/* * Copyright 2015-2021 Arm Limited * SPDX-License-Identifier: Apache-2.0 OR MIT * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * At your option, you may choose to accept this material under either: * 1. The Apache License, Version 2.0, found at , or * 2. The MIT License, found at . */ #ifndef SPIRV_CROSS_HPP #define SPIRV_CROSS_HPP #include "spirv.hpp" #include "spirv_cfg.hpp" #include "spirv_cross_parsed_ir.hpp" namespace SPIRV_CROSS_NAMESPACE { struct Resource { // Resources are identified with their SPIR-V ID. // This is the ID of the OpVariable. ID id; // The type ID of the variable which includes arrays and all type modifications. // This type ID is not suitable for parsing OpMemberDecoration of a struct and other decorations in general // since these modifications typically happen on the base_type_id. TypeID type_id; // The base type of the declared resource. // This type is the base type which ignores pointers and arrays of the type_id. // This is mostly useful to parse decorations of the underlying type. // base_type_id can also be obtained with get_type(get_type(type_id).self). TypeID base_type_id; // The declared name (OpName) of the resource. // For Buffer blocks, the name actually reflects the externally // visible Block name. // // This name can be retrieved again by using either // get_name(id) or get_name(base_type_id) depending if it's a buffer block or not. // // This name can be an empty string in which case get_fallback_name(id) can be // used which obtains a suitable fallback identifier for an ID. std::string name; }; struct BuiltInResource { // This is mostly here to support reflection of builtins such as Position/PointSize/CullDistance/ClipDistance. // This needs to be different from Resource since we can collect builtins from blocks. // A builtin present here does not necessarily mean it's considered an active builtin, // since variable ID "activeness" is only tracked on OpVariable level, not Block members. // For that, update_active_builtins() -> has_active_builtin() can be used to further refine the reflection. spv::BuiltIn builtin; // This is the actual value type of the builtin. // Typically float4, float, array for the gl_PerVertex builtins. // If the builtin is a control point, the control point array type will be stripped away here as appropriate. TypeID value_type_id; // This refers to the base resource which contains the builtin. // If resource is a Block, it can hold multiple builtins, or it might not be a block. // For advanced reflection scenarios, all information in builtin/value_type_id can be deduced, // it's just more convenient this way. Resource resource; }; struct ShaderResources { SmallVector uniform_buffers; SmallVector storage_buffers; SmallVector stage_inputs; SmallVector stage_outputs; SmallVector subpass_inputs; SmallVector storage_images; SmallVector sampled_images; SmallVector atomic_counters; SmallVector acceleration_structures; // There can only be one push constant block, // but keep the vector in case this restriction is lifted in the future. SmallVector push_constant_buffers; // For Vulkan GLSL and HLSL source, // these correspond to separate texture2D and samplers respectively. SmallVector separate_images; SmallVector separate_samplers; SmallVector builtin_inputs; SmallVector builtin_outputs; }; struct CombinedImageSampler { // The ID of the sampler2D variable. VariableID combined_id; // The ID of the texture2D variable. VariableID image_id; // The ID of the sampler variable. VariableID sampler_id; }; struct SpecializationConstant { // The ID of the specialization constant. ConstantID id; // The constant ID of the constant, used in Vulkan during pipeline creation. uint32_t constant_id; }; struct BufferRange { unsigned index; size_t offset; size_t range; }; enum BufferPackingStandard { BufferPackingStd140, BufferPackingStd430, BufferPackingStd140EnhancedLayout, BufferPackingStd430EnhancedLayout, BufferPackingHLSLCbuffer, BufferPackingHLSLCbufferPackOffset, BufferPackingScalar, BufferPackingScalarEnhancedLayout }; struct EntryPoint { std::string name; spv::ExecutionModel execution_model; }; class Compiler { public: friend class CFG; friend class DominatorBuilder; // The constructor takes a buffer of SPIR-V words and parses it. // It will create its own parser, parse the SPIR-V and move the parsed IR // as if you had called the constructors taking ParsedIR directly. explicit Compiler(std::vector ir); Compiler(const uint32_t *ir, size_t word_count); // This is more modular. We can also consume a ParsedIR structure directly, either as a move, or copy. // With copy, we can reuse the same parsed IR for multiple Compiler instances. explicit Compiler(const ParsedIR &ir); explicit Compiler(ParsedIR &&ir); virtual ~Compiler() = default; // After parsing, API users can modify the SPIR-V via reflection and call this // to disassemble the SPIR-V into the desired langauage. // Sub-classes actually implement this. virtual std::string compile(); // Gets the identifier (OpName) of an ID. If not defined, an empty string will be returned. const std::string &get_name(ID id) const; // Applies a decoration to an ID. Effectively injects OpDecorate. void set_decoration(ID id, spv::Decoration decoration, uint32_t argument = 0); void set_decoration_string(ID id, spv::Decoration decoration, const std::string &argument); // Overrides the identifier OpName of an ID. // Identifiers beginning with underscores or identifiers which contain double underscores // are reserved by the implementation. void set_name(ID id, const std::string &name); // Gets a bitmask for the decorations which are applied to ID. // I.e. (1ull << spv::DecorationFoo) | (1ull << spv::DecorationBar) const Bitset &get_decoration_bitset(ID id) const; // Returns whether the decoration has been applied to the ID. bool has_decoration(ID id, spv::Decoration decoration) const; // Gets the value for decorations which take arguments. // If the decoration is a boolean (i.e. spv::DecorationNonWritable), // 1 will be returned. // If decoration doesn't exist or decoration is not recognized, // 0 will be returned. uint32_t get_decoration(ID id, spv::Decoration decoration) const; const std::string &get_decoration_string(ID id, spv::Decoration decoration) const; // Removes the decoration for an ID. void unset_decoration(ID id, spv::Decoration decoration); // Gets the SPIR-V type associated with ID. // Mostly used with Resource::type_id and Resource::base_type_id to parse the underlying type of a resource. const SPIRType &get_type(TypeID id) const; // Gets the SPIR-V type of a variable. const SPIRType &get_type_from_variable(VariableID id) const; // Gets the underlying storage class for an OpVariable. spv::StorageClass get_storage_class(VariableID id) const; // If get_name() is an empty string, get the fallback name which will be used // instead in the disassembled source. virtual const std::string get_fallback_name(ID id) const; // If get_name() of a Block struct is an empty string, get the fallback name. // This needs to be per-variable as multiple variables can use the same block type. virtual const std::string get_block_fallback_name(VariableID id) const; // Given an OpTypeStruct in ID, obtain the identifier for member number "index". // This may be an empty string. const std::string &get_member_name(TypeID id, uint32_t index) const; // Given an OpTypeStruct in ID, obtain the OpMemberDecoration for member number "index". uint32_t get_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const; const std::string &get_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration) const; // Sets the member identifier for OpTypeStruct ID, member number "index". void set_member_name(TypeID id, uint32_t index, const std::string &name); // Returns the qualified member identifier for OpTypeStruct ID, member number "index", // or an empty string if no qualified alias exists const std::string &get_member_qualified_name(TypeID type_id, uint32_t index) const; // Gets the decoration mask for a member of a struct, similar to get_decoration_mask. const Bitset &get_member_decoration_bitset(TypeID id, uint32_t index) const; // Returns whether the decoration has been applied to a member of a struct. bool has_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration) const; // Similar to set_decoration, but for struct members. void set_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration, uint32_t argument = 0); void set_member_decoration_string(TypeID id, uint32_t index, spv::Decoration decoration, const std::string &argument); // Unsets a member decoration, similar to unset_decoration. void unset_member_decoration(TypeID id, uint32_t index, spv::Decoration decoration); // Gets the fallback name for a member, similar to get_fallback_name. virtual const std::string get_fallback_member_name(uint32_t index) const { return join("_", index); } // Returns a vector of which members of a struct are potentially in use by a // SPIR-V shader. The granularity of this analysis is per-member of a struct. // This can be used for Buffer (UBO), BufferBlock/StorageBuffer (SSBO) and PushConstant blocks. // ID is the Resource::id obtained from get_shader_resources(). SmallVector get_active_buffer_ranges(VariableID id) const; // Returns the effective size of a buffer block. size_t get_declared_struct_size(const SPIRType &struct_type) const; // Returns the effective size of a buffer block, with a given array size // for a runtime array. // SSBOs are typically declared as runtime arrays. get_declared_struct_size() will return 0 for the size. // This is not very helpful for applications which might need to know the array stride of its last member. // This can be done through the API, but it is not very intuitive how to accomplish this, so here we provide a helper function // to query the size of the buffer, assuming that the last member has a certain size. // If the buffer does not contain a runtime array, array_size is ignored, and the function will behave as // get_declared_struct_size(). // To get the array stride of the last member, something like: // get_declared_struct_size_runtime_array(type, 1) - get_declared_struct_size_runtime_array(type, 0) will work. size_t get_declared_struct_size_runtime_array(const SPIRType &struct_type, size_t array_size) const; // Returns the effective size of a buffer block struct member. size_t get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const; // Returns a set of all global variables which are statically accessed // by the control flow graph from the current entry point. // Only variables which change the interface for a shader are returned, that is, // variables with storage class of Input, Output, Uniform, UniformConstant, PushConstant and AtomicCounter // storage classes are returned. // // To use the returned set as the filter for which variables are used during compilation, // this set can be moved to set_enabled_interface_variables(). std::unordered_set get_active_interface_variables() const; // Sets the interface variables which are used during compilation. // By default, all variables are used. // Once set, compile() will only consider the set in active_variables. void set_enabled_interface_variables(std::unordered_set active_variables); // Query shader resources, use ids with reflection interface to modify or query binding points, etc. ShaderResources get_shader_resources() const; // Query shader resources, but only return the variables which are part of active_variables. // E.g.: get_shader_resources(get_active_variables()) to only return the variables which are statically // accessed. ShaderResources get_shader_resources(const std::unordered_set &active_variables) const; // Remapped variables are considered built-in variables and a backend will // not emit a declaration for this variable. // This is mostly useful for making use of builtins which are dependent on extensions. void set_remapped_variable_state(VariableID id, bool remap_enable); bool get_remapped_variable_state(VariableID id) const; // For subpassInput variables which are remapped to plain variables, // the number of components in the remapped // variable must be specified as the backing type of subpass inputs are opaque. void set_subpass_input_remapped_components(VariableID id, uint32_t components); uint32_t get_subpass_input_remapped_components(VariableID id) const; // All operations work on the current entry point. // Entry points can be swapped out with set_entry_point(). // Entry points should be set right after the constructor completes as some reflection functions traverse the graph from the entry point. // Resource reflection also depends on the entry point. // By default, the current entry point is set to the first OpEntryPoint which appears in the SPIR-V module. // Some shader languages restrict the names that can be given to entry points, and the // corresponding backend will automatically rename an entry point name, during the call // to compile() if it is illegal. For example, the common entry point name main() is // illegal in MSL, and is renamed to an alternate name by the MSL backend. // Given the original entry point name contained in the SPIR-V, this function returns // the name, as updated by the backend during the call to compile(). If the name is not // illegal, and has not been renamed, or if this function is called before compile(), // this function will simply return the same name. // New variants of entry point query and reflection. // Names for entry points in the SPIR-V module may alias if they belong to different execution models. // To disambiguate, we must pass along with the entry point names the execution model. SmallVector get_entry_points_and_stages() const; void set_entry_point(const std::string &entry, spv::ExecutionModel execution_model); // Renames an entry point from old_name to new_name. // If old_name is currently selected as the current entry point, it will continue to be the current entry point, // albeit with a new name. // get_entry_points() is essentially invalidated at this point. void rename_entry_point(const std::string &old_name, const std::string &new_name, spv::ExecutionModel execution_model); const SPIREntryPoint &get_entry_point(const std::string &name, spv::ExecutionModel execution_model) const; SPIREntryPoint &get_entry_point(const std::string &name, spv::ExecutionModel execution_model); const std::string &get_cleansed_entry_point_name(const std::string &name, spv::ExecutionModel execution_model) const; // Traverses all reachable opcodes and sets active_builtins to a bitmask of all builtin variables which are accessed in the shader. void update_active_builtins(); bool has_active_builtin(spv::BuiltIn builtin, spv::StorageClass storage) const; // Query and modify OpExecutionMode. const Bitset &get_execution_mode_bitset() const; void unset_execution_mode(spv::ExecutionMode mode); void set_execution_mode(spv::ExecutionMode mode, uint32_t arg0 = 0, uint32_t arg1 = 0, uint32_t arg2 = 0); // Gets argument for an execution mode (LocalSize, Invocations, OutputVertices). // For LocalSize or LocalSizeId, the index argument is used to select the dimension (X = 0, Y = 1, Z = 2). // For execution modes which do not have arguments, 0 is returned. // LocalSizeId query returns an ID. If LocalSizeId execution mode is not used, it returns 0. // LocalSize always returns a literal. If execution mode is LocalSizeId, // the literal (spec constant or not) is still returned. uint32_t get_execution_mode_argument(spv::ExecutionMode mode, uint32_t index = 0) const; spv::ExecutionModel get_execution_model() const; bool is_tessellation_shader() const; // In SPIR-V, the compute work group size can be represented by a constant vector, in which case // the LocalSize execution mode is ignored. // // This constant vector can be a constant vector, specialization constant vector, or partly specialized constant vector. // To modify and query work group dimensions which are specialization constants, SPIRConstant values must be modified // directly via get_constant() rather than using LocalSize directly. This function will return which constants should be modified. // // To modify dimensions which are *not* specialization constants, set_execution_mode should be used directly. // Arguments to set_execution_mode which are specialization constants are effectively ignored during compilation. // NOTE: This is somewhat different from how SPIR-V works. In SPIR-V, the constant vector will completely replace LocalSize, // while in this interface, LocalSize is only ignored for specialization constants. // // The specialization constant will be written to x, y and z arguments. // If the component is not a specialization constant, a zeroed out struct will be written. // The return value is the constant ID of the builtin WorkGroupSize, but this is not expected to be useful // for most use cases. // If LocalSizeId is used, there is no uvec3 value representing the workgroup size, so the return value is 0, // but x, y and z are written as normal if the components are specialization constants. uint32_t get_work_group_size_specialization_constants(SpecializationConstant &x, SpecializationConstant &y, SpecializationConstant &z) const; // Analyzes all OpImageFetch (texelFetch) opcodes and checks if there are instances where // said instruction is used without a combined image sampler. // GLSL targets do not support the use of texelFetch without a sampler. // To workaround this, we must inject a dummy sampler which can be used to form a sampler2D at the call-site of // texelFetch as necessary. // // This must be called before build_combined_image_samplers(). // build_combined_image_samplers() may refer to the ID returned by this method if the returned ID is non-zero. // The return value will be the ID of a sampler object if a dummy sampler is necessary, or 0 if no sampler object // is required. // // If the returned ID is non-zero, it can be decorated with set/bindings as desired before calling compile(). // Calling this function also invalidates get_active_interface_variables(), so this should be called // before that function. VariableID build_dummy_sampler_for_combined_images(); // Analyzes all separate image and samplers used from the currently selected entry point, // and re-routes them all to a combined image sampler instead. // This is required to "support" separate image samplers in targets which do not natively support // this feature, like GLSL/ESSL. // // This must be called before compile() if such remapping is desired. // This call will add new sampled images to the SPIR-V, // so it will appear in reflection if get_shader_resources() is called after build_combined_image_samplers. // // If any image/sampler remapping was found, no separate image/samplers will appear in the decompiled output, // but will still appear in reflection. // // The resulting samplers will be void of any decorations like name, descriptor sets and binding points, // so this can be added before compile() if desired. // // Combined image samplers originating from this set are always considered active variables. // Arrays of separate samplers are not supported, but arrays of separate images are supported. // Array of images + sampler -> Array of combined image samplers. void build_combined_image_samplers(); // Gets a remapping for the combined image samplers. const SmallVector &get_combined_image_samplers() const { return combined_image_samplers; } // Set a new variable type remap callback. // The type remapping is designed to allow global interface variable to assume more special types. // A typical example here is to remap sampler2D into samplerExternalOES, which currently isn't supported // directly by SPIR-V. // // In compile() while emitting code, // for every variable that is declared, including function parameters, the callback will be called // and the API user has a chance to change the textual representation of the type used to declare the variable. // The API user can detect special patterns in names to guide the remapping. void set_variable_type_remap_callback(VariableTypeRemapCallback cb) { variable_remap_callback = std::move(cb); } // API for querying which specialization constants exist. // To modify a specialization constant before compile(), use get_constant(constant.id), // then update constants directly in the SPIRConstant data structure. // For composite types, the subconstants can be iterated over and modified. // constant_type is the SPIRType for the specialization constant, // which can be queried to determine which fields in the unions should be poked at. SmallVector get_specialization_constants() const; SPIRConstant &get_constant(ConstantID id); const SPIRConstant &get_constant(ConstantID id) const; uint32_t get_current_id_bound() const { return uint32_t(ir.ids.size()); } // API for querying buffer objects. // The type passed in here should be the base type of a resource, i.e. // get_type(resource.base_type_id) // as decorations are set in the basic Block type. // The type passed in here must have these decorations set, or an exception is raised. // Only UBOs and SSBOs or sub-structs which are part of these buffer types will have these decorations set. uint32_t type_struct_member_offset(const SPIRType &type, uint32_t index) const; uint32_t type_struct_member_array_stride(const SPIRType &type, uint32_t index) const; uint32_t type_struct_member_matrix_stride(const SPIRType &type, uint32_t index) const; // Gets the offset in SPIR-V words (uint32_t) for a decoration which was originally declared in the SPIR-V binary. // The offset will point to one or more uint32_t literals which can be modified in-place before using the SPIR-V binary. // Note that adding or removing decorations using the reflection API will not change the behavior of this function. // If the decoration was declared, sets the word_offset to an offset into the provided SPIR-V binary buffer and returns true, // otherwise, returns false. // If the decoration does not have any value attached to it (e.g. DecorationRelaxedPrecision), this function will also return false. bool get_binary_offset_for_decoration(VariableID id, spv::Decoration decoration, uint32_t &word_offset) const; // HLSL counter buffer reflection interface. // Append/Consume/Increment/Decrement in HLSL is implemented as two "neighbor" buffer objects where // one buffer implements the storage, and a single buffer containing just a lone "int" implements the counter. // To SPIR-V these will be exposed as two separate buffers, but glslang HLSL frontend emits a special indentifier // which lets us link the two buffers together. // Queries if a variable ID is a counter buffer which "belongs" to a regular buffer object. // If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module. // Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will // only return true if OpSource was reported HLSL. // To rely on this functionality, ensure that the SPIR-V module is not stripped. bool buffer_is_hlsl_counter_buffer(VariableID id) const; // Queries if a buffer object has a neighbor "counter" buffer. // If so, the ID of that counter buffer will be returned in counter_id. // If SPV_GOOGLE_hlsl_functionality1 is used, this can be used even with a stripped SPIR-V module. // Otherwise, this query is purely based on OpName identifiers as found in the SPIR-V module, and will // only return true if OpSource was reported HLSL. // To rely on this functionality, ensure that the SPIR-V module is not stripped. bool buffer_get_hlsl_counter_buffer(VariableID id, uint32_t &counter_id) const; // Gets the list of all SPIR-V Capabilities which were declared in the SPIR-V module. const SmallVector &get_declared_capabilities() const; // Gets the list of all SPIR-V extensions which were declared in the SPIR-V module. const SmallVector &get_declared_extensions() const; // When declaring buffer blocks in GLSL, the name declared in the GLSL source // might not be the same as the name declared in the SPIR-V module due to naming conflicts. // In this case, SPIRV-Cross needs to find a fallback-name, and it might only // be possible to know this name after compiling to GLSL. // This is particularly important for HLSL input and UAVs which tends to reuse the same block type // for multiple distinct blocks. For these cases it is not possible to modify the name of the type itself // because it might be unique. Instead, you can use this interface to check after compilation which // name was actually used if your input SPIR-V tends to have this problem. // For other names like remapped names for variables, etc, it's generally enough to query the name of the variables // after compiling, block names are an exception to this rule. // ID is the name of a variable as returned by Resource::id, and must be a variable with a Block-like type. // // This also applies to HLSL cbuffers. std::string get_remapped_declared_block_name(VariableID id) const; // For buffer block variables, get the decorations for that variable. // Sometimes, decorations for buffer blocks are found in member decorations instead // of direct decorations on the variable itself. // The most common use here is to check if a buffer is readonly or writeonly. Bitset get_buffer_block_flags(VariableID id) const; // Returns whether the position output is invariant bool is_position_invariant() const { return position_invariant; } protected: const uint32_t *stream(const Instruction &instr) const { // If we're not going to use any arguments, just return nullptr. // We want to avoid case where we return an out of range pointer // that trips debug assertions on some platforms. if (!instr.length) return nullptr; if (instr.is_embedded()) { auto &embedded = static_cast(instr); assert(embedded.ops.size() == instr.length); return embedded.ops.data(); } else { if (instr.offset + instr.length > ir.spirv.size()) SPIRV_CROSS_THROW("Compiler::stream() out of range."); return &ir.spirv[instr.offset]; } } ParsedIR ir; // Marks variables which have global scope and variables which can alias with other variables // (SSBO, image load store, etc) SmallVector global_variables; SmallVector aliased_variables; SPIRFunction *current_function = nullptr; SPIRBlock *current_block = nullptr; uint32_t current_loop_level = 0; std::unordered_set active_interface_variables; bool check_active_interface_variables = false; void add_loop_level(); void set_initializers(SPIRExpression &e) { e.emitted_loop_level = current_loop_level; } template void set_initializers(const T &) { } // If our IDs are out of range here as part of opcodes, throw instead of // undefined behavior. template T &set(uint32_t id, P &&... args) { ir.add_typed_id(static_cast(T::type), id); auto &var = variant_set(ir.ids[id], std::forward

(args)...); var.self = id; set_initializers(var); return var; } template T &get(uint32_t id) { return variant_get(ir.ids[id]); } template T *maybe_get(uint32_t id) { if (id >= ir.ids.size()) return nullptr; else if (ir.ids[id].get_type() == static_cast(T::type)) return &get(id); else return nullptr; } template const T &get(uint32_t id) const { return variant_get(ir.ids[id]); } template const T *maybe_get(uint32_t id) const { if (id >= ir.ids.size()) return nullptr; else if (ir.ids[id].get_type() == static_cast(T::type)) return &get(id); else return nullptr; } // Gets the id of SPIR-V type underlying the given type_id, which might be a pointer. uint32_t get_pointee_type_id(uint32_t type_id) const; // Gets the SPIR-V type underlying the given type, which might be a pointer. const SPIRType &get_pointee_type(const SPIRType &type) const; // Gets the SPIR-V type underlying the given type_id, which might be a pointer. const SPIRType &get_pointee_type(uint32_t type_id) const; // Gets the ID of the SPIR-V type underlying a variable. uint32_t get_variable_data_type_id(const SPIRVariable &var) const; // Gets the SPIR-V type underlying a variable. SPIRType &get_variable_data_type(const SPIRVariable &var); // Gets the SPIR-V type underlying a variable. const SPIRType &get_variable_data_type(const SPIRVariable &var) const; // Gets the SPIR-V element type underlying an array variable. SPIRType &get_variable_element_type(const SPIRVariable &var); // Gets the SPIR-V element type underlying an array variable. const SPIRType &get_variable_element_type(const SPIRVariable &var) const; // Sets the qualified member identifier for OpTypeStruct ID, member number "index". void set_member_qualified_name(uint32_t type_id, uint32_t index, const std::string &name); void set_qualified_name(uint32_t id, const std::string &name); // Returns if the given type refers to a sampled image. bool is_sampled_image_type(const SPIRType &type); const SPIREntryPoint &get_entry_point() const; SPIREntryPoint &get_entry_point(); static bool is_tessellation_shader(spv::ExecutionModel model); virtual std::string to_name(uint32_t id, bool allow_alias = true) const; bool is_builtin_variable(const SPIRVariable &var) const; bool is_builtin_type(const SPIRType &type) const; bool is_hidden_variable(const SPIRVariable &var, bool include_builtins = false) const; bool is_immutable(uint32_t id) const; bool is_member_builtin(const SPIRType &type, uint32_t index, spv::BuiltIn *builtin) const; bool is_scalar(const SPIRType &type) const; bool is_vector(const SPIRType &type) const; bool is_matrix(const SPIRType &type) const; bool is_array(const SPIRType &type) const; uint32_t expression_type_id(uint32_t id) const; const SPIRType &expression_type(uint32_t id) const; bool expression_is_lvalue(uint32_t id) const; bool variable_storage_is_aliased(const SPIRVariable &var); SPIRVariable *maybe_get_backing_variable(uint32_t chain); void register_read(uint32_t expr, uint32_t chain, bool forwarded); void register_write(uint32_t chain); inline bool is_continue(uint32_t next) const { return (ir.block_meta[next] & ParsedIR::BLOCK_META_CONTINUE_BIT) != 0; } inline bool is_single_block_loop(uint32_t next) const { auto &block = get(next); return block.merge == SPIRBlock::MergeLoop && block.continue_block == ID(next); } inline bool is_break(uint32_t next) const { return (ir.block_meta[next] & (ParsedIR::BLOCK_META_LOOP_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT)) != 0; } inline bool is_loop_break(uint32_t next) const { return (ir.block_meta[next] & ParsedIR::BLOCK_META_LOOP_MERGE_BIT) != 0; } inline bool is_conditional(uint32_t next) const { return (ir.block_meta[next] & (ParsedIR::BLOCK_META_SELECTION_MERGE_BIT | ParsedIR::BLOCK_META_MULTISELECT_MERGE_BIT)) != 0; } // Dependency tracking for temporaries read from variables. void flush_dependees(SPIRVariable &var); void flush_all_active_variables(); void flush_control_dependent_expressions(uint32_t block); void flush_all_atomic_capable_variables(); void flush_all_aliased_variables(); void register_global_read_dependencies(const SPIRBlock &func, uint32_t id); void register_global_read_dependencies(const SPIRFunction &func, uint32_t id); std::unordered_set invalid_expressions; void update_name_cache(std::unordered_set &cache, std::string &name); // A variant which takes two sets of names. The secondary is only used to verify there are no collisions, // but the set is not updated when we have found a new name. // Used primarily when adding block interface names. void update_name_cache(std::unordered_set &cache_primary, const std::unordered_set &cache_secondary, std::string &name); bool function_is_pure(const SPIRFunction &func); bool block_is_pure(const SPIRBlock &block); bool execution_is_branchless(const SPIRBlock &from, const SPIRBlock &to) const; bool execution_is_direct_branch(const SPIRBlock &from, const SPIRBlock &to) const; bool execution_is_noop(const SPIRBlock &from, const SPIRBlock &to) const; SPIRBlock::ContinueBlockType continue_block_type(const SPIRBlock &continue_block) const; void force_recompile(); void force_recompile_guarantee_forward_progress(); void clear_force_recompile(); bool is_forcing_recompilation() const; bool is_force_recompile = false; bool is_force_recompile_forward_progress = false; bool block_is_loop_candidate(const SPIRBlock &block, SPIRBlock::Method method) const; bool types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const; void inherit_expression_dependencies(uint32_t dst, uint32_t source); void add_implied_read_expression(SPIRExpression &e, uint32_t source); void add_implied_read_expression(SPIRAccessChain &e, uint32_t source); // For proper multiple entry point support, allow querying if an Input or Output // variable is part of that entry points interface. bool interface_variable_exists_in_entry_point(uint32_t id) const; SmallVector combined_image_samplers; void remap_variable_type_name(const SPIRType &type, const std::string &var_name, std::string &type_name) const { if (variable_remap_callback) variable_remap_callback(type, var_name, type_name); } void set_ir(const ParsedIR &parsed); void set_ir(ParsedIR &&parsed); void parse_fixup(); // Used internally to implement various traversals for queries. struct OpcodeHandler { virtual ~OpcodeHandler() = default; // Return true if traversal should continue. // If false, traversal will end immediately. virtual bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) = 0; virtual bool handle_terminator(const SPIRBlock &) { return true; } virtual bool follow_function_call(const SPIRFunction &) { return true; } virtual void set_current_block(const SPIRBlock &) { } // Called after returning from a function or when entering a block, // can be called multiple times per block, // while set_current_block is only called on block entry. virtual void rearm_current_block(const SPIRBlock &) { } virtual bool begin_function_scope(const uint32_t *, uint32_t) { return true; } virtual bool end_function_scope(const uint32_t *, uint32_t) { return true; } }; struct BufferAccessHandler : OpcodeHandler { BufferAccessHandler(const Compiler &compiler_, SmallVector &ranges_, uint32_t id_) : compiler(compiler_) , ranges(ranges_) , id(id_) { } bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; const Compiler &compiler; SmallVector &ranges; uint32_t id; std::unordered_set seen; }; struct InterfaceVariableAccessHandler : OpcodeHandler { InterfaceVariableAccessHandler(const Compiler &compiler_, std::unordered_set &variables_) : compiler(compiler_) , variables(variables_) { } bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; const Compiler &compiler; std::unordered_set &variables; }; struct CombinedImageSamplerHandler : OpcodeHandler { CombinedImageSamplerHandler(Compiler &compiler_) : compiler(compiler_) { } bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; bool begin_function_scope(const uint32_t *args, uint32_t length) override; bool end_function_scope(const uint32_t *args, uint32_t length) override; Compiler &compiler; // Each function in the call stack needs its own remapping for parameters so we can deduce which global variable each texture/sampler the parameter is statically bound to. std::stack> parameter_remapping; std::stack functions; uint32_t remap_parameter(uint32_t id); void push_remap_parameters(const SPIRFunction &func, const uint32_t *args, uint32_t length); void pop_remap_parameters(); void register_combined_image_sampler(SPIRFunction &caller, VariableID combined_id, VariableID texture_id, VariableID sampler_id, bool depth); }; struct DummySamplerForCombinedImageHandler : OpcodeHandler { DummySamplerForCombinedImageHandler(Compiler &compiler_) : compiler(compiler_) { } bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; Compiler &compiler; bool need_dummy_sampler = false; }; struct ActiveBuiltinHandler : OpcodeHandler { ActiveBuiltinHandler(Compiler &compiler_) : compiler(compiler_) { } bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; Compiler &compiler; void handle_builtin(const SPIRType &type, spv::BuiltIn builtin, const Bitset &decoration_flags); void add_if_builtin(uint32_t id); void add_if_builtin_or_block(uint32_t id); void add_if_builtin(uint32_t id, bool allow_blocks); }; bool traverse_all_reachable_opcodes(const SPIRBlock &block, OpcodeHandler &handler) const; bool traverse_all_reachable_opcodes(const SPIRFunction &block, OpcodeHandler &handler) const; // This must be an ordered data structure so we always pick the same type aliases. SmallVector global_struct_cache; ShaderResources get_shader_resources(const std::unordered_set *active_variables) const; VariableTypeRemapCallback variable_remap_callback; bool get_common_basic_type(const SPIRType &type, SPIRType::BaseType &base_type); std::unordered_set forced_temporaries; std::unordered_set forwarded_temporaries; std::unordered_set suppressed_usage_tracking; std::unordered_set hoisted_temporaries; std::unordered_set forced_invariant_temporaries; Bitset active_input_builtins; Bitset active_output_builtins; uint32_t clip_distance_count = 0; uint32_t cull_distance_count = 0; bool position_invariant = false; void analyze_parameter_preservation( SPIRFunction &entry, const CFG &cfg, const std::unordered_map> &variable_to_blocks, const std::unordered_map> &complete_write_blocks); // If a variable ID or parameter ID is found in this set, a sampler is actually a shadow/comparison sampler. // SPIR-V does not support this distinction, so we must keep track of this information outside the type system. // There might be unrelated IDs found in this set which do not correspond to actual variables. // This set should only be queried for the existence of samplers which are already known to be variables or parameter IDs. // Similar is implemented for images, as well as if subpass inputs are needed. std::unordered_set comparison_ids; bool need_subpass_input = false; // In certain backends, we will need to use a dummy sampler to be able to emit code. // GLSL does not support texelFetch on texture2D objects, but SPIR-V does, // so we need to workaround by having the application inject a dummy sampler. uint32_t dummy_sampler_id = 0; void analyze_image_and_sampler_usage(); struct CombinedImageSamplerDrefHandler : OpcodeHandler { CombinedImageSamplerDrefHandler(Compiler &compiler_) : compiler(compiler_) { } bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; Compiler &compiler; std::unordered_set dref_combined_samplers; }; struct CombinedImageSamplerUsageHandler : OpcodeHandler { CombinedImageSamplerUsageHandler(Compiler &compiler_, const std::unordered_set &dref_combined_samplers_) : compiler(compiler_) , dref_combined_samplers(dref_combined_samplers_) { } bool begin_function_scope(const uint32_t *args, uint32_t length) override; bool handle(spv::Op opcode, const uint32_t *args, uint32_t length) override; Compiler &compiler; const std::unordered_set &dref_combined_samplers; std::unordered_map> dependency_hierarchy; std::unordered_set comparison_ids; void add_hierarchy_to_comparison_ids(uint32_t ids); bool need_subpass_input = false; void add_dependency(uint32_t dst, uint32_t src); }; void build_function_control_flow_graphs_and_analyze(); std::unordered_map> function_cfgs; const CFG &get_cfg_for_current_function() const; const CFG &get_cfg_for_function(uint32_t id) const; struct CFGBuilder : OpcodeHandler { explicit CFGBuilder(Compiler &compiler_); bool follow_function_call(const SPIRFunction &func) override; bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; Compiler &compiler; std::unordered_map> function_cfgs; }; struct AnalyzeVariableScopeAccessHandler : OpcodeHandler { AnalyzeVariableScopeAccessHandler(Compiler &compiler_, SPIRFunction &entry_); bool follow_function_call(const SPIRFunction &) override; void set_current_block(const SPIRBlock &block) override; void notify_variable_access(uint32_t id, uint32_t block); bool id_is_phi_variable(uint32_t id) const; bool id_is_potential_temporary(uint32_t id) const; bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; bool handle_terminator(const SPIRBlock &block) override; Compiler &compiler; SPIRFunction &entry; std::unordered_map> accessed_variables_to_block; std::unordered_map> accessed_temporaries_to_block; std::unordered_map result_id_to_type; std::unordered_map> complete_write_variables_to_block; std::unordered_map> partial_write_variables_to_block; std::unordered_set access_chain_expressions; // Access chains used in multiple blocks mean hoisting all the variables used to construct the access chain as not all backends can use pointers. std::unordered_map> access_chain_children; const SPIRBlock *current_block = nullptr; }; struct StaticExpressionAccessHandler : OpcodeHandler { StaticExpressionAccessHandler(Compiler &compiler_, uint32_t variable_id_); bool follow_function_call(const SPIRFunction &) override; bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; Compiler &compiler; uint32_t variable_id; uint32_t static_expression = 0; uint32_t write_count = 0; }; struct PhysicalBlockMeta { uint32_t alignment = 0; }; struct PhysicalStorageBufferPointerHandler : OpcodeHandler { explicit PhysicalStorageBufferPointerHandler(Compiler &compiler_); bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; Compiler &compiler; std::unordered_set non_block_types; std::unordered_map physical_block_type_meta; std::unordered_map access_chain_to_physical_block; void mark_aligned_access(uint32_t id, const uint32_t *args, uint32_t length); PhysicalBlockMeta *find_block_meta(uint32_t id) const; bool type_is_bda_block_entry(uint32_t type_id) const; void setup_meta_chain(uint32_t type_id, uint32_t var_id); uint32_t get_minimum_scalar_alignment(const SPIRType &type) const; void analyze_non_block_types_from_block(const SPIRType &type); uint32_t get_base_non_block_type_id(uint32_t type_id) const; }; void analyze_non_block_pointer_types(); SmallVector physical_storage_non_block_pointer_types; std::unordered_map physical_storage_type_to_alignment; void analyze_variable_scope(SPIRFunction &function, AnalyzeVariableScopeAccessHandler &handler); void find_function_local_luts(SPIRFunction &function, const AnalyzeVariableScopeAccessHandler &handler, bool single_function); bool may_read_undefined_variable_in_block(const SPIRBlock &block, uint32_t var); // Finds all resources that are written to from inside the critical section, if present. // The critical section is delimited by OpBeginInvocationInterlockEXT and // OpEndInvocationInterlockEXT instructions. In MSL and HLSL, any resources written // while inside the critical section must be placed in a raster order group. struct InterlockedResourceAccessHandler : OpcodeHandler { InterlockedResourceAccessHandler(Compiler &compiler_, uint32_t entry_point_id) : compiler(compiler_) { call_stack.push_back(entry_point_id); } bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; bool begin_function_scope(const uint32_t *args, uint32_t length) override; bool end_function_scope(const uint32_t *args, uint32_t length) override; Compiler &compiler; bool in_crit_sec = false; uint32_t interlock_function_id = 0; bool split_function_case = false; bool control_flow_interlock = false; bool use_critical_section = false; bool call_stack_is_interlocked = false; SmallVector call_stack; void access_potential_resource(uint32_t id); }; struct InterlockedResourceAccessPrepassHandler : OpcodeHandler { InterlockedResourceAccessPrepassHandler(Compiler &compiler_, uint32_t entry_point_id) : compiler(compiler_) { call_stack.push_back(entry_point_id); } void rearm_current_block(const SPIRBlock &block) override; bool handle(spv::Op op, const uint32_t *args, uint32_t length) override; bool begin_function_scope(const uint32_t *args, uint32_t length) override; bool end_function_scope(const uint32_t *args, uint32_t length) override; Compiler &compiler; uint32_t interlock_function_id = 0; uint32_t current_block_id = 0; bool split_function_case = false; bool control_flow_interlock = false; SmallVector call_stack; }; void analyze_interlocked_resource_usage(); // The set of all resources written while inside the critical section, if present. std::unordered_set interlocked_resources; bool interlocked_is_complex = false; void make_constant_null(uint32_t id, uint32_t type); std::unordered_map declared_block_names; bool instruction_to_result_type(uint32_t &result_type, uint32_t &result_id, spv::Op op, const uint32_t *args, uint32_t length); Bitset combined_decoration_for_member(const SPIRType &type, uint32_t index) const; static bool is_desktop_only_format(spv::ImageFormat format); bool is_depth_image(const SPIRType &type, uint32_t id) const; void set_extended_decoration(uint32_t id, ExtendedDecorations decoration, uint32_t value = 0); uint32_t get_extended_decoration(uint32_t id, ExtendedDecorations decoration) const; bool has_extended_decoration(uint32_t id, ExtendedDecorations decoration) const; void unset_extended_decoration(uint32_t id, ExtendedDecorations decoration); void set_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration, uint32_t value = 0); uint32_t get_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const; bool has_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const; void unset_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration); bool type_is_array_of_pointers(const SPIRType &type) const; bool type_is_top_level_physical_pointer(const SPIRType &type) const; bool type_is_block_like(const SPIRType &type) const; bool type_is_opaque_value(const SPIRType &type) const; bool reflection_ssbo_instance_name_is_significant() const; std::string get_remapped_declared_block_name(uint32_t id, bool fallback_prefer_instance_name) const; bool flush_phi_required(BlockID from, BlockID to) const; uint32_t evaluate_spec_constant_u32(const SPIRConstantOp &spec) const; uint32_t evaluate_constant_u32(uint32_t id) const; bool is_vertex_like_shader() const; // Get the correct case list for the OpSwitch, since it can be either a // 32 bit wide condition or a 64 bit, but the type is not embedded in the // instruction itself. const SmallVector &get_case_list(const SPIRBlock &block) const; private: // Used only to implement the old deprecated get_entry_point() interface. const SPIREntryPoint &get_first_entry_point(const std::string &name) const; SPIREntryPoint &get_first_entry_point(const std::string &name); }; } // namespace SPIRV_CROSS_NAMESPACE #endif