[ xCoreID ] ) { pxCurrentTCBs[ xCoreID ]->ulRunTimeCounter += ( ulTotalRunTime[ xCoreID ] - ulTaskSwitchedInTime[ xCoreID ] ); } else { mtCOVERAGE_TEST_MARKER(); } ulTaskSwitchedInTime[ xCoreID ] = ulTotalRunTime[ xCoreID ]; } #endif /* configGENERATE_RUN_TIME_STATS */ /* Check for stack overflow, if configured. */ taskCHECK_FOR_STACK_OVERFLOW(); /* Before the currently running task is switched out, save its errno. */ #if ( configUSE_POSIX_ERRNO == 1 ) { pxCurrentTCBs[ xCoreID ]->iTaskErrno = FreeRTOS_errno; } #endif /* Select a new task to run. */ taskSELECT_HIGHEST_PRIORITY_TASK( xCoreID ); traceTASK_SWITCHED_IN(); /* Macro to inject port specific behaviour immediately after * switching tasks, such as setting an end of stack watchpoint * or reconfiguring the MPU. */ portTASK_SWITCH_HOOK( pxCurrentTCBs[ portGET_CORE_ID() ] ); /* After the new task is switched in, update the global errno. */ #if ( configUSE_POSIX_ERRNO == 1 ) { FreeRTOS_errno = pxCurrentTCBs[ xCoreID ]->iTaskErrno; } #endif #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) { /* Switch C-Runtime's TLS Block to point to the TLS * Block specific to this task. */ configSET_TLS_BLOCK( pxCurrentTCBs[ xCoreID ]->xTLSBlock ); } #endif } } portRELEASE_ISR_LOCK(); portRELEASE_TASK_LOCK(); traceRETURN_vTaskSwitchContext(); } #endif /* if ( configNUMBER_OF_CORES > 1 ) */ /*-----------------------------------------------------------*/ void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait ) { traceENTER_vTaskPlaceOnEventList( pxEventList, xTicksToWait ); configASSERT( pxEventList ); /* THIS FUNCTION MUST BE CALLED WITH THE * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */ /* Place the event list item of the TCB in the appropriate event list. * This is placed in the list in priority order so the highest priority task * is the first to be woken by the event. * * Note: Lists are sorted in ascending order by ListItem_t.xItemValue. * Normally, the xItemValue of a TCB's ListItem_t members is: * xItemValue = ( configMAX_PRIORITIES - uxPriority ) * Therefore, the event list is sorted in descending priority order. * * The queue that contains the event list is locked, preventing * simultaneous access from interrupts. */ vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) ); prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE ); traceRETURN_vTaskPlaceOnEventList(); } /*-----------------------------------------------------------*/ void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait ) { traceENTER_vTaskPlaceOnUnorderedEventList( pxEventList, xItemValue, xTicksToWait ); configASSERT( pxEventList ); /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by * the event groups implementation. */ configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U ); /* Store the item value in the event list item. It is safe to access the * event list item here as interrupts won't access the event list item of a * task that is not in the Blocked state. */ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE ); /* Place the event list item of the TCB at the end of the appropriate event * list. It is safe to access the event list here because it is part of an * event group implementation - and interrupts don't access event groups * directly (instead they access them indirectly by pending function calls to * the task level). */ listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) ); prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE ); traceRETURN_vTaskPlaceOnUnorderedEventList(); } /*-----------------------------------------------------------*/ #if ( configUSE_TIMERS == 1 ) void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely ) { traceENTER_vTaskPlaceOnEventListRestricted( pxEventList, xTicksToWait, xWaitIndefinitely ); configASSERT( pxEventList ); /* This function should not be called by application code hence the * 'Restricted' in its name. It is not part of the public API. It is * designed for use by kernel code, and has special calling requirements - * it should be called with the scheduler suspended. */ /* Place the event list item of the TCB in the appropriate event list. * In this case it is assume that this is the only task that is going to * be waiting on this event list, so the faster vListInsertEnd() function * can be used in place of vListInsert. */ listINSERT_END( pxEventList, &( pxCurrentTCB->xEventListItem ) ); /* If the task should block indefinitely then set the block time to a * value that will be recognised as an indefinite delay inside the * prvAddCurrentTaskToDelayedList() function. */ if( xWaitIndefinitely != pdFALSE ) { xTicksToWait = portMAX_DELAY; } traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) ); prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely ); traceRETURN_vTaskPlaceOnEventListRestricted(); } #endif /* configUSE_TIMERS */ /*-----------------------------------------------------------*/ BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList ) { TCB_t * pxUnblockedTCB; BaseType_t xReturn; traceENTER_xTaskRemoveFromEventList( pxEventList ); /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be * called from a critical section within an ISR. */ /* The event list is sorted in priority order, so the first in the list can * be removed as it is known to be the highest priority. Remove the TCB from * the delayed list, and add it to the ready list. * * If an event is for a queue that is locked then this function will never * get called - the lock count on the queue will get modified instead. This * means exclusive access to the event list is guaranteed here. * * This function assumes that a check has already been made to ensure that * pxEventList is not empty. */ /* MISRA Ref 11.5.3 [Void pointer assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); configASSERT( pxUnblockedTCB ); listREMOVE_ITEM( &( pxUnblockedTCB->xEventListItem ) ); if( uxSchedulerSuspended == ( UBaseType_t ) 0U ) { listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) ); prvAddTaskToReadyList( pxUnblockedTCB ); #if ( configUSE_TICKLESS_IDLE != 0 ) { /* If a task is blocked on a kernel object then xNextTaskUnblockTime * might be set to the blocked task's time out time. If the task is * unblocked for a reason other than a timeout xNextTaskUnblockTime is * normally left unchanged, because it is automatically reset to a new * value when the tick count equals xNextTaskUnblockTime. However if * tickless idling is used it might be more important to enter sleep mode * at the earliest possible time - so reset xNextTaskUnblockTime here to * ensure it is updated at the earliest possible time. */ prvResetNextTaskUnblockTime(); } #endif } else { /* The delayed and ready lists cannot be accessed, so hold this task * pending until the scheduler is resumed. */ listINSERT_END( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) ); } #if ( configNUMBER_OF_CORES == 1 ) { if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority ) { /* Return true if the task removed from the event list has a higher * priority than the calling task. This allows the calling task to know if * it should force a context switch now. */ xReturn = pdTRUE; /* Mark that a yield is pending in case the user is not using the * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */ xYieldPendings[ 0 ] = pdTRUE; } else { xReturn = pdFALSE; } } #else /* #if ( configNUMBER_OF_CORES == 1 ) */ { xReturn = pdFALSE; #if ( configUSE_PREEMPTION == 1 ) { prvYieldForTask( pxUnblockedTCB ); if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE ) { xReturn = pdTRUE; } } #endif /* #if ( configUSE_PREEMPTION == 1 ) */ } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ traceRETURN_xTaskRemoveFromEventList( xReturn ); return xReturn; } /*-----------------------------------------------------------*/ void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue ) { TCB_t * pxUnblockedTCB; traceENTER_vTaskRemoveFromUnorderedEventList( pxEventListItem, xItemValue ); /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by * the event flags implementation. */ configASSERT( uxSchedulerSuspended != ( UBaseType_t ) 0U ); /* Store the new item value in the event list. */ listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE ); /* Remove the event list form the event flag. Interrupts do not access * event flags. */ /* MISRA Ref 11.5.3 [Void pointer assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); configASSERT( pxUnblockedTCB ); listREMOVE_ITEM( pxEventListItem ); #if ( configUSE_TICKLESS_IDLE != 0 ) { /* If a task is blocked on a kernel object then xNextTaskUnblockTime * might be set to the blocked task's time out time. If the task is * unblocked for a reason other than a timeout xNextTaskUnblockTime is * normally left unchanged, because it is automatically reset to a new * value when the tick count equals xNextTaskUnblockTime. However if * tickless idling is used it might be more important to enter sleep mode * at the earliest possible time - so reset xNextTaskUnblockTime here to * ensure it is updated at the earliest possible time. */ prvResetNextTaskUnblockTime(); } #endif /* Remove the task from the delayed list and add it to the ready list. The * scheduler is suspended so interrupts will not be accessing the ready * lists. */ listREMOVE_ITEM( &( pxUnblockedTCB->xStateListItem ) ); prvAddTaskToReadyList( pxUnblockedTCB ); #if ( configNUMBER_OF_CORES == 1 ) { if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority ) { /* The unblocked task has a priority above that of the calling task, so * a context switch is required. This function is called with the * scheduler suspended so xYieldPending is set so the context switch * occurs immediately that the scheduler is resumed (unsuspended). */ xYieldPendings[ 0 ] = pdTRUE; } } #else /* #if ( configNUMBER_OF_CORES == 1 ) */ { #if ( configUSE_PREEMPTION == 1 ) { taskENTER_CRITICAL(); { prvYieldForTask( pxUnblockedTCB ); } taskEXIT_CRITICAL(); } #endif } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ traceRETURN_vTaskRemoveFromUnorderedEventList(); } /*-----------------------------------------------------------*/ void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut ) { traceENTER_vTaskSetTimeOutState( pxTimeOut ); configASSERT( pxTimeOut ); taskENTER_CRITICAL(); { pxTimeOut->xOverflowCount = xNumOfOverflows; pxTimeOut->xTimeOnEntering = xTickCount; } taskEXIT_CRITICAL(); traceRETURN_vTaskSetTimeOutState(); } /*-----------------------------------------------------------*/ void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut ) { traceENTER_vTaskInternalSetTimeOutState( pxTimeOut ); /* For internal use only as it does not use a critical section. */ pxTimeOut->xOverflowCount = xNumOfOverflows; pxTimeOut->xTimeOnEntering = xTickCount; traceRETURN_vTaskInternalSetTimeOutState(); } /*-----------------------------------------------------------*/ BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait ) { BaseType_t xReturn; traceENTER_xTaskCheckForTimeOut( pxTimeOut, pxTicksToWait ); configASSERT( pxTimeOut ); configASSERT( pxTicksToWait ); taskENTER_CRITICAL(); { /* Minor optimisation. The tick count cannot change in this block. */ const TickType_t xConstTickCount = xTickCount; const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering; #if ( INCLUDE_xTaskAbortDelay == 1 ) if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE ) { /* The delay was aborted, which is not the same as a time out, * but has the same result. */ pxCurrentTCB->ucDelayAborted = pdFALSE; xReturn = pdTRUE; } else #endif #if ( INCLUDE_vTaskSuspend == 1 ) if( *pxTicksToWait == portMAX_DELAY ) { /* If INCLUDE_vTaskSuspend is set to 1 and the block time * specified is the maximum block time then the task should block * indefinitely, and therefore never time out. */ xReturn = pdFALSE; } else #endif if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) { /* The tick count is greater than the time at which * vTaskSetTimeout() was called, but has also overflowed since * vTaskSetTimeOut() was called. It must have wrapped all the way * around and gone past again. This passed since vTaskSetTimeout() * was called. */ xReturn = pdTRUE; *pxTicksToWait = ( TickType_t ) 0; } else if( xElapsedTime < *pxTicksToWait ) { /* Not a genuine timeout. Adjust parameters for time remaining. */ *pxTicksToWait -= xElapsedTime; vTaskInternalSetTimeOutState( pxTimeOut ); xReturn = pdFALSE; } else { *pxTicksToWait = ( TickType_t ) 0; xReturn = pdTRUE; } } taskEXIT_CRITICAL(); traceRETURN_xTaskCheckForTimeOut( xReturn ); return xReturn; } /*-----------------------------------------------------------*/ void vTaskMissedYield( void ) { traceENTER_vTaskMissedYield(); /* Must be called from within a critical section. */ xYieldPendings[ portGET_CORE_ID() ] = pdTRUE; traceRETURN_vTaskMissedYield(); } /*-----------------------------------------------------------*/ #if ( configUSE_TRACE_FACILITY == 1 ) UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask ) { UBaseType_t uxReturn; TCB_t const * pxTCB; traceENTER_uxTaskGetTaskNumber( xTask ); if( xTask != NULL ) { pxTCB = xTask; uxReturn = pxTCB->uxTaskNumber; } else { uxReturn = 0U; } traceRETURN_uxTaskGetTaskNumber( uxReturn ); return uxReturn; } #endif /* configUSE_TRACE_FACILITY */ /*-----------------------------------------------------------*/ #if ( configUSE_TRACE_FACILITY == 1 ) void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle ) { TCB_t * pxTCB; traceENTER_vTaskSetTaskNumber( xTask, uxHandle ); if( xTask != NULL ) { pxTCB = xTask; pxTCB->uxTaskNumber = uxHandle; } traceRETURN_vTaskSetTaskNumber(); } #endif /* configUSE_TRACE_FACILITY */ /*-----------------------------------------------------------*/ /* * ----------------------------------------------------------- * The passive idle task. * ---------------------------------------------------------- * * The passive idle task is used for all the additional cores in a SMP * system. There must be only 1 active idle task and the rest are passive * idle tasks. * * The portTASK_FUNCTION() macro is used to allow port/compiler specific * language extensions. The equivalent prototype for this function is: * * void prvPassiveIdleTask( void *pvParameters ); */ #if ( configNUMBER_OF_CORES > 1 ) static portTASK_FUNCTION( prvPassiveIdleTask, pvParameters ) { ( void ) pvParameters; taskYIELD(); for( ; configCONTROL_INFINITE_LOOP(); ) { #if ( configUSE_PREEMPTION == 0 ) { /* If we are not using preemption we keep forcing a task switch to * see if any other task has become available. If we are using * preemption we don't need to do this as any task becoming available * will automatically get the processor anyway. */ taskYIELD(); } #endif /* configUSE_PREEMPTION */ #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) { /* When using preemption tasks of equal priority will be * timesliced. If a task that is sharing the idle priority is ready * to run then the idle task should yield before the end of the * timeslice. * * A critical region is not required here as we are just reading from * the list, and an occasional incorrect value will not matter. If * the ready list at the idle priority contains one more task than the * number of idle tasks, which is equal to the configured numbers of cores * then a task other than the idle task is ready to execute. */ if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES ) { taskYIELD(); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */ #if ( configUSE_PASSIVE_IDLE_HOOK == 1 ) { /* Call the user defined function from within the idle task. This * allows the application designer to add background functionality * without the overhead of a separate task. * * This hook is intended to manage core activity such as disabling cores that go idle. * * NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES, * CALL A FUNCTION THAT MIGHT BLOCK. */ vApplicationPassiveIdleHook(); } #endif /* configUSE_PASSIVE_IDLE_HOOK */ } } #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ /* * ----------------------------------------------------------- * The idle task. * ---------------------------------------------------------- * * The portTASK_FUNCTION() macro is used to allow port/compiler specific * language extensions. The equivalent prototype for this function is: * * void prvIdleTask( void *pvParameters ); * */ static portTASK_FUNCTION( prvIdleTask, pvParameters ) { /* Stop warnings. */ ( void ) pvParameters; /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE * SCHEDULER IS STARTED. **/ /* In case a task that has a secure context deletes itself, in which case * the idle task is responsible for deleting the task's secure context, if * any. */ portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE ); #if ( configNUMBER_OF_CORES > 1 ) { /* SMP all cores start up in the idle task. This initial yield gets the application * tasks started. */ taskYIELD(); } #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ for( ; configCONTROL_INFINITE_LOOP(); ) { /* See if any tasks have deleted themselves - if so then the idle task * is responsible for freeing the deleted task's TCB and stack. */ prvCheckTasksWaitingTermination(); #if ( configUSE_PREEMPTION == 0 ) { /* If we are not using preemption we keep forcing a task switch to * see if any other task has become available. If we are using * preemption we don't need to do this as any task becoming available * will automatically get the processor anyway. */ taskYIELD(); } #endif /* configUSE_PREEMPTION */ #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) { /* When using preemption tasks of equal priority will be * timesliced. If a task that is sharing the idle priority is ready * to run then the idle task should yield before the end of the * timeslice. * * A critical region is not required here as we are just reading from * the list, and an occasional incorrect value will not matter. If * the ready list at the idle priority contains one more task than the * number of idle tasks, which is equal to the configured numbers of cores * then a task other than the idle task is ready to execute. */ if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUMBER_OF_CORES ) { taskYIELD(); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */ #if ( configUSE_IDLE_HOOK == 1 ) { /* Call the user defined function from within the idle task. */ vApplicationIdleHook(); } #endif /* configUSE_IDLE_HOOK */ /* This conditional compilation should use inequality to 0, not equality * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when * user defined low power mode implementations require * configUSE_TICKLESS_IDLE to be set to a value other than 1. */ #if ( configUSE_TICKLESS_IDLE != 0 ) { TickType_t xExpectedIdleTime; /* It is not desirable to suspend then resume the scheduler on * each iteration of the idle task. Therefore, a preliminary * test of the expected idle time is performed without the * scheduler suspended. The result here is not necessarily * valid. */ xExpectedIdleTime = prvGetExpectedIdleTime(); if( xExpectedIdleTime >= ( TickType_t ) configEXPECTED_IDLE_TIME_BEFORE_SLEEP ) { vTaskSuspendAll(); { /* Now the scheduler is suspended, the expected idle * time can be sampled again, and this time its value can * be used. */ configASSERT( xNextTaskUnblockTime >= xTickCount ); xExpectedIdleTime = prvGetExpectedIdleTime(); /* Define the following macro to set xExpectedIdleTime to 0 * if the application does not want * portSUPPRESS_TICKS_AND_SLEEP() to be called. */ configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime ); if( xExpectedIdleTime >= ( TickType_t ) configEXPECTED_IDLE_TIME_BEFORE_SLEEP ) { traceLOW_POWER_IDLE_BEGIN(); portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime ); traceLOW_POWER_IDLE_END(); } else { mtCOVERAGE_TEST_MARKER(); } } ( void ) xTaskResumeAll(); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* configUSE_TICKLESS_IDLE */ #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) ) { /* Call the user defined function from within the idle task. This * allows the application designer to add background functionality * without the overhead of a separate task. * * This hook is intended to manage core activity such as disabling cores that go idle. * * NOTE: vApplicationPassiveIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES, * CALL A FUNCTION THAT MIGHT BLOCK. */ vApplicationPassiveIdleHook(); } #endif /* #if ( ( configNUMBER_OF_CORES > 1 ) && ( configUSE_PASSIVE_IDLE_HOOK == 1 ) ) */ } } /*-----------------------------------------------------------*/ #if ( configUSE_TICKLESS_IDLE != 0 ) eSleepModeStatus eTaskConfirmSleepModeStatus( void ) { #if ( INCLUDE_vTaskSuspend == 1 ) /* The idle task exists in addition to the application tasks. */ const UBaseType_t uxNonApplicationTasks = configNUMBER_OF_CORES; #endif /* INCLUDE_vTaskSuspend */ eSleepModeStatus eReturn = eStandardSleep; traceENTER_eTaskConfirmSleepModeStatus(); /* This function must be called from a critical section. */ if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0U ) { /* A task was made ready while the scheduler was suspended. */ eReturn = eAbortSleep; } else if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE ) { /* A yield was pended while the scheduler was suspended. */ eReturn = eAbortSleep; } else if( xPendedTicks != 0U ) { /* A tick interrupt has already occurred but was held pending * because the scheduler is suspended. */ eReturn = eAbortSleep; } #if ( INCLUDE_vTaskSuspend == 1 ) else if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) ) { /* If all the tasks are in the suspended list (which might mean they * have an infinite block time rather than actually being suspended) * then it is safe to turn all clocks off and just wait for external * interrupts. */ eReturn = eNoTasksWaitingTimeout; } #endif /* INCLUDE_vTaskSuspend */ else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_eTaskConfirmSleepModeStatus( eReturn ); return eReturn; } #endif /* configUSE_TICKLESS_IDLE */ /*-----------------------------------------------------------*/ #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 ) void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void * pvValue ) { TCB_t * pxTCB; traceENTER_vTaskSetThreadLocalStoragePointer( xTaskToSet, xIndex, pvValue ); if( ( xIndex >= 0 ) && ( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) ) { pxTCB = prvGetTCBFromHandle( xTaskToSet ); configASSERT( pxTCB != NULL ); pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue; } traceRETURN_vTaskSetThreadLocalStoragePointer(); } #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */ /*-----------------------------------------------------------*/ #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 ) void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, BaseType_t xIndex ) { void * pvReturn = NULL; TCB_t * pxTCB; traceENTER_pvTaskGetThreadLocalStoragePointer( xTaskToQuery, xIndex ); if( ( xIndex >= 0 ) && ( xIndex < ( BaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS ) ) { pxTCB = prvGetTCBFromHandle( xTaskToQuery ); pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ]; } else { pvReturn = NULL; } traceRETURN_pvTaskGetThreadLocalStoragePointer( pvReturn ); return pvReturn; } #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */ /*-----------------------------------------------------------*/ #if ( portUSING_MPU_WRAPPERS == 1 ) void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify, const MemoryRegion_t * const pxRegions ) { TCB_t * pxTCB; traceENTER_vTaskAllocateMPURegions( xTaskToModify, pxRegions ); /* If null is passed in here then we are modifying the MPU settings of * the calling task. */ pxTCB = prvGetTCBFromHandle( xTaskToModify ); vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), pxRegions, NULL, 0 ); traceRETURN_vTaskAllocateMPURegions(); } #endif /* portUSING_MPU_WRAPPERS */ /*-----------------------------------------------------------*/ static void prvInitialiseTaskLists( void ) { UBaseType_t uxPriority; for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ ) { vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) ); } vListInitialise( &xDelayedTaskList1 ); vListInitialise( &xDelayedTaskList2 ); vListInitialise( &xPendingReadyList ); #if ( INCLUDE_vTaskDelete == 1 ) { vListInitialise( &xTasksWaitingTermination ); } #endif /* INCLUDE_vTaskDelete */ #if ( INCLUDE_vTaskSuspend == 1 ) { vListInitialise( &xSuspendedTaskList ); } #endif /* INCLUDE_vTaskSuspend */ /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList * using list2. */ pxDelayedTaskList = &xDelayedTaskList1; pxOverflowDelayedTaskList = &xDelayedTaskList2; } /*-----------------------------------------------------------*/ static void prvCheckTasksWaitingTermination( void ) { /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/ #if ( INCLUDE_vTaskDelete == 1 ) { TCB_t * pxTCB; /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL() * being called too often in the idle task. */ while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U ) { #if ( configNUMBER_OF_CORES == 1 ) { taskENTER_CRITICAL(); { { /* MISRA Ref 11.5.3 [Void pointer assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); --uxCurrentNumberOfTasks; --uxDeletedTasksWaitingCleanUp; } } taskEXIT_CRITICAL(); prvDeleteTCB( pxTCB ); } #else /* #if( configNUMBER_OF_CORES == 1 ) */ { pxTCB = NULL; taskENTER_CRITICAL(); { /* For SMP, multiple idles can be running simultaneously * and we need to check that other idles did not cleanup while we were * waiting to enter the critical section. */ if( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U ) { /* MISRA Ref 11.5.3 [Void pointer assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING ) { ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); --uxCurrentNumberOfTasks; --uxDeletedTasksWaitingCleanUp; } else { /* The TCB to be deleted still has not yet been switched out * by the scheduler, so we will just exit this loop early and * try again next time. */ taskEXIT_CRITICAL(); break; } } } taskEXIT_CRITICAL(); if( pxTCB != NULL ) { prvDeleteTCB( pxTCB ); } } #endif /* #if( configNUMBER_OF_CORES == 1 ) */ } } #endif /* INCLUDE_vTaskDelete */ } /*-----------------------------------------------------------*/ #if ( configUSE_TRACE_FACILITY == 1 ) void vTaskGetInfo( TaskHandle_t xTask, TaskStatus_t * pxTaskStatus, BaseType_t xGetFreeStackSpace, eTaskState eState ) { TCB_t * pxTCB; traceENTER_vTaskGetInfo( xTask, pxTaskStatus, xGetFreeStackSpace, eState ); /* xTask is NULL then get the state of the calling task. */ pxTCB = prvGetTCBFromHandle( xTask ); pxTaskStatus->xHandle = pxTCB; pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] ); pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority; pxTaskStatus->pxStackBase = pxTCB->pxStack; #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) ) pxTaskStatus->pxTopOfStack = ( StackType_t * ) pxTCB->pxTopOfStack; pxTaskStatus->pxEndOfStack = pxTCB->pxEndOfStack; #endif pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber; #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) { pxTaskStatus->uxCoreAffinityMask = pxTCB->uxCoreAffinityMask; } #endif #if ( configUSE_MUTEXES == 1 ) { pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority; } #else { pxTaskStatus->uxBasePriority = 0; } #endif #if ( configGENERATE_RUN_TIME_STATS == 1 ) { pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter; } #else { pxTaskStatus->ulRunTimeCounter = ( configRUN_TIME_COUNTER_TYPE ) 0; } #endif /* Obtaining the task state is a little fiddly, so is only done if the * value of eState passed into this function is eInvalid - otherwise the * state is just set to whatever is passed in. */ if( eState != eInvalid ) { if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) { pxTaskStatus->eCurrentState = eRunning; } else { pxTaskStatus->eCurrentState = eState; #if ( INCLUDE_vTaskSuspend == 1 ) { /* If the task is in the suspended list then there is a * chance it is actually just blocked indefinitely - so really * it should be reported as being in the Blocked state. */ if( eState == eSuspended ) { vTaskSuspendAll(); { if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) { pxTaskStatus->eCurrentState = eBlocked; } else { BaseType_t x; /* The task does not appear on the event list item of * and of the RTOS objects, but could still be in the * blocked state if it is waiting on its notification * rather than waiting on an object. If not, is * suspended. */ for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ ) { if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION ) { pxTaskStatus->eCurrentState = eBlocked; break; } } } } ( void ) xTaskResumeAll(); } } #endif /* INCLUDE_vTaskSuspend */ /* Tasks can be in pending ready list and other state list at the * same time. These tasks are in ready state no matter what state * list the task is in. */ taskENTER_CRITICAL(); { if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) != pdFALSE ) { pxTaskStatus->eCurrentState = eReady; } } taskEXIT_CRITICAL(); } } else { pxTaskStatus->eCurrentState = eTaskGetState( pxTCB ); } /* Obtaining the stack space takes some time, so the xGetFreeStackSpace * parameter is provided to allow it to be skipped. */ if( xGetFreeStackSpace != pdFALSE ) { #if ( portSTACK_GROWTH > 0 ) { pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack ); } #else { pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack ); } #endif } else { pxTaskStatus->usStackHighWaterMark = 0; } traceRETURN_vTaskGetInfo(); } #endif /* configUSE_TRACE_FACILITY */ /*-----------------------------------------------------------*/ #if ( configUSE_TRACE_FACILITY == 1 ) static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray, List_t * pxList, eTaskState eState ) { configLIST_VOLATILE TCB_t * pxNextTCB; configLIST_VOLATILE TCB_t * pxFirstTCB; UBaseType_t uxTask = 0; if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 ) { /* MISRA Ref 11.5.3 [Void pointer assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /* Populate an TaskStatus_t structure within the * pxTaskStatusArray array for each task that is referenced from * pxList. See the definition of TaskStatus_t in task.h for the * meaning of each TaskStatus_t structure member. */ do { /* MISRA Ref 11.5.3 [Void pointer assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState ); uxTask++; } while( pxNextTCB != pxFirstTCB ); } else { mtCOVERAGE_TEST_MARKER(); } return uxTask; } #endif /* configUSE_TRACE_FACILITY */ /*-----------------------------------------------------------*/ #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) { uint32_t ulCount = 0U; while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE ) { pucStackByte -= portSTACK_GROWTH; ulCount++; } ulCount /= ( uint32_t ) sizeof( StackType_t ); return ( configSTACK_DEPTH_TYPE ) ulCount; } #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the * same except for their return type. Using configSTACK_DEPTH_TYPE allows the * user to determine the return type. It gets around the problem of the value * overflowing on 8-bit types without breaking backward compatibility for * applications that expect an 8-bit return type. */ configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask ) { TCB_t * pxTCB; uint8_t * pucEndOfStack; configSTACK_DEPTH_TYPE uxReturn; traceENTER_uxTaskGetStackHighWaterMark2( xTask ); /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are * the same except for their return type. Using configSTACK_DEPTH_TYPE * allows the user to determine the return type. It gets around the * problem of the value overflowing on 8-bit types without breaking * backward compatibility for applications that expect an 8-bit return * type. */ pxTCB = prvGetTCBFromHandle( xTask ); #if portSTACK_GROWTH < 0 { pucEndOfStack = ( uint8_t * ) pxTCB->pxStack; } #else { pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack; } #endif uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack ); traceRETURN_uxTaskGetStackHighWaterMark2( uxReturn ); return uxReturn; } #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */ /*-----------------------------------------------------------*/ #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask ) { TCB_t * pxTCB; uint8_t * pucEndOfStack; UBaseType_t uxReturn; traceENTER_uxTaskGetStackHighWaterMark( xTask ); pxTCB = prvGetTCBFromHandle( xTask ); #if portSTACK_GROWTH < 0 { pucEndOfStack = ( uint8_t * ) pxTCB->pxStack; } #else { pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack; } #endif uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack ); traceRETURN_uxTaskGetStackHighWaterMark( uxReturn ); return uxReturn; } #endif /* INCLUDE_uxTaskGetStackHighWaterMark */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskDelete == 1 ) static void prvDeleteTCB( TCB_t * pxTCB ) { /* This call is required specifically for the TriCore port. It must be * above the vPortFree() calls. The call is also used by ports/demos that * want to allocate and clean RAM statically. */ portCLEAN_UP_TCB( pxTCB ); #if ( configUSE_C_RUNTIME_TLS_SUPPORT == 1 ) { /* Free up the memory allocated for the task's TLS Block. */ configDEINIT_TLS_BLOCK( pxTCB->xTLSBlock ); } #endif #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) { /* The task can only have been allocated dynamically - free both * the stack and TCB. */ vPortFreeStack( pxTCB->pxStack ); vPortFree( pxTCB ); } #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) { /* The task could have been allocated statically or dynamically, so * check what was statically allocated before trying to free the * memory. */ if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ) { /* Both the stack and TCB were allocated dynamically, so both * must be freed. */ vPortFreeStack( pxTCB->pxStack ); vPortFree( pxTCB ); } else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY ) { /* Only the stack was statically allocated, so the TCB is the * only memory that must be freed. */ vPortFree( pxTCB ); } else { /* Neither the stack nor the TCB were allocated dynamically, so * nothing needs to be freed. */ configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB ); mtCOVERAGE_TEST_MARKER(); } } #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ } #endif /* INCLUDE_vTaskDelete */ /*-----------------------------------------------------------*/ static void prvResetNextTaskUnblockTime( void ) { if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE ) { /* The new current delayed list is empty. Set xNextTaskUnblockTime to * the maximum possible value so it is extremely unlikely that the * if( xTickCount >= xNextTaskUnblockTime ) test will pass until * there is an item in the delayed list. */ xNextTaskUnblockTime = portMAX_DELAY; } else { /* The new current delayed list is not empty, get the value of * the item at the head of the delayed list. This is the time at * which the task at the head of the delayed list should be removed * from the Blocked state. */ xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList ); } } /*-----------------------------------------------------------*/ #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) || ( configNUMBER_OF_CORES > 1 ) #if ( configNUMBER_OF_CORES == 1 ) TaskHandle_t xTaskGetCurrentTaskHandle( void ) { TaskHandle_t xReturn; traceENTER_xTaskGetCurrentTaskHandle(); /* A critical section is not required as this is not called from * an interrupt and the current TCB will always be the same for any * individual execution thread. */ xReturn = pxCurrentTCB; traceRETURN_xTaskGetCurrentTaskHandle( xReturn ); return xReturn; } #else /* #if ( configNUMBER_OF_CORES == 1 ) */ TaskHandle_t xTaskGetCurrentTaskHandle( void ) { TaskHandle_t xReturn; UBaseType_t uxSavedInterruptStatus; traceENTER_xTaskGetCurrentTaskHandle(); uxSavedInterruptStatus = portSET_INTERRUPT_MASK(); { xReturn = pxCurrentTCBs[ portGET_CORE_ID() ]; } portCLEAR_INTERRUPT_MASK( uxSavedInterruptStatus ); traceRETURN_xTaskGetCurrentTaskHandle( xReturn ); return xReturn; } TaskHandle_t xTaskGetCurrentTaskHandleForCore( BaseType_t xCoreID ) { TaskHandle_t xReturn = NULL; traceENTER_xTaskGetCurrentTaskHandleForCore( xCoreID ); if( taskVALID_CORE_ID( xCoreID ) != pdFALSE ) { xReturn = pxCurrentTCBs[ xCoreID ]; } traceRETURN_xTaskGetCurrentTaskHandleForCore( xReturn ); return xReturn; } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) BaseType_t xTaskGetSchedulerState( void ) { BaseType_t xReturn; traceENTER_xTaskGetSchedulerState(); if( xSchedulerRunning == pdFALSE ) { xReturn = taskSCHEDULER_NOT_STARTED; } else { #if ( configNUMBER_OF_CORES > 1 ) taskENTER_CRITICAL(); #endif { if( uxSchedulerSuspended == ( UBaseType_t ) 0U ) { xReturn = taskSCHEDULER_RUNNING; } else { xReturn = taskSCHEDULER_SUSPENDED; } } #if ( configNUMBER_OF_CORES > 1 ) taskEXIT_CRITICAL(); #endif } traceRETURN_xTaskGetSchedulerState( xReturn ); return xReturn; } #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( configUSE_MUTEXES == 1 ) BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder ) { TCB_t * const pxMutexHolderTCB = pxMutexHolder; BaseType_t xReturn = pdFALSE; traceENTER_xTaskPriorityInherit( pxMutexHolder ); /* If the mutex is taken by an interrupt, the mutex holder is NULL. Priority * inheritance is not applied in this scenario. */ if( pxMutexHolder != NULL ) { /* If the holder of the mutex has a priority below the priority of * the task attempting to obtain the mutex then it will temporarily * inherit the priority of the task attempting to obtain the mutex. */ if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority ) { /* Adjust the mutex holder state to account for its new * priority. Only reset the event list item value if the value is * not being used for anything else. */ if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0UL ) ) { listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); } else { mtCOVERAGE_TEST_MARKER(); } /* If the task being modified is in the ready state it will need * to be moved into a new list. */ if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE ) { if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { /* It is known that the task is in its ready list so * there is no need to check again and the port level * reset macro can be called directly. */ portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority ); } else { mtCOVERAGE_TEST_MARKER(); } /* Inherit the priority before being moved into the new list. */ pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority; prvAddTaskToReadyList( pxMutexHolderTCB ); #if ( configNUMBER_OF_CORES > 1 ) { /* The priority of the task is raised. Yield for this task * if it is not running. */ if( taskTASK_IS_RUNNING( pxMutexHolderTCB ) != pdTRUE ) { prvYieldForTask( pxMutexHolderTCB ); } } #endif /* if ( configNUMBER_OF_CORES > 1 ) */ } else { /* Just inherit the priority. */ pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority; } traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority ); /* Inheritance occurred. */ xReturn = pdTRUE; } else { if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority ) { /* The base priority of the mutex holder is lower than the * priority of the task attempting to take the mutex, but the * current priority of the mutex holder is not lower than the * priority of the task attempting to take the mutex. * Therefore the mutex holder must have already inherited a * priority, but inheritance would have occurred if that had * not been the case. */ xReturn = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } } else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_xTaskPriorityInherit( xReturn ); return xReturn; } #endif /* configUSE_MUTEXES */ /*-----------------------------------------------------------*/ #if ( configUSE_MUTEXES == 1 ) BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder ) { TCB_t * const pxTCB = pxMutexHolder; BaseType_t xReturn = pdFALSE; traceENTER_xTaskPriorityDisinherit( pxMutexHolder ); if( pxMutexHolder != NULL ) { /* A task can only have an inherited priority if it holds the mutex. * If the mutex is held by a task then it cannot be given from an * interrupt, and if a mutex is given by the holding task then it must * be the running state task. */ configASSERT( pxTCB == pxCurrentTCB ); configASSERT( pxTCB->uxMutexesHeld ); ( pxTCB->uxMutexesHeld )--; /* Has the holder of the mutex inherited the priority of another * task? */ if( pxTCB->uxPriority != pxTCB->uxBasePriority ) { /* Only disinherit if no other mutexes are held. */ if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 ) { /* A task can only have an inherited priority if it holds * the mutex. If the mutex is held by a task then it cannot be * given from an interrupt, and if a mutex is given by the * holding task then it must be the running state task. Remove * the holding task from the ready list. */ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority ); } else { mtCOVERAGE_TEST_MARKER(); } /* Disinherit the priority before adding the task into the * new ready list. */ traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority ); pxTCB->uxPriority = pxTCB->uxBasePriority; /* Reset the event list item value. It cannot be in use for * any other purpose if this task is running, and it must be * running to give back the mutex. */ listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); prvAddTaskToReadyList( pxTCB ); #if ( configNUMBER_OF_CORES > 1 ) { /* The priority of the task is dropped. Yield the core on * which the task is running. */ if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) { prvYieldCore( pxTCB->xTaskRunState ); } } #endif /* if ( configNUMBER_OF_CORES > 1 ) */ /* Return true to indicate that a context switch is required. * This is only actually required in the corner case whereby * multiple mutexes were held and the mutexes were given back * in an order different to that in which they were taken. * If a context switch did not occur when the first mutex was * returned, even if a task was waiting on it, then a context * switch should occur when the last mutex is returned whether * a task is waiting on it or not. */ xReturn = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_xTaskPriorityDisinherit( xReturn ); return xReturn; } #endif /* configUSE_MUTEXES */ /*-----------------------------------------------------------*/ #if ( configUSE_MUTEXES == 1 ) void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder, UBaseType_t uxHighestPriorityWaitingTask ) { TCB_t * const pxTCB = pxMutexHolder; UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse; const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1; traceENTER_vTaskPriorityDisinheritAfterTimeout( pxMutexHolder, uxHighestPriorityWaitingTask ); if( pxMutexHolder != NULL ) { /* If pxMutexHolder is not NULL then the holder must hold at least * one mutex. */ configASSERT( pxTCB->uxMutexesHeld ); /* Determine the priority to which the priority of the task that * holds the mutex should be set. This will be the greater of the * holding task's base priority and the priority of the highest * priority task that is waiting to obtain the mutex. */ if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask ) { uxPriorityToUse = uxHighestPriorityWaitingTask; } else { uxPriorityToUse = pxTCB->uxBasePriority; } /* Does the priority need to change? */ if( pxTCB->uxPriority != uxPriorityToUse ) { /* Only disinherit if no other mutexes are held. This is a * simplification in the priority inheritance implementation. If * the task that holds the mutex is also holding other mutexes then * the other mutexes may have caused the priority inheritance. */ if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld ) { /* If a task has timed out because it already holds the * mutex it was trying to obtain then it cannot of inherited * its own priority. */ configASSERT( pxTCB != pxCurrentTCB ); /* Disinherit the priority, remembering the previous * priority to facilitate determining the subject task's * state. */ traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse ); uxPriorityUsedOnEntry = pxTCB->uxPriority; pxTCB->uxPriority = uxPriorityToUse; /* Only reset the event list item value if the value is not * being used for anything else. */ if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == ( ( TickType_t ) 0UL ) ) { listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); } else { mtCOVERAGE_TEST_MARKER(); } /* If the running task is not the task that holds the mutex * then the task that holds the mutex could be in either the * Ready, Blocked or Suspended states. Only remove the task * from its current state list if it is in the Ready state as * the task's priority is going to change and there is one * Ready list per priority. */ if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE ) { if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { /* It is known that the task is in its ready list so * there is no need to check again and the port level * reset macro can be called directly. */ portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority ); } else { mtCOVERAGE_TEST_MARKER(); } prvAddTaskToReadyList( pxTCB ); #if ( configNUMBER_OF_CORES > 1 ) { /* The priority of the task is dropped. Yield the core on * which the task is running. */ if( taskTASK_IS_RUNNING( pxTCB ) == pdTRUE ) { prvYieldCore( pxTCB->xTaskRunState ); } } #endif /* if ( configNUMBER_OF_CORES > 1 ) */ } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_vTaskPriorityDisinheritAfterTimeout(); } #endif /* configUSE_MUTEXES */ /*-----------------------------------------------------------*/ #if ( configNUMBER_OF_CORES > 1 ) /* If not in a critical section then yield immediately. * Otherwise set xYieldPendings to true to wait to * yield until exiting the critical section. */ void vTaskYieldWithinAPI( void ) { traceENTER_vTaskYieldWithinAPI(); if( portGET_CRITICAL_NESTING_COUNT() == 0U ) { portYIELD(); } else { xYieldPendings[ portGET_CORE_ID() ] = pdTRUE; } traceRETURN_vTaskYieldWithinAPI(); } #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ /*-----------------------------------------------------------*/ #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) void vTaskEnterCritical( void ) { traceENTER_vTaskEnterCritical(); portDISABLE_INTERRUPTS(); if( xSchedulerRunning != pdFALSE ) { ( pxCurrentTCB->uxCriticalNesting )++; /* This is not the interrupt safe version of the enter critical * function so assert() if it is being called from an interrupt * context. Only API functions that end in "FromISR" can be used in an * interrupt. Only assert if the critical nesting count is 1 to * protect against recursive calls if the assert function also uses a * critical section. */ if( pxCurrentTCB->uxCriticalNesting == 1U ) { portASSERT_IF_IN_ISR(); } } else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_vTaskEnterCritical(); } #endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( configNUMBER_OF_CORES > 1 ) void vTaskEnterCritical( void ) { traceENTER_vTaskEnterCritical(); portDISABLE_INTERRUPTS(); if( xSchedulerRunning != pdFALSE ) { if( portGET_CRITICAL_NESTING_COUNT() == 0U ) { portGET_TASK_LOCK(); portGET_ISR_LOCK(); } portINCREMENT_CRITICAL_NESTING_COUNT(); /* This is not the interrupt safe version of the enter critical * function so assert() if it is being called from an interrupt * context. Only API functions that end in "FromISR" can be used in an * interrupt. Only assert if the critical nesting count is 1 to * protect against recursive calls if the assert function also uses a * critical section. */ if( portGET_CRITICAL_NESTING_COUNT() == 1U ) { portASSERT_IF_IN_ISR(); if( uxSchedulerSuspended == 0U ) { /* The only time there would be a problem is if this is called * before a context switch and vTaskExitCritical() is called * after pxCurrentTCB changes. Therefore this should not be * used within vTaskSwitchContext(). */ prvCheckForRunStateChange(); } } } else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_vTaskEnterCritical(); } #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ /*-----------------------------------------------------------*/ #if ( configNUMBER_OF_CORES > 1 ) UBaseType_t vTaskEnterCriticalFromISR( void ) { UBaseType_t uxSavedInterruptStatus = 0; traceENTER_vTaskEnterCriticalFromISR(); if( xSchedulerRunning != pdFALSE ) { uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); if( portGET_CRITICAL_NESTING_COUNT() == 0U ) { portGET_ISR_LOCK(); } portINCREMENT_CRITICAL_NESTING_COUNT(); } else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_vTaskEnterCriticalFromISR( uxSavedInterruptStatus ); return uxSavedInterruptStatus; } #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ /*-----------------------------------------------------------*/ #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) void vTaskExitCritical( void ) { traceENTER_vTaskExitCritical(); if( xSchedulerRunning != pdFALSE ) { /* If pxCurrentTCB->uxCriticalNesting is zero then this function * does not match a previous call to vTaskEnterCritical(). */ configASSERT( pxCurrentTCB->uxCriticalNesting > 0U ); /* This function should not be called in ISR. Use vTaskExitCriticalFromISR * to exit critical section from ISR. */ portASSERT_IF_IN_ISR(); if( pxCurrentTCB->uxCriticalNesting > 0U ) { ( pxCurrentTCB->uxCriticalNesting )--; if( pxCurrentTCB->uxCriticalNesting == 0U ) { portENABLE_INTERRUPTS(); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_vTaskExitCritical(); } #endif /* #if ( ( portCRITICAL_NESTING_IN_TCB == 1 ) && ( configNUMBER_OF_CORES == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( configNUMBER_OF_CORES > 1 ) void vTaskExitCritical( void ) { traceENTER_vTaskExitCritical(); if( xSchedulerRunning != pdFALSE ) { /* If critical nesting count is zero then this function * does not match a previous call to vTaskEnterCritical(). */ configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U ); /* This function should not be called in ISR. Use vTaskExitCriticalFromISR * to exit critical section from ISR. */ portASSERT_IF_IN_ISR(); if( portGET_CRITICAL_NESTING_COUNT() > 0U ) { portDECREMENT_CRITICAL_NESTING_COUNT(); if( portGET_CRITICAL_NESTING_COUNT() == 0U ) { BaseType_t xYieldCurrentTask; /* Get the xYieldPending stats inside the critical section. */ xYieldCurrentTask = xYieldPendings[ portGET_CORE_ID() ]; portRELEASE_ISR_LOCK(); portRELEASE_TASK_LOCK(); portENABLE_INTERRUPTS(); /* When a task yields in a critical section it just sets * xYieldPending to true. So now that we have exited the * critical section check if xYieldPending is true, and * if so yield. */ if( xYieldCurrentTask != pdFALSE ) { portYIELD(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_vTaskExitCritical(); } #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ /*-----------------------------------------------------------*/ #if ( configNUMBER_OF_CORES > 1 ) void vTaskExitCriticalFromISR( UBaseType_t uxSavedInterruptStatus ) { traceENTER_vTaskExitCriticalFromISR( uxSavedInterruptStatus ); if( xSchedulerRunning != pdFALSE ) { /* If critical nesting count is zero then this function * does not match a previous call to vTaskEnterCritical(). */ configASSERT( portGET_CRITICAL_NESTING_COUNT() > 0U ); if( portGET_CRITICAL_NESTING_COUNT() > 0U ) { portDECREMENT_CRITICAL_NESTING_COUNT(); if( portGET_CRITICAL_NESTING_COUNT() == 0U ) { portRELEASE_ISR_LOCK(); portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_vTaskExitCriticalFromISR(); } #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ /*-----------------------------------------------------------*/ #if ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) static char * prvWriteNameToBuffer( char * pcBuffer, const char * pcTaskName ) { size_t x; /* Start by copying the entire string. */ ( void ) strcpy( pcBuffer, pcTaskName ); /* Pad the end of the string with spaces to ensure columns line up when * printed out. */ for( x = strlen( pcBuffer ); x < ( size_t ) ( ( size_t ) configMAX_TASK_NAME_LEN - 1U ); x++ ) { pcBuffer[ x ] = ' '; } /* Terminate. */ pcBuffer[ x ] = ( char ) 0x00; /* Return the new end of string. */ return &( pcBuffer[ x ] ); } #endif /* ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */ /*-----------------------------------------------------------*/ #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) void vTaskListTasks( char * pcWriteBuffer, size_t uxBufferLength ) { TaskStatus_t * pxTaskStatusArray; size_t uxConsumedBufferLength = 0; size_t uxCharsWrittenBySnprintf; int iSnprintfReturnValue; BaseType_t xOutputBufferFull = pdFALSE; UBaseType_t uxArraySize, x; char cStatus; traceENTER_vTaskListTasks( pcWriteBuffer, uxBufferLength ); /* * PLEASE NOTE: * * This function is provided for convenience only, and is used by many * of the demo applications. Do not consider it to be part of the * scheduler. * * vTaskListTasks() calls uxTaskGetSystemState(), then formats part of the * uxTaskGetSystemState() output into a human readable table that * displays task: names, states, priority, stack usage and task number. * Stack usage specified as the number of unused StackType_t words stack can hold * on top of stack - not the number of bytes. * * vTaskListTasks() has a dependency on the snprintf() C library function that * might bloat the code size, use a lot of stack, and provide different * results on different platforms. An alternative, tiny, third party, * and limited functionality implementation of snprintf() is provided in * many of the FreeRTOS/Demo sub-directories in a file called * printf-stdarg.c (note printf-stdarg.c does not provide a full * snprintf() implementation!). * * It is recommended that production systems call uxTaskGetSystemState() * directly to get access to raw stats data, rather than indirectly * through a call to vTaskListTasks(). */ /* Make sure the write buffer does not contain a string. */ *pcWriteBuffer = ( char ) 0x00; /* Take a snapshot of the number of tasks in case it changes while this * function is executing. */ uxArraySize = uxCurrentNumberOfTasks; /* Allocate an array index for each task. NOTE! if * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will * equate to NULL. */ /* MISRA Ref 11.5.1 [Malloc memory assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); if( pxTaskStatusArray != NULL ) { /* Generate the (binary) data. */ uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL ); /* Create a human readable table from the binary data. */ for( x = 0; x < uxArraySize; x++ ) { switch( pxTaskStatusArray[ x ].eCurrentState ) { case eRunning: cStatus = tskRUNNING_CHAR; break; case eReady: cStatus = tskREADY_CHAR; break; case eBlocked: cStatus = tskBLOCKED_CHAR; break; case eSuspended: cStatus = tskSUSPENDED_CHAR; break; case eDeleted: cStatus = tskDELETED_CHAR; break; case eInvalid: /* Fall through. */ default: /* Should not get here, but it is included * to prevent static checking errors. */ cStatus = ( char ) 0x00; break; } /* Is there enough space in the buffer to hold task name? */ if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength ) { /* Write the task name to the string, padding with spaces so it * can be printed in tabular form more easily. */ pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName ); /* Do not count the terminating null character. */ uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1U ); /* Is there space left in the buffer? -1 is done because snprintf * writes a terminating null character. So we are essentially * checking if the buffer has space to write at least one non-null * character. */ if( uxConsumedBufferLength < ( uxBufferLength - 1U ) ) { /* Write the rest of the string. */ #if ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) /* MISRA Ref 21.6.1 [snprintf for utility] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */ /* coverity[misra_c_2012_rule_21_6_violation] */ iSnprintfReturnValue = snprintf( pcWriteBuffer, uxBufferLength - uxConsumedBufferLength, "\t%c\t%u\t%u\t%u\t0x%x\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber, ( unsigned int ) pxTaskStatusArray[ x ].uxCoreAffinityMask ); #else /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */ /* MISRA Ref 21.6.1 [snprintf for utility] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */ /* coverity[misra_c_2012_rule_21_6_violation] */ iSnprintfReturnValue = snprintf( pcWriteBuffer, uxBufferLength - uxConsumedBufferLength, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); #endif /* ( ( configUSE_CORE_AFFINITY == 1 ) && ( configNUMBER_OF_CORES > 1 ) ) */ uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength ); uxConsumedBufferLength += uxCharsWrittenBySnprintf; pcWriteBuffer += uxCharsWrittenBySnprintf; } else { xOutputBufferFull = pdTRUE; } } else { xOutputBufferFull = pdTRUE; } if( xOutputBufferFull == pdTRUE ) { break; } } /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION * is 0 then vPortFree() will be #defined to nothing. */ vPortFree( pxTaskStatusArray ); } else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_vTaskListTasks(); } #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */ /*----------------------------------------------------------*/ #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configUSE_TRACE_FACILITY == 1 ) ) void vTaskGetRunTimeStatistics( char * pcWriteBuffer, size_t uxBufferLength ) { TaskStatus_t * pxTaskStatusArray; size_t uxConsumedBufferLength = 0; size_t uxCharsWrittenBySnprintf; int iSnprintfReturnValue; BaseType_t xOutputBufferFull = pdFALSE; UBaseType_t uxArraySize, x; configRUN_TIME_COUNTER_TYPE ulTotalTime = 0; configRUN_TIME_COUNTER_TYPE ulStatsAsPercentage; traceENTER_vTaskGetRunTimeStatistics( pcWriteBuffer, uxBufferLength ); /* * PLEASE NOTE: * * This function is provided for convenience only, and is used by many * of the demo applications. Do not consider it to be part of the * scheduler. * * vTaskGetRunTimeStatistics() calls uxTaskGetSystemState(), then formats part * of the uxTaskGetSystemState() output into a human readable table that * displays the amount of time each task has spent in the Running state * in both absolute and percentage terms. * * vTaskGetRunTimeStatistics() has a dependency on the snprintf() C library * function that might bloat the code size, use a lot of stack, and * provide different results on different platforms. An alternative, * tiny, third party, and limited functionality implementation of * snprintf() is provided in many of the FreeRTOS/Demo sub-directories in * a file called printf-stdarg.c (note printf-stdarg.c does not provide * a full snprintf() implementation!). * * It is recommended that production systems call uxTaskGetSystemState() * directly to get access to raw stats data, rather than indirectly * through a call to vTaskGetRunTimeStatistics(). */ /* Make sure the write buffer does not contain a string. */ *pcWriteBuffer = ( char ) 0x00; /* Take a snapshot of the number of tasks in case it changes while this * function is executing. */ uxArraySize = uxCurrentNumberOfTasks; /* Allocate an array index for each task. NOTE! If * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will * equate to NULL. */ /* MISRA Ref 11.5.1 [Malloc memory assignment] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-115 */ /* coverity[misra_c_2012_rule_11_5_violation] */ pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); if( pxTaskStatusArray != NULL ) { /* Generate the (binary) data. */ uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime ); /* For percentage calculations. */ ulTotalTime /= ( ( configRUN_TIME_COUNTER_TYPE ) 100UL ); /* Avoid divide by zero errors. */ if( ulTotalTime > 0UL ) { /* Create a human readable table from the binary data. */ for( x = 0; x < uxArraySize; x++ ) { /* What percentage of the total run time has the task used? * This will always be rounded down to the nearest integer. * ulTotalRunTime has already been divided by 100. */ ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime; /* Is there enough space in the buffer to hold task name? */ if( ( uxConsumedBufferLength + configMAX_TASK_NAME_LEN ) <= uxBufferLength ) { /* Write the task name to the string, padding with * spaces so it can be printed in tabular form more * easily. */ pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName ); /* Do not count the terminating null character. */ uxConsumedBufferLength = uxConsumedBufferLength + ( configMAX_TASK_NAME_LEN - 1U ); /* Is there space left in the buffer? -1 is done because snprintf * writes a terminating null character. So we are essentially * checking if the buffer has space to write at least one non-null * character. */ if( uxConsumedBufferLength < ( uxBufferLength - 1U ) ) { if( ulStatsAsPercentage > 0UL ) { #ifdef portLU_PRINTF_SPECIFIER_REQUIRED { /* MISRA Ref 21.6.1 [snprintf for utility] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */ /* coverity[misra_c_2012_rule_21_6_violation] */ iSnprintfReturnValue = snprintf( pcWriteBuffer, uxBufferLength - uxConsumedBufferLength, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage ); } #else /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */ { /* sizeof( int ) == sizeof( long ) so a smaller * printf() library can be used. */ /* MISRA Ref 21.6.1 [snprintf for utility] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */ /* coverity[misra_c_2012_rule_21_6_violation] */ iSnprintfReturnValue = snprintf( pcWriteBuffer, uxBufferLength - uxConsumedBufferLength, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); } #endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */ } else { /* If the percentage is zero here then the task has * consumed less than 1% of the total run time. */ #ifdef portLU_PRINTF_SPECIFIER_REQUIRED { /* MISRA Ref 21.6.1 [snprintf for utility] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */ /* coverity[misra_c_2012_rule_21_6_violation] */ iSnprintfReturnValue = snprintf( pcWriteBuffer, uxBufferLength - uxConsumedBufferLength, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter ); } #else { /* sizeof( int ) == sizeof( long ) so a smaller * printf() library can be used. */ /* MISRA Ref 21.6.1 [snprintf for utility] */ /* More details at: https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/MISRA.md#rule-216 */ /* coverity[misra_c_2012_rule_21_6_violation] */ iSnprintfReturnValue = snprintf( pcWriteBuffer, uxBufferLength - uxConsumedBufferLength, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); } #endif /* ifdef portLU_PRINTF_SPECIFIER_REQUIRED */ } uxCharsWrittenBySnprintf = prvSnprintfReturnValueToCharsWritten( iSnprintfReturnValue, uxBufferLength - uxConsumedBufferLength ); uxConsumedBufferLength += uxCharsWrittenBySnprintf; pcWriteBuffer += uxCharsWrittenBySnprintf; } else { xOutputBufferFull = pdTRUE; } } else { xOutputBufferFull = pdTRUE; } if( xOutputBufferFull == pdTRUE ) { break; } } } else { mtCOVERAGE_TEST_MARKER(); } /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION * is 0 then vPortFree() will be #defined to nothing. */ vPortFree( pxTaskStatusArray ); } else { mtCOVERAGE_TEST_MARKER(); } traceRETURN_vTaskGetRunTimeStatistics(); } #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */ /*-----------------------------------------------------------*/ TickType_t uxTaskResetEventItemValue( void ) { TickType_t uxReturn; traceENTER_uxTaskResetEventItemValue(); uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) ); /* Reset the event list item to its normal value - so it can be used with * queues and semaphores. */ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); traceRETURN_uxTaskResetEventItemValue( uxReturn ); return uxReturn; } /*-----------------------------------------------------------*/ #if ( configUSE_MUTEXES == 1 ) TaskHandle_t pvTaskIncrementMutexHeldCount( void ) { TCB_t * pxTCB; traceENTER_pvTaskIncrementMutexHeldCount(); pxTCB = pxCurrentTCB; /* If xSemaphoreCreateMutex() is called before any tasks have been created * then pxCurrentTCB will be NULL. */ if( pxTCB != NULL ) { ( pxTCB->uxMutexesHeld )++; } traceRETURN_pvTaskIncrementMutexHeldCount( pxTCB ); return pxTCB; } #endif /* configUSE_MUTEXES */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWaitOn, BaseType_t xClearCountOnExit, TickType_t xTicksToWait ) { uint32_t ulReturn; BaseType_t xAlreadyYielded; traceENTER_ulTaskGenericNotifyTake( uxIndexToWaitOn, xClearCountOnExit, xTicksToWait ); configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES ); taskENTER_CRITICAL(); /* Only block if the notification count is not already non-zero. */ if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] == 0UL ) { /* Mark this task as waiting for a notification. */ pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION; if( xTicksToWait > ( TickType_t ) 0 ) { traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWaitOn ); /* We MUST suspend the scheduler before exiting the critical * section (i.e. before enabling interrupts). * * If we do not do so, a notification sent from an ISR, which * happens after exiting the critical section and before * suspending the scheduler, will get lost. The sequence of * events will be: * 1. Exit critical section. * 2. Interrupt - ISR calls xTaskNotifyFromISR which adds the * task to the Ready list. * 3. Suspend scheduler. * 4. prvAddCurrentTaskToDelayedList moves the task to the * delayed or suspended list. * 5. Resume scheduler does not touch the task (because it is * not on the pendingReady list), effectively losing the * notification from the ISR. * * The same does not happen when we suspend the scheduler before * exiting the critical section. The sequence of events in this * case will be: * 1. Suspend scheduler. * 2. Exit critical section. * 3. Interrupt - ISR calls xTaskNotifyFromISR which adds the * task to the pendingReady list as the scheduler is * suspended. * 4. prvAddCurrentTaskToDelayedList adds the task to delayed or * suspended list. Note that this operation does not nullify * the add to pendingReady list done in the above step because * a different list item, namely xEventListItem, is used for * adding the task to the pendingReady list. In other words, * the task still remains on the pendingReady list. * 5. Resume scheduler moves the task from pendingReady list to * the Ready list. */ vTaskSuspendAll(); { taskEXIT_CRITICAL(); prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE ); } xAlreadyYielded = xTaskResumeAll(); if( xAlreadyYielded == pdFALSE ) { taskYIELD_WITHIN_API(); } else { mtCOVERAGE_TEST_MARKER(); } } else { taskEXIT_CRITICAL(); } } else { taskEXIT_CRITICAL(); } taskENTER_CRITICAL(); { traceTASK_NOTIFY_TAKE( uxIndexToWaitOn ); ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ]; if( ulReturn != 0UL ) { if( xClearCountOnExit != pdFALSE ) { pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ( uint32_t ) 0UL; } else { pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] = ulReturn - ( uint32_t ) 1; } } else { mtCOVERAGE_TEST_MARKER(); } pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION; } taskEXIT_CRITICAL(); traceRETURN_ulTaskGenericNotifyTake( ulReturn ); return ulReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWaitOn, uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t * pulNotificationValue, TickType_t xTicksToWait ) { BaseType_t xReturn, xAlreadyYielded; traceENTER_xTaskGenericNotifyWait( uxIndexToWaitOn, ulBitsToClearOnEntry, ulBitsToClearOnExit, pulNotificationValue, xTicksToWait ); configASSERT( uxIndexToWaitOn < configTASK_NOTIFICATION_ARRAY_ENTRIES ); taskENTER_CRITICAL(); /* Only block if a notification is not already pending. */ if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED ) { /* Clear bits in the task's notification value as bits may get * set by the notifying task or interrupt. This can be used to * clear the value to zero. */ pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnEntry; /* Mark this task as waiting for a notification. */ pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskWAITING_NOTIFICATION; if( xTicksToWait > ( TickType_t ) 0 ) { traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWaitOn ); /* We MUST suspend the scheduler before exiting the critical * section (i.e. before enabling interrupts). * * If we do not do so, a notification sent from an ISR, which * happens after exiting the critical section and before * suspending the scheduler, will get lost. The sequence of * events will be: * 1. Exit critical section. * 2. Interrupt - ISR calls xTaskNotifyFromISR which adds the * task to the Ready list. * 3. Suspend scheduler. * 4. prvAddCurrentTaskToDelayedList moves the task to the * delayed or suspended list. * 5. Resume scheduler does not touch the task (because it is * not on the pendingReady list), effectively losing the * notification from the ISR. * * The same does not happen when we suspend the scheduler before * exiting the critical section. The sequence of events in this * case will be: * 1. Suspend scheduler. * 2. Exit critical section. * 3. Interrupt - ISR calls xTaskNotifyFromISR which adds the * task to the pendingReady list as the scheduler is * suspended. * 4. prvAddCurrentTaskToDelayedList adds the task to delayed or * suspended list. Note that this operation does not nullify * the add to pendingReady list done in the above step because * a different list item, namely xEventListItem, is used for * adding the task to the pendingReady list. In other words, * the task still remains on the pendingReady list. * 5. Resume scheduler moves the task from pendingReady list to * the Ready list. */ vTaskSuspendAll(); { taskEXIT_CRITICAL(); prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE ); } xAlreadyYielded = xTaskResumeAll(); if( xAlreadyYielded == pdFALSE ) { taskYIELD_WITHIN_API(); } else { mtCOVERAGE_TEST_MARKER(); } } else { taskEXIT_CRITICAL(); } } else { taskEXIT_CRITICAL(); } taskENTER_CRITICAL(); { traceTASK_NOTIFY_WAIT( uxIndexToWaitOn ); if( pulNotificationValue != NULL ) { /* Output the current notification value, which may or may not * have changed. */ *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ]; } /* If ucNotifyValue is set then either the task never entered the * blocked state (because a notification was already pending) or the * task unblocked because of a notification. Otherwise the task * unblocked because of a timeout. */ if( pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] != taskNOTIFICATION_RECEIVED ) { /* A notification was not received. */ xReturn = pdFALSE; } else { /* A notification was already pending or a notification was * received while the task was waiting. */ pxCurrentTCB->ulNotifiedValue[ uxIndexToWaitOn ] &= ~ulBitsToClearOnExit; xReturn = pdTRUE; } pxCurrentTCB->ucNotifyState[ uxIndexToWaitOn ] = taskNOT_WAITING_NOTIFICATION; } taskEXIT_CRITICAL(); traceRETURN_xTaskGenericNotifyWait( xReturn ); return xReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t * pulPreviousNotificationValue ) { TCB_t * pxTCB; BaseType_t xReturn = pdPASS; uint8_t ucOriginalNotifyState; traceENTER_xTaskGenericNotify( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue ); configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES ); configASSERT( xTaskToNotify ); pxTCB = xTaskToNotify; taskENTER_CRITICAL(); { if( pulPreviousNotificationValue != NULL ) { *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ]; } ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ]; pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED; switch( eAction ) { case eSetBits: pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue; break; case eIncrement: ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++; break; case eSetValueWithOverwrite: pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue; break; case eSetValueWithoutOverwrite: if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED ) { pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue; } else { /* The value could not be written to the task. */ xReturn = pdFAIL; } break; case eNoAction: /* The task is being notified without its notify value being * updated. */ break; default: /* Should not get here if all enums are handled. * Artificially force an assert by testing a value the * compiler can't assume is const. */ configASSERT( xTickCount == ( TickType_t ) 0 ); break; } traceTASK_NOTIFY( uxIndexToNotify ); /* If the task is in the blocked state specifically to wait for a * notification then unblock it now. */ if( ucOriginalNotifyState == taskWAITING_NOTIFICATION ) { listREMOVE_ITEM( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); /* The task should not have been on an event list. */ configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ); #if ( configUSE_TICKLESS_IDLE != 0 ) { /* If a task is blocked waiting for a notification then * xNextTaskUnblockTime might be set to the blocked task's time * out time. If the task is unblocked for a reason other than * a timeout xNextTaskUnblockTime is normally left unchanged, * because it will automatically get reset to a new value when * the tick count equals xNextTaskUnblockTime. However if * tickless idling is used it might be more important to enter * sleep mode at the earliest possible time - so reset * xNextTaskUnblockTime here to ensure it is updated at the * earliest possible time. */ prvResetNextTaskUnblockTime(); } #endif /* Check if the notified task has a priority above the currently * executing task. */ taskYIELD_ANY_CORE_IF_USING_PREEMPTION( pxTCB ); } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL(); traceRETURN_xTaskGenericNotify( xReturn ); return xReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t * pulPreviousNotificationValue, BaseType_t * pxHigherPriorityTaskWoken ) { TCB_t * pxTCB; uint8_t ucOriginalNotifyState; BaseType_t xReturn = pdPASS; UBaseType_t uxSavedInterruptStatus; traceENTER_xTaskGenericNotifyFromISR( xTaskToNotify, uxIndexToNotify, ulValue, eAction, pulPreviousNotificationValue, pxHigherPriorityTaskWoken ); configASSERT( xTaskToNotify ); configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES ); /* RTOS ports that support interrupt nesting have the concept of a * maximum system call (or maximum API call) interrupt priority. * Interrupts that are above the maximum system call priority are keep * permanently enabled, even when the RTOS kernel is in a critical section, * but cannot make any calls to FreeRTOS API functions. If configASSERT() * is defined in FreeRTOSConfig.h then * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion * failure if a FreeRTOS API function is called from an interrupt that has * been assigned a priority above the configured maximum system call * priority. Only FreeRTOS functions that end in FromISR can be called * from interrupts that have been assigned a priority at or (logically) * below the maximum system call interrupt priority. FreeRTOS maintains a * separate interrupt safe API to ensure interrupt entry is as fast and as * simple as possible. More information (albeit Cortex-M specific) is * provided on the following link: * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); pxTCB = xTaskToNotify; uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR(); { if( pulPreviousNotificationValue != NULL ) { *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ]; } ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ]; pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED; switch( eAction ) { case eSetBits: pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue; break; case eIncrement: ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++; break; case eSetValueWithOverwrite: pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue; break; case eSetValueWithoutOverwrite: if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED ) { pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue; } else { /* The value could not be written to the task. */ xReturn = pdFAIL; } break; case eNoAction: /* The task is being notified without its notify value being * updated. */ break; default: /* Should not get here if all enums are handled. * Artificially force an assert by testing a value the * compiler can't assume is const. */ configASSERT( xTickCount == ( TickType_t ) 0 ); break; } traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify ); /* If the task is in the blocked state specifically to wait for a * notification then unblock it now. */ if( ucOriginalNotifyState == taskWAITING_NOTIFICATION ) { /* The task should not have been on an event list. */ configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ); if( uxSchedulerSuspended == ( UBaseType_t ) 0U ) { listREMOVE_ITEM( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); } else { /* The delayed and ready lists cannot be accessed, so hold * this task pending until the scheduler is resumed. */ listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) ); } #if ( configNUMBER_OF_CORES == 1 ) { if( pxTCB->uxPriority > pxCurrentTCB->uxPriority ) { /* The notified task has a priority above the currently * executing task so a yield is required. */ if( pxHigherPriorityTaskWoken != NULL ) { *pxHigherPriorityTaskWoken = pdTRUE; } /* Mark that a yield is pending in case the user is not * using the "xHigherPriorityTaskWoken" parameter to an ISR * safe FreeRTOS function. */ xYieldPendings[ 0 ] = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } #else /* #if ( configNUMBER_OF_CORES == 1 ) */ { #if ( configUSE_PREEMPTION == 1 ) { prvYieldForTask( pxTCB ); if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE ) { if( pxHigherPriorityTaskWoken != NULL ) { *pxHigherPriorityTaskWoken = pdTRUE; } } } #endif /* if ( configUSE_PREEMPTION == 1 ) */ } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ } } taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus ); traceRETURN_xTaskGenericNotifyFromISR( xReturn ); return xReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, BaseType_t * pxHigherPriorityTaskWoken ) { TCB_t * pxTCB; uint8_t ucOriginalNotifyState; UBaseType_t uxSavedInterruptStatus; traceENTER_vTaskGenericNotifyGiveFromISR( xTaskToNotify, uxIndexToNotify, pxHigherPriorityTaskWoken ); configASSERT( xTaskToNotify ); configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES ); /* RTOS ports that support interrupt nesting have the concept of a * maximum system call (or maximum API call) interrupt priority. * Interrupts that are above the maximum system call priority are keep * permanently enabled, even when the RTOS kernel is in a critical section, * but cannot make any calls to FreeRTOS API functions. If configASSERT() * is defined in FreeRTOSConfig.h then * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion * failure if a FreeRTOS API function is called from an interrupt that has * been assigned a priority above the configured maximum system call * priority. Only FreeRTOS functions that end in FromISR can be called * from interrupts that have been assigned a priority at or (logically) * below the maximum system call interrupt priority. FreeRTOS maintains a * separate interrupt safe API to ensure interrupt entry is as fast and as * simple as possible. More information (albeit Cortex-M specific) is * provided on the following link: * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); pxTCB = xTaskToNotify; uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR(); { ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ]; pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED; /* 'Giving' is equivalent to incrementing a count in a counting * semaphore. */ ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++; traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify ); /* If the task is in the blocked state specifically to wait for a * notification then unblock it now. */ if( ucOriginalNotifyState == taskWAITING_NOTIFICATION ) { /* The task should not have been on an event list. */ configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ); if( uxSchedulerSuspended == ( UBaseType_t ) 0U ) { listREMOVE_ITEM( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); } else { /* The delayed and ready lists cannot be accessed, so hold * this task pending until the scheduler is resumed. */ listINSERT_END( &( xPendingReadyList ), &( pxTCB->xEventListItem ) ); } #if ( configNUMBER_OF_CORES == 1 ) { if( pxTCB->uxPriority > pxCurrentTCB->uxPriority ) { /* The notified task has a priority above the currently * executing task so a yield is required. */ if( pxHigherPriorityTaskWoken != NULL ) { *pxHigherPriorityTaskWoken = pdTRUE; } /* Mark that a yield is pending in case the user is not * using the "xHigherPriorityTaskWoken" parameter in an ISR * safe FreeRTOS function. */ xYieldPendings[ 0 ] = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } #else /* #if ( configNUMBER_OF_CORES == 1 ) */ { #if ( configUSE_PREEMPTION == 1 ) { prvYieldForTask( pxTCB ); if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE ) { if( pxHigherPriorityTaskWoken != NULL ) { *pxHigherPriorityTaskWoken = pdTRUE; } } } #endif /* #if ( configUSE_PREEMPTION == 1 ) */ } #endif /* #if ( configNUMBER_OF_CORES == 1 ) */ } } taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus ); traceRETURN_vTaskGenericNotifyGiveFromISR(); } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask, UBaseType_t uxIndexToClear ) { TCB_t * pxTCB; BaseType_t xReturn; traceENTER_xTaskGenericNotifyStateClear( xTask, uxIndexToClear ); configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES ); /* If null is passed in here then it is the calling task that is having * its notification state cleared. */ pxTCB = prvGetTCBFromHandle( xTask ); taskENTER_CRITICAL(); { if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED ) { pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION; xReturn = pdPASS; } else { xReturn = pdFAIL; } } taskEXIT_CRITICAL(); traceRETURN_xTaskGenericNotifyStateClear( xReturn ); return xReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask, UBaseType_t uxIndexToClear, uint32_t ulBitsToClear ) { TCB_t * pxTCB; uint32_t ulReturn; traceENTER_ulTaskGenericNotifyValueClear( xTask, uxIndexToClear, ulBitsToClear ); configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES ); /* If null is passed in here then it is the calling task that is having * its notification state cleared. */ pxTCB = prvGetTCBFromHandle( xTask ); taskENTER_CRITICAL(); { /* Return the notification as it was before the bits were cleared, * then clear the bit mask. */ ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ]; pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear; } taskEXIT_CRITICAL(); traceRETURN_ulTaskGenericNotifyValueClear( ulReturn ); return ulReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configGENERATE_RUN_TIME_STATS == 1 ) configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimeCounter( const TaskHandle_t xTask ) { TCB_t * pxTCB; traceENTER_ulTaskGetRunTimeCounter( xTask ); pxTCB = prvGetTCBFromHandle( xTask ); traceRETURN_ulTaskGetRunTimeCounter( pxTCB->ulRunTimeCounter ); return pxTCB->ulRunTimeCounter; } #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */ /*-----------------------------------------------------------*/ #if ( configGENERATE_RUN_TIME_STATS == 1 ) configRUN_TIME_COUNTER_TYPE ulTaskGetRunTimePercent( const TaskHandle_t xTask ) { TCB_t * pxTCB; configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn; traceENTER_ulTaskGetRunTimePercent( xTask ); ulTotalTime = ( configRUN_TIME_COUNTER_TYPE ) portGET_RUN_TIME_COUNTER_VALUE(); /* For percentage calculations. */ ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100; /* Avoid divide by zero errors. */ if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 ) { pxTCB = prvGetTCBFromHandle( xTask ); ulReturn = pxTCB->ulRunTimeCounter / ulTotalTime; } else { ulReturn = 0; } traceRETURN_ulTaskGetRunTimePercent( ulReturn ); return ulReturn; } #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */ /*-----------------------------------------------------------*/ #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimeCounter( void ) { configRUN_TIME_COUNTER_TYPE ulReturn = 0; BaseType_t i; traceENTER_ulTaskGetIdleRunTimeCounter(); for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ ) { ulReturn += xIdleTaskHandles[ i ]->ulRunTimeCounter; } traceRETURN_ulTaskGetIdleRunTimeCounter( ulReturn ); return ulReturn; } #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) configRUN_TIME_COUNTER_TYPE ulTaskGetIdleRunTimePercent( void ) { configRUN_TIME_COUNTER_TYPE ulTotalTime, ulReturn; configRUN_TIME_COUNTER_TYPE ulRunTimeCounter = 0; BaseType_t i; traceENTER_ulTaskGetIdleRunTimePercent(); ulTotalTime = portGET_RUN_TIME_COUNTER_VALUE() * configNUMBER_OF_CORES; /* For percentage calculations. */ ulTotalTime /= ( configRUN_TIME_COUNTER_TYPE ) 100; /* Avoid divide by zero errors. */ if( ulTotalTime > ( configRUN_TIME_COUNTER_TYPE ) 0 ) { for( i = 0; i < ( BaseType_t ) configNUMBER_OF_CORES; i++ ) { ulRunTimeCounter += xIdleTaskHandles[ i ]->ulRunTimeCounter; } ulReturn = ulRunTimeCounter / ulTotalTime; } else { ulReturn = 0; } traceRETURN_ulTaskGetIdleRunTimePercent( ulReturn ); return ulReturn; } #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */ /*-----------------------------------------------------------*/ static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait, const BaseType_t xCanBlockIndefinitely ) { TickType_t xTimeToWake; const TickType_t xConstTickCount = xTickCount; List_t * const pxDelayedList = pxDelayedTaskList; List_t * const pxOverflowDelayedList = pxOverflowDelayedTaskList; #if ( INCLUDE_xTaskAbortDelay == 1 ) { /* About to enter a delayed list, so ensure the ucDelayAborted flag is * reset to pdFALSE so it can be detected as having been set to pdTRUE * when the task leaves the Blocked state. */ pxCurrentTCB->ucDelayAborted = pdFALSE; } #endif /* Remove the task from the ready list before adding it to the blocked list * as the same list item is used for both lists. */ if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { /* The current task must be in a ready list, so there is no need to * check, and the port reset macro can be called directly. */ portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); } else { mtCOVERAGE_TEST_MARKER(); } #if ( INCLUDE_vTaskSuspend == 1 ) { if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) ) { /* Add the task to the suspended task list instead of a delayed task * list to ensure it is not woken by a timing event. It will block * indefinitely. */ listINSERT_END( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) ); } else { /* Calculate the time at which the task should be woken if the event * does not occur. This may overflow but this doesn't matter, the * kernel will manage it correctly. */ xTimeToWake = xConstTickCount + xTicksToWait; /* The list item will be inserted in wake time order. */ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake ); if( xTimeToWake < xConstTickCount ) { /* Wake time has overflowed. Place this item in the overflow * list. */ traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST(); vListInsert( pxOverflowDelayedList, &( pxCurrentTCB->xStateListItem ) ); } else { /* The wake time has not overflowed, so the current block list * is used. */ traceMOVED_TASK_TO_DELAYED_LIST(); vListInsert( pxDelayedList, &( pxCurrentTCB->xStateListItem ) ); /* If the task entering the blocked state was placed at the * head of the list of blocked tasks then xNextTaskUnblockTime * needs to be updated too. */ if( xTimeToWake < xNextTaskUnblockTime ) { xNextTaskUnblockTime = xTimeToWake; } else { mtCOVERAGE_TEST_MARKER(); } } } } #else /* INCLUDE_vTaskSuspend */ { /* Calculate the time at which the task should be woken if the event * does not occur. This may overflow but this doesn't matter, the kernel * will manage it correctly. */ xTimeToWake = xConstTickCount + xTicksToWait; /* The list item will be inserted in wake time order. */ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake ); if( xTimeToWake < xConstTickCount ) { traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST(); /* Wake time has overflowed. Place this item in the overflow list. */ vListInsert( pxOverflowDelayedList, &( pxCurrentTCB->xStateListItem ) ); } else { traceMOVED_TASK_TO_DELAYED_LIST(); /* The wake time has not overflowed, so the current block list is used. */ vListInsert( pxDelayedList, &( pxCurrentTCB->xStateListItem ) ); /* If the task entering the blocked state was placed at the head of the * list of blocked tasks then xNextTaskUnblockTime needs to be updated * too. */ if( xTimeToWake < xNextTaskUnblockTime ) { xNextTaskUnblockTime = xTimeToWake; } else { mtCOVERAGE_TEST_MARKER(); } } /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */ ( void ) xCanBlockIndefinitely; } #endif /* INCLUDE_vTaskSuspend */ } /*-----------------------------------------------------------*/ #if ( portUSING_MPU_WRAPPERS == 1 ) xMPU_SETTINGS * xTaskGetMPUSettings( TaskHandle_t xTask ) { TCB_t * pxTCB; traceENTER_xTaskGetMPUSettings( xTask ); pxTCB = prvGetTCBFromHandle( xTask ); traceRETURN_xTaskGetMPUSettings( &( pxTCB->xMPUSettings ) ); return &( pxTCB->xMPUSettings ); } #endif /* portUSING_MPU_WRAPPERS */ /*-----------------------------------------------------------*/ /* Code below here allows additional code to be inserted into this source file, * especially where access to file scope functions and data is needed (for example * when performing module tests). */ #ifdef FREERTOS_MODULE_TEST #include "tasks_test_access_functions.h" #endif #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) #include "freertos_tasks_c_additions.h" #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT static void freertos_tasks_c_additions_init( void ) { FREERTOS_TASKS_C_ADDITIONS_INIT(); } #endif #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */ /*-----------------------------------------------------------*/ #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) /* * This is the kernel provided implementation of vApplicationGetIdleTaskMemory() * to provide the memory that is used by the Idle task. It is used when * configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide * it's own implementation of vApplicationGetIdleTaskMemory by setting * configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined. */ void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer, StackType_t ** ppxIdleTaskStackBuffer, uint32_t * pulIdleTaskStackSize ) { static StaticTask_t xIdleTaskTCB; static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ]; *ppxIdleTaskTCBBuffer = &( xIdleTaskTCB ); *ppxIdleTaskStackBuffer = &( uxIdleTaskStack[ 0 ] ); *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE; } #if ( configNUMBER_OF_CORES > 1 ) void vApplicationGetPassiveIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer, StackType_t ** ppxIdleTaskStackBuffer, uint32_t * pulIdleTaskStackSize, BaseType_t xPassiveIdleTaskIndex ) { static StaticTask_t xIdleTaskTCBs[ configNUMBER_OF_CORES - 1 ]; static StackType_t uxIdleTaskStacks[ configNUMBER_OF_CORES - 1 ][ configMINIMAL_STACK_SIZE ]; *ppxIdleTaskTCBBuffer = &( xIdleTaskTCBs[ xPassiveIdleTaskIndex ] ); *ppxIdleTaskStackBuffer = &( uxIdleTaskStacks[ xPassiveIdleTaskIndex ][ 0 ] ); *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE; } #endif /* #if ( configNUMBER_OF_CORES > 1 ) */ #endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */ /*-----------------------------------------------------------*/ #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) /* * This is the kernel provided implementation of vApplicationGetTimerTaskMemory() * to provide the memory that is used by the Timer service task. It is used when * configKERNEL_PROVIDED_STATIC_MEMORY is set to 1. The application can provide * it's own implementation of vApplicationGetTimerTaskMemory by setting * configKERNEL_PROVIDED_STATIC_MEMORY to 0 or leaving it undefined. */ void vApplicationGetTimerTaskMemory( StaticTask_t ** ppxTimerTaskTCBBuffer, StackType_t ** ppxTimerTaskStackBuffer, uint32_t * pulTimerTaskStackSize ) { static StaticTask_t xTimerTaskTCB; static StackType_t uxTimerTaskStack[ configTIMER_TASK_STACK_DEPTH ]; *ppxTimerTaskTCBBuffer = &( xTimerTaskTCB ); *ppxTimerTaskStackBuffer = &( uxTimerTaskStack[ 0 ] ); *pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH; } #endif /* #if ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configKERNEL_PROVIDED_STATIC_MEMORY == 1 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) */ /*-----------------------------------------------------------*/