/* * Copyright 2016-2021 The Brenwill Workshop Ltd. * SPDX-License-Identifier: Apache-2.0 OR MIT * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * At your option, you may choose to accept this material under either: * 1. The Apache License, Version 2.0, found at , or * 2. The MIT License, found at . */ #include "spirv_msl.hpp" #include "GLSL.std.450.h" #include #include #include using namespace spv; using namespace SPIRV_CROSS_NAMESPACE; using namespace std; static const uint32_t k_unknown_location = ~0u; static const uint32_t k_unknown_component = ~0u; static const char *force_inline = "static inline __attribute__((always_inline))"; CompilerMSL::CompilerMSL(std::vector spirv_) : CompilerGLSL(std::move(spirv_)) { } CompilerMSL::CompilerMSL(const uint32_t *ir_, size_t word_count) : CompilerGLSL(ir_, word_count) { } CompilerMSL::CompilerMSL(const ParsedIR &ir_) : CompilerGLSL(ir_) { } CompilerMSL::CompilerMSL(ParsedIR &&ir_) : CompilerGLSL(std::move(ir_)) { } void CompilerMSL::add_msl_shader_input(const MSLShaderInput &si) { inputs_by_location[{si.location, si.component}] = si; if (si.builtin != BuiltInMax && !inputs_by_builtin.count(si.builtin)) inputs_by_builtin[si.builtin] = si; } void CompilerMSL::add_msl_resource_binding(const MSLResourceBinding &binding) { StageSetBinding tuple = { binding.stage, binding.desc_set, binding.binding }; resource_bindings[tuple] = { binding, false }; // If we might need to pad argument buffer members to positionally align // arg buffer indexes, also maintain a lookup by argument buffer index. if (msl_options.pad_argument_buffer_resources) { StageSetBinding arg_idx_tuple = { binding.stage, binding.desc_set, k_unknown_component }; #define ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(rez) \ arg_idx_tuple.binding = binding.msl_##rez; \ resource_arg_buff_idx_to_binding_number[arg_idx_tuple] = binding.binding switch (binding.basetype) { case SPIRType::Void: case SPIRType::Boolean: case SPIRType::SByte: case SPIRType::UByte: case SPIRType::Short: case SPIRType::UShort: case SPIRType::Int: case SPIRType::UInt: case SPIRType::Int64: case SPIRType::UInt64: case SPIRType::AtomicCounter: case SPIRType::Half: case SPIRType::Float: case SPIRType::Double: ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(buffer); break; case SPIRType::Image: ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(texture); break; case SPIRType::Sampler: ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(sampler); break; case SPIRType::SampledImage: ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(texture); ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP(sampler); break; default: SPIRV_CROSS_THROW("Unexpected argument buffer resource base type. When padding argument buffer elements, " "all descriptor set resources must be supplied with a base type by the app."); } #undef ADD_ARG_IDX_TO_BINDING_NUM_LOOKUP } } void CompilerMSL::add_dynamic_buffer(uint32_t desc_set, uint32_t binding, uint32_t index) { SetBindingPair pair = { desc_set, binding }; buffers_requiring_dynamic_offset[pair] = { index, 0 }; } void CompilerMSL::add_inline_uniform_block(uint32_t desc_set, uint32_t binding) { SetBindingPair pair = { desc_set, binding }; inline_uniform_blocks.insert(pair); } void CompilerMSL::add_discrete_descriptor_set(uint32_t desc_set) { if (desc_set < kMaxArgumentBuffers) argument_buffer_discrete_mask |= 1u << desc_set; } void CompilerMSL::set_argument_buffer_device_address_space(uint32_t desc_set, bool device_storage) { if (desc_set < kMaxArgumentBuffers) { if (device_storage) argument_buffer_device_storage_mask |= 1u << desc_set; else argument_buffer_device_storage_mask &= ~(1u << desc_set); } } bool CompilerMSL::is_msl_shader_input_used(uint32_t location) { // Don't report internal location allocations to app. return location_inputs_in_use.count(location) != 0 && location_inputs_in_use_fallback.count(location) == 0; } uint32_t CompilerMSL::get_automatic_builtin_input_location(spv::BuiltIn builtin) const { auto itr = builtin_to_automatic_input_location.find(builtin); if (itr == builtin_to_automatic_input_location.end()) return k_unknown_location; else return itr->second; } bool CompilerMSL::is_msl_resource_binding_used(ExecutionModel model, uint32_t desc_set, uint32_t binding) const { StageSetBinding tuple = { model, desc_set, binding }; auto itr = resource_bindings.find(tuple); return itr != end(resource_bindings) && itr->second.second; } // Returns the size of the array of resources used by the variable with the specified id. // The returned value is retrieved from the resource binding added using add_msl_resource_binding(). uint32_t CompilerMSL::get_resource_array_size(uint32_t id) const { StageSetBinding tuple = { get_entry_point().model, get_decoration(id, DecorationDescriptorSet), get_decoration(id, DecorationBinding) }; auto itr = resource_bindings.find(tuple); return itr != end(resource_bindings) ? itr->second.first.count : 0; } uint32_t CompilerMSL::get_automatic_msl_resource_binding(uint32_t id) const { return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexPrimary); } uint32_t CompilerMSL::get_automatic_msl_resource_binding_secondary(uint32_t id) const { return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexSecondary); } uint32_t CompilerMSL::get_automatic_msl_resource_binding_tertiary(uint32_t id) const { return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexTertiary); } uint32_t CompilerMSL::get_automatic_msl_resource_binding_quaternary(uint32_t id) const { return get_extended_decoration(id, SPIRVCrossDecorationResourceIndexQuaternary); } void CompilerMSL::set_fragment_output_components(uint32_t location, uint32_t components) { fragment_output_components[location] = components; } bool CompilerMSL::builtin_translates_to_nonarray(spv::BuiltIn builtin) const { return (builtin == BuiltInSampleMask); } void CompilerMSL::build_implicit_builtins() { bool need_sample_pos = active_input_builtins.get(BuiltInSamplePosition); bool need_vertex_params = capture_output_to_buffer && get_execution_model() == ExecutionModelVertex && !msl_options.vertex_for_tessellation; bool need_tesc_params = get_execution_model() == ExecutionModelTessellationControl; bool need_subgroup_mask = active_input_builtins.get(BuiltInSubgroupEqMask) || active_input_builtins.get(BuiltInSubgroupGeMask) || active_input_builtins.get(BuiltInSubgroupGtMask) || active_input_builtins.get(BuiltInSubgroupLeMask) || active_input_builtins.get(BuiltInSubgroupLtMask); bool need_subgroup_ge_mask = !msl_options.is_ios() && (active_input_builtins.get(BuiltInSubgroupGeMask) || active_input_builtins.get(BuiltInSubgroupGtMask)); bool need_multiview = get_execution_model() == ExecutionModelVertex && !msl_options.view_index_from_device_index && msl_options.multiview_layered_rendering && (msl_options.multiview || active_input_builtins.get(BuiltInViewIndex)); bool need_dispatch_base = msl_options.dispatch_base && get_execution_model() == ExecutionModelGLCompute && (active_input_builtins.get(BuiltInWorkgroupId) || active_input_builtins.get(BuiltInGlobalInvocationId)); bool need_grid_params = get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation; bool need_vertex_base_params = need_grid_params && (active_input_builtins.get(BuiltInVertexId) || active_input_builtins.get(BuiltInVertexIndex) || active_input_builtins.get(BuiltInBaseVertex) || active_input_builtins.get(BuiltInInstanceId) || active_input_builtins.get(BuiltInInstanceIndex) || active_input_builtins.get(BuiltInBaseInstance)); bool need_local_invocation_index = msl_options.emulate_subgroups && active_input_builtins.get(BuiltInSubgroupId); bool need_workgroup_size = msl_options.emulate_subgroups && active_input_builtins.get(BuiltInNumSubgroups); if (need_subpass_input || need_sample_pos || need_subgroup_mask || need_vertex_params || need_tesc_params || need_multiview || need_dispatch_base || need_vertex_base_params || need_grid_params || needs_sample_id || needs_subgroup_invocation_id || needs_subgroup_size || has_additional_fixed_sample_mask() || need_local_invocation_index || need_workgroup_size) { bool has_frag_coord = false; bool has_sample_id = false; bool has_vertex_idx = false; bool has_base_vertex = false; bool has_instance_idx = false; bool has_base_instance = false; bool has_invocation_id = false; bool has_primitive_id = false; bool has_subgroup_invocation_id = false; bool has_subgroup_size = false; bool has_view_idx = false; bool has_layer = false; bool has_local_invocation_index = false; bool has_workgroup_size = false; uint32_t workgroup_id_type = 0; ir.for_each_typed_id([&](uint32_t, SPIRVariable &var) { if (var.storage != StorageClassInput && var.storage != StorageClassOutput) return; if (!interface_variable_exists_in_entry_point(var.self)) return; if (!has_decoration(var.self, DecorationBuiltIn)) return; BuiltIn builtin = ir.meta[var.self].decoration.builtin_type; if (var.storage == StorageClassOutput) { if (has_additional_fixed_sample_mask() && builtin == BuiltInSampleMask) { builtin_sample_mask_id = var.self; mark_implicit_builtin(StorageClassOutput, BuiltInSampleMask, var.self); does_shader_write_sample_mask = true; } } if (var.storage != StorageClassInput) return; // Use Metal's native frame-buffer fetch API for subpass inputs. if (need_subpass_input && (!msl_options.use_framebuffer_fetch_subpasses)) { switch (builtin) { case BuiltInFragCoord: mark_implicit_builtin(StorageClassInput, BuiltInFragCoord, var.self); builtin_frag_coord_id = var.self; has_frag_coord = true; break; case BuiltInLayer: if (!msl_options.arrayed_subpass_input || msl_options.multiview) break; mark_implicit_builtin(StorageClassInput, BuiltInLayer, var.self); builtin_layer_id = var.self; has_layer = true; break; case BuiltInViewIndex: if (!msl_options.multiview) break; mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var.self); builtin_view_idx_id = var.self; has_view_idx = true; break; default: break; } } if ((need_sample_pos || needs_sample_id) && builtin == BuiltInSampleId) { builtin_sample_id_id = var.self; mark_implicit_builtin(StorageClassInput, BuiltInSampleId, var.self); has_sample_id = true; } if (need_vertex_params) { switch (builtin) { case BuiltInVertexIndex: builtin_vertex_idx_id = var.self; mark_implicit_builtin(StorageClassInput, BuiltInVertexIndex, var.self); has_vertex_idx = true; break; case BuiltInBaseVertex: builtin_base_vertex_id = var.self; mark_implicit_builtin(StorageClassInput, BuiltInBaseVertex, var.self); has_base_vertex = true; break; case BuiltInInstanceIndex: builtin_instance_idx_id = var.self; mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var.self); has_instance_idx = true; break; case BuiltInBaseInstance: builtin_base_instance_id = var.self; mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var.self); has_base_instance = true; break; default: break; } } if (need_tesc_params) { switch (builtin) { case BuiltInInvocationId: builtin_invocation_id_id = var.self; mark_implicit_builtin(StorageClassInput, BuiltInInvocationId, var.self); has_invocation_id = true; break; case BuiltInPrimitiveId: builtin_primitive_id_id = var.self; mark_implicit_builtin(StorageClassInput, BuiltInPrimitiveId, var.self); has_primitive_id = true; break; default: break; } } if ((need_subgroup_mask || needs_subgroup_invocation_id) && builtin == BuiltInSubgroupLocalInvocationId) { builtin_subgroup_invocation_id_id = var.self; mark_implicit_builtin(StorageClassInput, BuiltInSubgroupLocalInvocationId, var.self); has_subgroup_invocation_id = true; } if ((need_subgroup_ge_mask || needs_subgroup_size) && builtin == BuiltInSubgroupSize) { builtin_subgroup_size_id = var.self; mark_implicit_builtin(StorageClassInput, BuiltInSubgroupSize, var.self); has_subgroup_size = true; } if (need_multiview) { switch (builtin) { case BuiltInInstanceIndex: // The view index here is derived from the instance index. builtin_instance_idx_id = var.self; mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var.self); has_instance_idx = true; break; case BuiltInBaseInstance: // If a non-zero base instance is used, we need to adjust for it when calculating the view index. builtin_base_instance_id = var.self; mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var.self); has_base_instance = true; break; case BuiltInViewIndex: builtin_view_idx_id = var.self; mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var.self); has_view_idx = true; break; default: break; } } if (need_local_invocation_index && builtin == BuiltInLocalInvocationIndex) { builtin_local_invocation_index_id = var.self; mark_implicit_builtin(StorageClassInput, BuiltInLocalInvocationIndex, var.self); has_local_invocation_index = true; } if (need_workgroup_size && builtin == BuiltInLocalInvocationId) { builtin_workgroup_size_id = var.self; mark_implicit_builtin(StorageClassInput, BuiltInWorkgroupSize, var.self); has_workgroup_size = true; } // The base workgroup needs to have the same type and vector size // as the workgroup or invocation ID, so keep track of the type that // was used. if (need_dispatch_base && workgroup_id_type == 0 && (builtin == BuiltInWorkgroupId || builtin == BuiltInGlobalInvocationId)) workgroup_id_type = var.basetype; }); // Use Metal's native frame-buffer fetch API for subpass inputs. if ((!has_frag_coord || (msl_options.multiview && !has_view_idx) || (msl_options.arrayed_subpass_input && !msl_options.multiview && !has_layer)) && (!msl_options.use_framebuffer_fetch_subpasses) && need_subpass_input) { if (!has_frag_coord) { uint32_t offset = ir.increase_bound_by(3); uint32_t type_id = offset; uint32_t type_ptr_id = offset + 1; uint32_t var_id = offset + 2; // Create gl_FragCoord. SPIRType vec4_type; vec4_type.basetype = SPIRType::Float; vec4_type.width = 32; vec4_type.vecsize = 4; set(type_id, vec4_type); SPIRType vec4_type_ptr; vec4_type_ptr = vec4_type; vec4_type_ptr.pointer = true; vec4_type_ptr.pointer_depth++; vec4_type_ptr.parent_type = type_id; vec4_type_ptr.storage = StorageClassInput; auto &ptr_type = set(type_ptr_id, vec4_type_ptr); ptr_type.self = type_id; set(var_id, type_ptr_id, StorageClassInput); set_decoration(var_id, DecorationBuiltIn, BuiltInFragCoord); builtin_frag_coord_id = var_id; mark_implicit_builtin(StorageClassInput, BuiltInFragCoord, var_id); } if (!has_layer && msl_options.arrayed_subpass_input && !msl_options.multiview) { uint32_t offset = ir.increase_bound_by(2); uint32_t type_ptr_id = offset; uint32_t var_id = offset + 1; // Create gl_Layer. SPIRType uint_type_ptr; uint_type_ptr = get_uint_type(); uint_type_ptr.pointer = true; uint_type_ptr.pointer_depth++; uint_type_ptr.parent_type = get_uint_type_id(); uint_type_ptr.storage = StorageClassInput; auto &ptr_type = set(type_ptr_id, uint_type_ptr); ptr_type.self = get_uint_type_id(); set(var_id, type_ptr_id, StorageClassInput); set_decoration(var_id, DecorationBuiltIn, BuiltInLayer); builtin_layer_id = var_id; mark_implicit_builtin(StorageClassInput, BuiltInLayer, var_id); } if (!has_view_idx && msl_options.multiview) { uint32_t offset = ir.increase_bound_by(2); uint32_t type_ptr_id = offset; uint32_t var_id = offset + 1; // Create gl_ViewIndex. SPIRType uint_type_ptr; uint_type_ptr = get_uint_type(); uint_type_ptr.pointer = true; uint_type_ptr.pointer_depth++; uint_type_ptr.parent_type = get_uint_type_id(); uint_type_ptr.storage = StorageClassInput; auto &ptr_type = set(type_ptr_id, uint_type_ptr); ptr_type.self = get_uint_type_id(); set(var_id, type_ptr_id, StorageClassInput); set_decoration(var_id, DecorationBuiltIn, BuiltInViewIndex); builtin_view_idx_id = var_id; mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var_id); } } if (!has_sample_id && (need_sample_pos || needs_sample_id)) { uint32_t offset = ir.increase_bound_by(2); uint32_t type_ptr_id = offset; uint32_t var_id = offset + 1; // Create gl_SampleID. SPIRType uint_type_ptr; uint_type_ptr = get_uint_type(); uint_type_ptr.pointer = true; uint_type_ptr.pointer_depth++; uint_type_ptr.parent_type = get_uint_type_id(); uint_type_ptr.storage = StorageClassInput; auto &ptr_type = set(type_ptr_id, uint_type_ptr); ptr_type.self = get_uint_type_id(); set(var_id, type_ptr_id, StorageClassInput); set_decoration(var_id, DecorationBuiltIn, BuiltInSampleId); builtin_sample_id_id = var_id; mark_implicit_builtin(StorageClassInput, BuiltInSampleId, var_id); } if ((need_vertex_params && (!has_vertex_idx || !has_base_vertex || !has_instance_idx || !has_base_instance)) || (need_multiview && (!has_instance_idx || !has_base_instance || !has_view_idx))) { uint32_t type_ptr_id = ir.increase_bound_by(1); SPIRType uint_type_ptr; uint_type_ptr = get_uint_type(); uint_type_ptr.pointer = true; uint_type_ptr.pointer_depth++; uint_type_ptr.parent_type = get_uint_type_id(); uint_type_ptr.storage = StorageClassInput; auto &ptr_type = set(type_ptr_id, uint_type_ptr); ptr_type.self = get_uint_type_id(); if (need_vertex_params && !has_vertex_idx) { uint32_t var_id = ir.increase_bound_by(1); // Create gl_VertexIndex. set(var_id, type_ptr_id, StorageClassInput); set_decoration(var_id, DecorationBuiltIn, BuiltInVertexIndex); builtin_vertex_idx_id = var_id; mark_implicit_builtin(StorageClassInput, BuiltInVertexIndex, var_id); } if (need_vertex_params && !has_base_vertex) { uint32_t var_id = ir.increase_bound_by(1); // Create gl_BaseVertex. set(var_id, type_ptr_id, StorageClassInput); set_decoration(var_id, DecorationBuiltIn, BuiltInBaseVertex); builtin_base_vertex_id = var_id; mark_implicit_builtin(StorageClassInput, BuiltInBaseVertex, var_id); } if (!has_instance_idx) // Needed by both multiview and tessellation { uint32_t var_id = ir.increase_bound_by(1); // Create gl_InstanceIndex. set(var_id, type_ptr_id, StorageClassInput); set_decoration(var_id, DecorationBuiltIn, BuiltInInstanceIndex); builtin_instance_idx_id = var_id; mark_implicit_builtin(StorageClassInput, BuiltInInstanceIndex, var_id); } if (!has_base_instance) // Needed by both multiview and tessellation { uint32_t var_id = ir.increase_bound_by(1); // Create gl_BaseInstance. set(var_id, type_ptr_id, StorageClassInput); set_decoration(var_id, DecorationBuiltIn, BuiltInBaseInstance); builtin_base_instance_id = var_id; mark_implicit_builtin(StorageClassInput, BuiltInBaseInstance, var_id); } if (need_multiview) { // Multiview shaders are not allowed to write to gl_Layer, ostensibly because // it is implicitly written from gl_ViewIndex, but we have to do that explicitly. // Note that we can't just abuse gl_ViewIndex for this purpose: it's an input, but // gl_Layer is an output in vertex-pipeline shaders. uint32_t type_ptr_out_id = ir.increase_bound_by(2); SPIRType uint_type_ptr_out; uint_type_ptr_out = get_uint_type(); uint_type_ptr_out.pointer = true; uint_type_ptr_out.pointer_depth++; uint_type_ptr_out.parent_type = get_uint_type_id(); uint_type_ptr_out.storage = StorageClassOutput; auto &ptr_out_type = set(type_ptr_out_id, uint_type_ptr_out); ptr_out_type.self = get_uint_type_id(); uint32_t var_id = type_ptr_out_id + 1; set(var_id, type_ptr_out_id, StorageClassOutput); set_decoration(var_id, DecorationBuiltIn, BuiltInLayer); builtin_layer_id = var_id; mark_implicit_builtin(StorageClassOutput, BuiltInLayer, var_id); } if (need_multiview && !has_view_idx) { uint32_t var_id = ir.increase_bound_by(1); // Create gl_ViewIndex. set(var_id, type_ptr_id, StorageClassInput); set_decoration(var_id, DecorationBuiltIn, BuiltInViewIndex); builtin_view_idx_id = var_id; mark_implicit_builtin(StorageClassInput, BuiltInViewIndex, var_id); } } if ((need_tesc_params && (msl_options.multi_patch_workgroup || !has_invocation_id || !has_primitive_id)) || need_grid_params) { uint32_t type_ptr_id = ir.increase_bound_by(1); SPIRType uint_type_ptr; uint_type_ptr = get_uint_type(); uint_type_ptr.pointer = true; uint_type_ptr.pointer_depth++; uint_type_ptr.parent_type = get_uint_type_id(); uint_type_ptr.storage = StorageClassInput; auto &ptr_type = set(type_ptr_id, uint_type_ptr); ptr_type.self = get_uint_type_id(); if (msl_options.multi_patch_workgroup || need_grid_params) { uint32_t var_id = ir.increase_bound_by(1); // Create gl_GlobalInvocationID. set(var_id, type_ptr_id, StorageClassInput); set_decoration(var_id, DecorationBuiltIn, BuiltInGlobalInvocationId); builtin_invocation_id_id = var_id; mark_implicit_builtin(StorageClassInput, BuiltInGlobalInvocationId, var_id); } else if (need_tesc_params && !has_invocation_id) { uint32_t var_id = ir.increase_bound_by(1); // Create gl_InvocationID. set(var_id, type_ptr_id, StorageClassInput); set_decoration(var_id, DecorationBuiltIn, BuiltInInvocationId); builtin_invocation_id_id = var_id; mark_implicit_builtin(StorageClassInput, BuiltInInvocationId, var_id); } if (need_tesc_params && !has_primitive_id) { uint32_t var_id = ir.increase_bound_by(1); // Create gl_PrimitiveID. set(var_id, type_ptr_id, StorageClassInput); set_decoration(var_id, DecorationBuiltIn, BuiltInPrimitiveId); builtin_primitive_id_id = var_id; mark_implicit_builtin(StorageClassInput, BuiltInPrimitiveId, var_id); } if (need_grid_params) { uint32_t var_id = ir.increase_bound_by(1); set(var_id, build_extended_vector_type(get_uint_type_id(), 3), StorageClassInput); set_extended_decoration(var_id, SPIRVCrossDecorationBuiltInStageInputSize); get_entry_point().interface_variables.push_back(var_id); set_name(var_id, "spvStageInputSize"); builtin_stage_input_size_id = var_id; } } if (!has_subgroup_invocation_id && (need_subgroup_mask || needs_subgroup_invocation_id)) { uint32_t offset = ir.increase_bound_by(2); uint32_t type_ptr_id = offset; uint32_t var_id = offset + 1; // Create gl_SubgroupInvocationID. SPIRType uint_type_ptr; uint_type_ptr = get_uint_type(); uint_type_ptr.pointer = true; uint_type_ptr.pointer_depth++; uint_type_ptr.parent_type = get_uint_type_id(); uint_type_ptr.storage = StorageClassInput; auto &ptr_type = set(type_ptr_id, uint_type_ptr); ptr_type.self = get_uint_type_id(); set(var_id, type_ptr_id, StorageClassInput); set_decoration(var_id, DecorationBuiltIn, BuiltInSubgroupLocalInvocationId); builtin_subgroup_invocation_id_id = var_id; mark_implicit_builtin(StorageClassInput, BuiltInSubgroupLocalInvocationId, var_id); } if (!has_subgroup_size && (need_subgroup_ge_mask || needs_subgroup_size)) { uint32_t offset = ir.increase_bound_by(2); uint32_t type_ptr_id = offset; uint32_t var_id = offset + 1; // Create gl_SubgroupSize. SPIRType uint_type_ptr; uint_type_ptr = get_uint_type(); uint_type_ptr.pointer = true; uint_type_ptr.pointer_depth++; uint_type_ptr.parent_type = get_uint_type_id(); uint_type_ptr.storage = StorageClassInput; auto &ptr_type = set(type_ptr_id, uint_type_ptr); ptr_type.self = get_uint_type_id(); set(var_id, type_ptr_id, StorageClassInput); set_decoration(var_id, DecorationBuiltIn, BuiltInSubgroupSize); builtin_subgroup_size_id = var_id; mark_implicit_builtin(StorageClassInput, BuiltInSubgroupSize, var_id); } if (need_dispatch_base || need_vertex_base_params) { if (workgroup_id_type == 0) workgroup_id_type = build_extended_vector_type(get_uint_type_id(), 3); uint32_t var_id; if (msl_options.supports_msl_version(1, 2)) { // If we have MSL 1.2, we can (ab)use the [[grid_origin]] builtin // to convey this information and save a buffer slot. uint32_t offset = ir.increase_bound_by(1); var_id = offset; set(var_id, workgroup_id_type, StorageClassInput); set_extended_decoration(var_id, SPIRVCrossDecorationBuiltInDispatchBase); get_entry_point().interface_variables.push_back(var_id); } else { // Otherwise, we need to fall back to a good ol' fashioned buffer. uint32_t offset = ir.increase_bound_by(2); var_id = offset; uint32_t type_id = offset + 1; SPIRType var_type = get(workgroup_id_type); var_type.storage = StorageClassUniform; set(type_id, var_type); set(var_id, type_id, StorageClassUniform); // This should never match anything. set_decoration(var_id, DecorationDescriptorSet, ~(5u)); set_decoration(var_id, DecorationBinding, msl_options.indirect_params_buffer_index); set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.indirect_params_buffer_index); } set_name(var_id, "spvDispatchBase"); builtin_dispatch_base_id = var_id; } if (has_additional_fixed_sample_mask() && !does_shader_write_sample_mask) { uint32_t offset = ir.increase_bound_by(2); uint32_t var_id = offset + 1; // Create gl_SampleMask. SPIRType uint_type_ptr_out; uint_type_ptr_out = get_uint_type(); uint_type_ptr_out.pointer = true; uint_type_ptr_out.pointer_depth++; uint_type_ptr_out.parent_type = get_uint_type_id(); uint_type_ptr_out.storage = StorageClassOutput; auto &ptr_out_type = set(offset, uint_type_ptr_out); ptr_out_type.self = get_uint_type_id(); set(var_id, offset, StorageClassOutput); set_decoration(var_id, DecorationBuiltIn, BuiltInSampleMask); builtin_sample_mask_id = var_id; mark_implicit_builtin(StorageClassOutput, BuiltInSampleMask, var_id); } if (need_local_invocation_index && !has_local_invocation_index) { uint32_t offset = ir.increase_bound_by(2); uint32_t type_ptr_id = offset; uint32_t var_id = offset + 1; // Create gl_LocalInvocationIndex. SPIRType uint_type_ptr; uint_type_ptr = get_uint_type(); uint_type_ptr.pointer = true; uint_type_ptr.pointer_depth++; uint_type_ptr.parent_type = get_uint_type_id(); uint_type_ptr.storage = StorageClassInput; auto &ptr_type = set(type_ptr_id, uint_type_ptr); ptr_type.self = get_uint_type_id(); set(var_id, type_ptr_id, StorageClassInput); set_decoration(var_id, DecorationBuiltIn, BuiltInLocalInvocationIndex); builtin_local_invocation_index_id = var_id; mark_implicit_builtin(StorageClassInput, BuiltInLocalInvocationIndex, var_id); } if (need_workgroup_size && !has_workgroup_size) { uint32_t offset = ir.increase_bound_by(2); uint32_t type_ptr_id = offset; uint32_t var_id = offset + 1; // Create gl_WorkgroupSize. uint32_t type_id = build_extended_vector_type(get_uint_type_id(), 3); SPIRType uint_type_ptr = get(type_id); uint_type_ptr.pointer = true; uint_type_ptr.pointer_depth++; uint_type_ptr.parent_type = type_id; uint_type_ptr.storage = StorageClassInput; auto &ptr_type = set(type_ptr_id, uint_type_ptr); ptr_type.self = type_id; set(var_id, type_ptr_id, StorageClassInput); set_decoration(var_id, DecorationBuiltIn, BuiltInWorkgroupSize); builtin_workgroup_size_id = var_id; mark_implicit_builtin(StorageClassInput, BuiltInWorkgroupSize, var_id); } } if (needs_swizzle_buffer_def) { uint32_t var_id = build_constant_uint_array_pointer(); set_name(var_id, "spvSwizzleConstants"); // This should never match anything. set_decoration(var_id, DecorationDescriptorSet, kSwizzleBufferBinding); set_decoration(var_id, DecorationBinding, msl_options.swizzle_buffer_index); set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.swizzle_buffer_index); swizzle_buffer_id = var_id; } if (!buffers_requiring_array_length.empty()) { uint32_t var_id = build_constant_uint_array_pointer(); set_name(var_id, "spvBufferSizeConstants"); // This should never match anything. set_decoration(var_id, DecorationDescriptorSet, kBufferSizeBufferBinding); set_decoration(var_id, DecorationBinding, msl_options.buffer_size_buffer_index); set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.buffer_size_buffer_index); buffer_size_buffer_id = var_id; } if (needs_view_mask_buffer()) { uint32_t var_id = build_constant_uint_array_pointer(); set_name(var_id, "spvViewMask"); // This should never match anything. set_decoration(var_id, DecorationDescriptorSet, ~(4u)); set_decoration(var_id, DecorationBinding, msl_options.view_mask_buffer_index); set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.view_mask_buffer_index); view_mask_buffer_id = var_id; } if (!buffers_requiring_dynamic_offset.empty()) { uint32_t var_id = build_constant_uint_array_pointer(); set_name(var_id, "spvDynamicOffsets"); // This should never match anything. set_decoration(var_id, DecorationDescriptorSet, ~(5u)); set_decoration(var_id, DecorationBinding, msl_options.dynamic_offsets_buffer_index); set_extended_decoration(var_id, SPIRVCrossDecorationResourceIndexPrimary, msl_options.dynamic_offsets_buffer_index); dynamic_offsets_buffer_id = var_id; } // If we're returning a struct from a vertex-like entry point, we must return a position attribute. bool need_position = (get_execution_model() == ExecutionModelVertex || get_execution_model() == ExecutionModelTessellationEvaluation) && !capture_output_to_buffer && !get_is_rasterization_disabled() && !active_output_builtins.get(BuiltInPosition); if (need_position) { // If we can get away with returning void from entry point, we don't need to care. // If there is at least one other stage output, we need to return [[position]], // so we need to create one if it doesn't appear in the SPIR-V. Before adding the // implicit variable, check if it actually exists already, but just has not been used // or initialized, and if so, mark it as active, and do not create the implicit variable. bool has_output = false; ir.for_each_typed_id([&](uint32_t, SPIRVariable &var) { if (var.storage == StorageClassOutput && interface_variable_exists_in_entry_point(var.self)) { has_output = true; // Check if the var is the Position builtin if (has_decoration(var.self, DecorationBuiltIn) && get_decoration(var.self, DecorationBuiltIn) == BuiltInPosition) active_output_builtins.set(BuiltInPosition); // If the var is a struct, check if any members is the Position builtin auto &var_type = get_variable_element_type(var); if (var_type.basetype == SPIRType::Struct) { auto mbr_cnt = var_type.member_types.size(); for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++) { auto builtin = BuiltInMax; bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin); if (is_builtin && builtin == BuiltInPosition) active_output_builtins.set(BuiltInPosition); } } } }); need_position = has_output && !active_output_builtins.get(BuiltInPosition); } if (need_position) { uint32_t offset = ir.increase_bound_by(3); uint32_t type_id = offset; uint32_t type_ptr_id = offset + 1; uint32_t var_id = offset + 2; // Create gl_Position. SPIRType vec4_type; vec4_type.basetype = SPIRType::Float; vec4_type.width = 32; vec4_type.vecsize = 4; set(type_id, vec4_type); SPIRType vec4_type_ptr; vec4_type_ptr = vec4_type; vec4_type_ptr.pointer = true; vec4_type_ptr.pointer_depth++; vec4_type_ptr.parent_type = type_id; vec4_type_ptr.storage = StorageClassOutput; auto &ptr_type = set(type_ptr_id, vec4_type_ptr); ptr_type.self = type_id; set(var_id, type_ptr_id, StorageClassOutput); set_decoration(var_id, DecorationBuiltIn, BuiltInPosition); mark_implicit_builtin(StorageClassOutput, BuiltInPosition, var_id); } } // Checks if the specified builtin variable (e.g. gl_InstanceIndex) is marked as active. // If not, it marks it as active and forces a recompilation. // This might be used when the optimization of inactive builtins was too optimistic (e.g. when "spvOut" is emitted). void CompilerMSL::ensure_builtin(spv::StorageClass storage, spv::BuiltIn builtin) { Bitset *active_builtins = nullptr; switch (storage) { case StorageClassInput: active_builtins = &active_input_builtins; break; case StorageClassOutput: active_builtins = &active_output_builtins; break; default: break; } // At this point, the specified builtin variable must have already been declared in the entry point. // If not, mark as active and force recompile. if (active_builtins != nullptr && !active_builtins->get(builtin)) { active_builtins->set(builtin); force_recompile(); } } void CompilerMSL::mark_implicit_builtin(StorageClass storage, BuiltIn builtin, uint32_t id) { Bitset *active_builtins = nullptr; switch (storage) { case StorageClassInput: active_builtins = &active_input_builtins; break; case StorageClassOutput: active_builtins = &active_output_builtins; break; default: break; } assert(active_builtins != nullptr); active_builtins->set(builtin); auto &var = get_entry_point().interface_variables; if (find(begin(var), end(var), VariableID(id)) == end(var)) var.push_back(id); } uint32_t CompilerMSL::build_constant_uint_array_pointer() { uint32_t offset = ir.increase_bound_by(3); uint32_t type_ptr_id = offset; uint32_t type_ptr_ptr_id = offset + 1; uint32_t var_id = offset + 2; // Create a buffer to hold extra data, including the swizzle constants. SPIRType uint_type_pointer = get_uint_type(); uint_type_pointer.pointer = true; uint_type_pointer.pointer_depth++; uint_type_pointer.parent_type = get_uint_type_id(); uint_type_pointer.storage = StorageClassUniform; set(type_ptr_id, uint_type_pointer); set_decoration(type_ptr_id, DecorationArrayStride, 4); SPIRType uint_type_pointer2 = uint_type_pointer; uint_type_pointer2.pointer_depth++; uint_type_pointer2.parent_type = type_ptr_id; set(type_ptr_ptr_id, uint_type_pointer2); set(var_id, type_ptr_ptr_id, StorageClassUniformConstant); return var_id; } static string create_sampler_address(const char *prefix, MSLSamplerAddress addr) { switch (addr) { case MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE: return join(prefix, "address::clamp_to_edge"); case MSL_SAMPLER_ADDRESS_CLAMP_TO_ZERO: return join(prefix, "address::clamp_to_zero"); case MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER: return join(prefix, "address::clamp_to_border"); case MSL_SAMPLER_ADDRESS_REPEAT: return join(prefix, "address::repeat"); case MSL_SAMPLER_ADDRESS_MIRRORED_REPEAT: return join(prefix, "address::mirrored_repeat"); default: SPIRV_CROSS_THROW("Invalid sampler addressing mode."); } } SPIRType &CompilerMSL::get_stage_in_struct_type() { auto &si_var = get(stage_in_var_id); return get_variable_data_type(si_var); } SPIRType &CompilerMSL::get_stage_out_struct_type() { auto &so_var = get(stage_out_var_id); return get_variable_data_type(so_var); } SPIRType &CompilerMSL::get_patch_stage_in_struct_type() { auto &si_var = get(patch_stage_in_var_id); return get_variable_data_type(si_var); } SPIRType &CompilerMSL::get_patch_stage_out_struct_type() { auto &so_var = get(patch_stage_out_var_id); return get_variable_data_type(so_var); } std::string CompilerMSL::get_tess_factor_struct_name() { if (get_entry_point().flags.get(ExecutionModeTriangles)) return "MTLTriangleTessellationFactorsHalf"; return "MTLQuadTessellationFactorsHalf"; } SPIRType &CompilerMSL::get_uint_type() { return get(get_uint_type_id()); } uint32_t CompilerMSL::get_uint_type_id() { if (uint_type_id != 0) return uint_type_id; uint_type_id = ir.increase_bound_by(1); SPIRType type; type.basetype = SPIRType::UInt; type.width = 32; set(uint_type_id, type); return uint_type_id; } void CompilerMSL::emit_entry_point_declarations() { // FIXME: Get test coverage here ... // Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries declare_complex_constant_arrays(); // Emit constexpr samplers here. for (auto &samp : constexpr_samplers_by_id) { auto &var = get(samp.first); auto &type = get(var.basetype); if (type.basetype == SPIRType::Sampler) add_resource_name(samp.first); SmallVector args; auto &s = samp.second; if (s.coord != MSL_SAMPLER_COORD_NORMALIZED) args.push_back("coord::pixel"); if (s.min_filter == s.mag_filter) { if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST) args.push_back("filter::linear"); } else { if (s.min_filter != MSL_SAMPLER_FILTER_NEAREST) args.push_back("min_filter::linear"); if (s.mag_filter != MSL_SAMPLER_FILTER_NEAREST) args.push_back("mag_filter::linear"); } switch (s.mip_filter) { case MSL_SAMPLER_MIP_FILTER_NONE: // Default break; case MSL_SAMPLER_MIP_FILTER_NEAREST: args.push_back("mip_filter::nearest"); break; case MSL_SAMPLER_MIP_FILTER_LINEAR: args.push_back("mip_filter::linear"); break; default: SPIRV_CROSS_THROW("Invalid mip filter."); } if (s.s_address == s.t_address && s.s_address == s.r_address) { if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE) args.push_back(create_sampler_address("", s.s_address)); } else { if (s.s_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE) args.push_back(create_sampler_address("s_", s.s_address)); if (s.t_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE) args.push_back(create_sampler_address("t_", s.t_address)); if (s.r_address != MSL_SAMPLER_ADDRESS_CLAMP_TO_EDGE) args.push_back(create_sampler_address("r_", s.r_address)); } if (s.compare_enable) { switch (s.compare_func) { case MSL_SAMPLER_COMPARE_FUNC_ALWAYS: args.push_back("compare_func::always"); break; case MSL_SAMPLER_COMPARE_FUNC_NEVER: args.push_back("compare_func::never"); break; case MSL_SAMPLER_COMPARE_FUNC_EQUAL: args.push_back("compare_func::equal"); break; case MSL_SAMPLER_COMPARE_FUNC_NOT_EQUAL: args.push_back("compare_func::not_equal"); break; case MSL_SAMPLER_COMPARE_FUNC_LESS: args.push_back("compare_func::less"); break; case MSL_SAMPLER_COMPARE_FUNC_LESS_EQUAL: args.push_back("compare_func::less_equal"); break; case MSL_SAMPLER_COMPARE_FUNC_GREATER: args.push_back("compare_func::greater"); break; case MSL_SAMPLER_COMPARE_FUNC_GREATER_EQUAL: args.push_back("compare_func::greater_equal"); break; default: SPIRV_CROSS_THROW("Invalid sampler compare function."); } } if (s.s_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER || s.t_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER || s.r_address == MSL_SAMPLER_ADDRESS_CLAMP_TO_BORDER) { switch (s.border_color) { case MSL_SAMPLER_BORDER_COLOR_OPAQUE_BLACK: args.push_back("border_color::opaque_black"); break; case MSL_SAMPLER_BORDER_COLOR_OPAQUE_WHITE: args.push_back("border_color::opaque_white"); break; case MSL_SAMPLER_BORDER_COLOR_TRANSPARENT_BLACK: args.push_back("border_color::transparent_black"); break; default: SPIRV_CROSS_THROW("Invalid sampler border color."); } } if (s.anisotropy_enable) args.push_back(join("max_anisotropy(", s.max_anisotropy, ")")); if (s.lod_clamp_enable) { args.push_back(join("lod_clamp(", convert_to_string(s.lod_clamp_min, current_locale_radix_character), ", ", convert_to_string(s.lod_clamp_max, current_locale_radix_character), ")")); } // If we would emit no arguments, then omit the parentheses entirely. Otherwise, // we'll wind up with a "most vexing parse" situation. if (args.empty()) statement("constexpr sampler ", type.basetype == SPIRType::SampledImage ? to_sampler_expression(samp.first) : to_name(samp.first), ";"); else statement("constexpr sampler ", type.basetype == SPIRType::SampledImage ? to_sampler_expression(samp.first) : to_name(samp.first), "(", merge(args), ");"); } // Emit dynamic buffers here. for (auto &dynamic_buffer : buffers_requiring_dynamic_offset) { if (!dynamic_buffer.second.second) { // Could happen if no buffer was used at requested binding point. continue; } const auto &var = get(dynamic_buffer.second.second); uint32_t var_id = var.self; const auto &type = get_variable_data_type(var); string name = to_name(var.self); uint32_t desc_set = get_decoration(var.self, DecorationDescriptorSet); uint32_t arg_id = argument_buffer_ids[desc_set]; uint32_t base_index = dynamic_buffer.second.first; if (!type.array.empty()) { // This is complicated, because we need to support arrays of arrays. // And it's even worse if the outermost dimension is a runtime array, because now // all this complicated goop has to go into the shader itself. (FIXME) if (!type.array[type.array.size() - 1]) SPIRV_CROSS_THROW("Runtime arrays with dynamic offsets are not supported yet."); else { is_using_builtin_array = true; statement(get_argument_address_space(var), " ", type_to_glsl(type), "* ", to_restrict(var_id), name, type_to_array_glsl(type), " ="); uint32_t dim = uint32_t(type.array.size()); uint32_t j = 0; for (SmallVector indices(type.array.size()); indices[type.array.size() - 1] < to_array_size_literal(type); j++) { while (dim > 0) { begin_scope(); --dim; } string arrays; for (uint32_t i = uint32_t(type.array.size()); i; --i) arrays += join("[", indices[i - 1], "]"); statement("(", get_argument_address_space(var), " ", type_to_glsl(type), "* ", to_restrict(var_id, false), ")((", get_argument_address_space(var), " char* ", to_restrict(var_id, false), ")", to_name(arg_id), ".", ensure_valid_name(name, "m"), arrays, " + ", to_name(dynamic_offsets_buffer_id), "[", base_index + j, "]),"); while (++indices[dim] >= to_array_size_literal(type, dim) && dim < type.array.size() - 1) { end_scope(","); indices[dim++] = 0; } } end_scope_decl(); statement_no_indent(""); is_using_builtin_array = false; } } else { statement(get_argument_address_space(var), " auto& ", to_restrict(var_id), name, " = *(", get_argument_address_space(var), " ", type_to_glsl(type), "* ", to_restrict(var_id, false), ")((", get_argument_address_space(var), " char* ", to_restrict(var_id, false), ")", to_name(arg_id), ".", ensure_valid_name(name, "m"), " + ", to_name(dynamic_offsets_buffer_id), "[", base_index, "]);"); } } // Emit buffer arrays here. for (uint32_t array_id : buffer_arrays) { const auto &var = get(array_id); const auto &type = get_variable_data_type(var); const auto &buffer_type = get_variable_element_type(var); string name = to_name(array_id); statement(get_argument_address_space(var), " ", type_to_glsl(buffer_type), "* ", to_restrict(array_id), name, "[] ="); begin_scope(); for (uint32_t i = 0; i < to_array_size_literal(type); ++i) statement(name, "_", i, ","); end_scope_decl(); statement_no_indent(""); } // For some reason, without this, we end up emitting the arrays twice. buffer_arrays.clear(); // Emit disabled fragment outputs. std::sort(disabled_frag_outputs.begin(), disabled_frag_outputs.end()); for (uint32_t var_id : disabled_frag_outputs) { auto &var = get(var_id); add_local_variable_name(var_id); statement(variable_decl(var), ";"); var.deferred_declaration = false; } } string CompilerMSL::compile() { replace_illegal_entry_point_names(); ir.fixup_reserved_names(); // Do not deal with GLES-isms like precision, older extensions and such. options.vulkan_semantics = true; options.es = false; options.version = 450; backend.null_pointer_literal = "nullptr"; backend.float_literal_suffix = false; backend.uint32_t_literal_suffix = true; backend.int16_t_literal_suffix = ""; backend.uint16_t_literal_suffix = ""; backend.basic_int_type = "int"; backend.basic_uint_type = "uint"; backend.basic_int8_type = "char"; backend.basic_uint8_type = "uchar"; backend.basic_int16_type = "short"; backend.basic_uint16_type = "ushort"; backend.discard_literal = "discard_fragment()"; backend.demote_literal = "discard_fragment()"; backend.boolean_mix_function = "select"; backend.swizzle_is_function = false; backend.shared_is_implied = false; backend.use_initializer_list = true; backend.use_typed_initializer_list = true; backend.native_row_major_matrix = false; backend.unsized_array_supported = false; backend.can_declare_arrays_inline = false; backend.allow_truncated_access_chain = true; backend.comparison_image_samples_scalar = true; backend.native_pointers = true; backend.nonuniform_qualifier = ""; backend.support_small_type_sampling_result = true; backend.supports_empty_struct = true; backend.support_64bit_switch = true; // Allow Metal to use the array template unless we force it off. backend.can_return_array = !msl_options.force_native_arrays; backend.array_is_value_type = !msl_options.force_native_arrays; // Arrays which are part of buffer objects are never considered to be value types (just plain C-style). backend.array_is_value_type_in_buffer_blocks = false; backend.support_pointer_to_pointer = true; capture_output_to_buffer = msl_options.capture_output_to_buffer; is_rasterization_disabled = msl_options.disable_rasterization || capture_output_to_buffer; // Initialize array here rather than constructor, MSVC 2013 workaround. for (auto &id : next_metal_resource_ids) id = 0; fixup_type_alias(); replace_illegal_names(); sync_entry_point_aliases_and_names(); build_function_control_flow_graphs_and_analyze(); update_active_builtins(); analyze_image_and_sampler_usage(); analyze_sampled_image_usage(); analyze_interlocked_resource_usage(); preprocess_op_codes(); build_implicit_builtins(); fixup_image_load_store_access(); set_enabled_interface_variables(get_active_interface_variables()); if (msl_options.force_active_argument_buffer_resources) activate_argument_buffer_resources(); if (swizzle_buffer_id) active_interface_variables.insert(swizzle_buffer_id); if (buffer_size_buffer_id) active_interface_variables.insert(buffer_size_buffer_id); if (view_mask_buffer_id) active_interface_variables.insert(view_mask_buffer_id); if (dynamic_offsets_buffer_id) active_interface_variables.insert(dynamic_offsets_buffer_id); if (builtin_layer_id) active_interface_variables.insert(builtin_layer_id); if (builtin_dispatch_base_id && !msl_options.supports_msl_version(1, 2)) active_interface_variables.insert(builtin_dispatch_base_id); if (builtin_sample_mask_id) active_interface_variables.insert(builtin_sample_mask_id); // Create structs to hold input, output and uniform variables. // Do output first to ensure out. is declared at top of entry function. qual_pos_var_name = ""; stage_out_var_id = add_interface_block(StorageClassOutput); patch_stage_out_var_id = add_interface_block(StorageClassOutput, true); stage_in_var_id = add_interface_block(StorageClassInput); if (get_execution_model() == ExecutionModelTessellationEvaluation) patch_stage_in_var_id = add_interface_block(StorageClassInput, true); if (get_execution_model() == ExecutionModelTessellationControl) stage_out_ptr_var_id = add_interface_block_pointer(stage_out_var_id, StorageClassOutput); if (is_tessellation_shader()) stage_in_ptr_var_id = add_interface_block_pointer(stage_in_var_id, StorageClassInput); // Metal vertex functions that define no output must disable rasterization and return void. if (!stage_out_var_id) is_rasterization_disabled = true; // Convert the use of global variables to recursively-passed function parameters localize_global_variables(); extract_global_variables_from_functions(); // Mark any non-stage-in structs to be tightly packed. mark_packable_structs(); reorder_type_alias(); // Add fixup hooks required by shader inputs and outputs. This needs to happen before // the loop, so the hooks aren't added multiple times. fix_up_shader_inputs_outputs(); // If we are using argument buffers, we create argument buffer structures for them here. // These buffers will be used in the entry point, not the individual resources. if (msl_options.argument_buffers) { if (!msl_options.supports_msl_version(2, 0)) SPIRV_CROSS_THROW("Argument buffers can only be used with MSL 2.0 and up."); analyze_argument_buffers(); } uint32_t pass_count = 0; do { reset(pass_count); // Start bindings at zero. next_metal_resource_index_buffer = 0; next_metal_resource_index_texture = 0; next_metal_resource_index_sampler = 0; for (auto &id : next_metal_resource_ids) id = 0; // Move constructor for this type is broken on GCC 4.9 ... buffer.reset(); emit_header(); emit_custom_templates(); emit_custom_functions(); emit_specialization_constants_and_structs(); emit_resources(); emit_function(get(ir.default_entry_point), Bitset()); pass_count++; } while (is_forcing_recompilation()); return buffer.str(); } // Register the need to output any custom functions. void CompilerMSL::preprocess_op_codes() { OpCodePreprocessor preproc(*this); traverse_all_reachable_opcodes(get(ir.default_entry_point), preproc); suppress_missing_prototypes = preproc.suppress_missing_prototypes; if (preproc.uses_atomics) { add_header_line("#include "); add_pragma_line("#pragma clang diagnostic ignored \"-Wunused-variable\""); } // Before MSL 2.1 (2.2 for textures), Metal vertex functions that write to // resources must disable rasterization and return void. if (preproc.uses_resource_write) is_rasterization_disabled = true; // Tessellation control shaders are run as compute functions in Metal, and so // must capture their output to a buffer. if (get_execution_model() == ExecutionModelTessellationControl || (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation)) { is_rasterization_disabled = true; capture_output_to_buffer = true; } if (preproc.needs_subgroup_invocation_id) needs_subgroup_invocation_id = true; if (preproc.needs_subgroup_size) needs_subgroup_size = true; // build_implicit_builtins() hasn't run yet, and in fact, this needs to execute // before then so that gl_SampleID will get added; so we also need to check if // that function would add gl_FragCoord. if (preproc.needs_sample_id || msl_options.force_sample_rate_shading || (is_sample_rate() && (active_input_builtins.get(BuiltInFragCoord) || (need_subpass_input && !msl_options.use_framebuffer_fetch_subpasses)))) needs_sample_id = true; if (is_intersection_query()) { add_header_line("#if __METAL_VERSION__ >= 230"); add_header_line("#include "); add_header_line("using namespace metal::raytracing;"); add_header_line("#endif"); } } // Move the Private and Workgroup global variables to the entry function. // Non-constant variables cannot have global scope in Metal. void CompilerMSL::localize_global_variables() { auto &entry_func = get(ir.default_entry_point); auto iter = global_variables.begin(); while (iter != global_variables.end()) { uint32_t v_id = *iter; auto &var = get(v_id); if (var.storage == StorageClassPrivate || var.storage == StorageClassWorkgroup) { if (!variable_is_lut(var)) entry_func.add_local_variable(v_id); iter = global_variables.erase(iter); } else iter++; } } // For any global variable accessed directly by a function, // extract that variable and add it as an argument to that function. void CompilerMSL::extract_global_variables_from_functions() { // Uniforms unordered_set global_var_ids; ir.for_each_typed_id([&](uint32_t, SPIRVariable &var) { // Some builtins resolve directly to a function call which does not need any declared variables. // Skip these. if (var.storage == StorageClassInput && has_decoration(var.self, DecorationBuiltIn) && BuiltIn(get_decoration(var.self, DecorationBuiltIn)) == BuiltInHelperInvocation) { return; } if (var.storage == StorageClassInput || var.storage == StorageClassOutput || var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant || var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer) { global_var_ids.insert(var.self); } }); // Local vars that are declared in the main function and accessed directly by a function auto &entry_func = get(ir.default_entry_point); for (auto &var : entry_func.local_variables) if (get(var).storage != StorageClassFunction) global_var_ids.insert(var); std::set added_arg_ids; unordered_set processed_func_ids; extract_global_variables_from_function(ir.default_entry_point, added_arg_ids, global_var_ids, processed_func_ids); } // MSL does not support the use of global variables for shader input content. // For any global variable accessed directly by the specified function, extract that variable, // add it as an argument to that function, and the arg to the added_arg_ids collection. void CompilerMSL::extract_global_variables_from_function(uint32_t func_id, std::set &added_arg_ids, unordered_set &global_var_ids, unordered_set &processed_func_ids) { // Avoid processing a function more than once if (processed_func_ids.find(func_id) != processed_func_ids.end()) { // Return function global variables added_arg_ids = function_global_vars[func_id]; return; } processed_func_ids.insert(func_id); auto &func = get(func_id); // Recursively establish global args added to functions on which we depend. for (auto block : func.blocks) { auto &b = get(block); for (auto &i : b.ops) { auto ops = stream(i); auto op = static_cast(i.op); switch (op) { case OpLoad: case OpInBoundsAccessChain: case OpAccessChain: case OpPtrAccessChain: case OpArrayLength: { uint32_t base_id = ops[2]; if (global_var_ids.find(base_id) != global_var_ids.end()) added_arg_ids.insert(base_id); // Use Metal's native frame-buffer fetch API for subpass inputs. auto &type = get(ops[0]); if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData && (!msl_options.use_framebuffer_fetch_subpasses)) { // Implicitly reads gl_FragCoord. assert(builtin_frag_coord_id != 0); added_arg_ids.insert(builtin_frag_coord_id); if (msl_options.multiview) { // Implicitly reads gl_ViewIndex. assert(builtin_view_idx_id != 0); added_arg_ids.insert(builtin_view_idx_id); } else if (msl_options.arrayed_subpass_input) { // Implicitly reads gl_Layer. assert(builtin_layer_id != 0); added_arg_ids.insert(builtin_layer_id); } } break; } case OpFunctionCall: { // First see if any of the function call args are globals for (uint32_t arg_idx = 3; arg_idx < i.length; arg_idx++) { uint32_t arg_id = ops[arg_idx]; if (global_var_ids.find(arg_id) != global_var_ids.end()) added_arg_ids.insert(arg_id); } // Then recurse into the function itself to extract globals used internally in the function uint32_t inner_func_id = ops[2]; std::set inner_func_args; extract_global_variables_from_function(inner_func_id, inner_func_args, global_var_ids, processed_func_ids); added_arg_ids.insert(inner_func_args.begin(), inner_func_args.end()); break; } case OpStore: { uint32_t base_id = ops[0]; if (global_var_ids.find(base_id) != global_var_ids.end()) added_arg_ids.insert(base_id); uint32_t rvalue_id = ops[1]; if (global_var_ids.find(rvalue_id) != global_var_ids.end()) added_arg_ids.insert(rvalue_id); break; } case OpSelect: { uint32_t base_id = ops[3]; if (global_var_ids.find(base_id) != global_var_ids.end()) added_arg_ids.insert(base_id); base_id = ops[4]; if (global_var_ids.find(base_id) != global_var_ids.end()) added_arg_ids.insert(base_id); break; } // Emulate texture2D atomic operations case OpImageTexelPointer: { // When using the pointer, we need to know which variable it is actually loaded from. uint32_t base_id = ops[2]; auto *var = maybe_get_backing_variable(base_id); if (var && atomic_image_vars.count(var->self)) { if (global_var_ids.find(base_id) != global_var_ids.end()) added_arg_ids.insert(base_id); } break; } case OpExtInst: { uint32_t extension_set = ops[2]; if (get(extension_set).ext == SPIRExtension::GLSL) { auto op_450 = static_cast(ops[3]); switch (op_450) { case GLSLstd450InterpolateAtCentroid: case GLSLstd450InterpolateAtSample: case GLSLstd450InterpolateAtOffset: { // For these, we really need the stage-in block. It is theoretically possible to pass the // interpolant object, but a) doing so would require us to create an entirely new variable // with Interpolant type, and b) if we have a struct or array, handling all the members and // elements could get unwieldy fast. added_arg_ids.insert(stage_in_var_id); break; } case GLSLstd450Modf: case GLSLstd450Frexp: { uint32_t base_id = ops[5]; if (global_var_ids.find(base_id) != global_var_ids.end()) added_arg_ids.insert(base_id); break; } default: break; } } break; } case OpGroupNonUniformInverseBallot: { added_arg_ids.insert(builtin_subgroup_invocation_id_id); break; } case OpGroupNonUniformBallotFindLSB: case OpGroupNonUniformBallotFindMSB: { added_arg_ids.insert(builtin_subgroup_size_id); break; } case OpGroupNonUniformBallotBitCount: { auto operation = static_cast(ops[3]); switch (operation) { case GroupOperationReduce: added_arg_ids.insert(builtin_subgroup_size_id); break; case GroupOperationInclusiveScan: case GroupOperationExclusiveScan: added_arg_ids.insert(builtin_subgroup_invocation_id_id); break; default: break; } break; } default: break; } // TODO: Add all other operations which can affect memory. // We should consider a more unified system here to reduce boiler-plate. // This kind of analysis is done in several places ... } } function_global_vars[func_id] = added_arg_ids; // Add the global variables as arguments to the function if (func_id != ir.default_entry_point) { bool control_point_added_in = false; bool control_point_added_out = false; bool patch_added_in = false; bool patch_added_out = false; for (uint32_t arg_id : added_arg_ids) { auto &var = get(arg_id); uint32_t type_id = var.basetype; auto *p_type = &get(type_id); BuiltIn bi_type = BuiltIn(get_decoration(arg_id, DecorationBuiltIn)); bool is_patch = has_decoration(arg_id, DecorationPatch) || is_patch_block(*p_type); bool is_block = has_decoration(p_type->self, DecorationBlock); bool is_control_point_storage = !is_patch && ((is_tessellation_shader() && var.storage == StorageClassInput) || (get_execution_model() == ExecutionModelTessellationControl && var.storage == StorageClassOutput)); bool is_patch_block_storage = is_patch && is_block && var.storage == StorageClassOutput; bool is_builtin = is_builtin_variable(var); bool variable_is_stage_io = !is_builtin || bi_type == BuiltInPosition || bi_type == BuiltInPointSize || bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance || p_type->basetype == SPIRType::Struct; bool is_redirected_to_global_stage_io = (is_control_point_storage || is_patch_block_storage) && variable_is_stage_io; // If output is masked it is not considered part of the global stage IO interface. if (is_redirected_to_global_stage_io && var.storage == StorageClassOutput) is_redirected_to_global_stage_io = !is_stage_output_variable_masked(var); if (is_redirected_to_global_stage_io) { // Tessellation control shaders see inputs and per-vertex outputs as arrays. // Similarly, tessellation evaluation shaders see per-vertex inputs as arrays. // We collected them into a structure; we must pass the array of this // structure to the function. std::string name; if (is_patch) name = var.storage == StorageClassInput ? patch_stage_in_var_name : patch_stage_out_var_name; else name = var.storage == StorageClassInput ? "gl_in" : "gl_out"; if (var.storage == StorageClassOutput && has_decoration(p_type->self, DecorationBlock)) { // If we're redirecting a block, we might still need to access the original block // variable if we're masking some members. for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(p_type->member_types.size()); mbr_idx++) { if (is_stage_output_block_member_masked(var, mbr_idx, true)) { func.add_parameter(var.basetype, var.self, true); break; } } } // Tessellation control shaders see inputs and per-vertex outputs as arrays. // Similarly, tessellation evaluation shaders see per-vertex inputs as arrays. // We collected them into a structure; we must pass the array of this // structure to the function. if (var.storage == StorageClassInput) { auto &added_in = is_patch ? patch_added_in : control_point_added_in; if (added_in) continue; arg_id = is_patch ? patch_stage_in_var_id : stage_in_ptr_var_id; added_in = true; } else if (var.storage == StorageClassOutput) { auto &added_out = is_patch ? patch_added_out : control_point_added_out; if (added_out) continue; arg_id = is_patch ? patch_stage_out_var_id : stage_out_ptr_var_id; added_out = true; } type_id = get(arg_id).basetype; uint32_t next_id = ir.increase_bound_by(1); func.add_parameter(type_id, next_id, true); set(next_id, type_id, StorageClassFunction, 0, arg_id); set_name(next_id, name); } else if (is_builtin && has_decoration(p_type->self, DecorationBlock)) { // Get the pointee type type_id = get_pointee_type_id(type_id); p_type = &get(type_id); uint32_t mbr_idx = 0; for (auto &mbr_type_id : p_type->member_types) { BuiltIn builtin = BuiltInMax; is_builtin = is_member_builtin(*p_type, mbr_idx, &builtin); if (is_builtin && has_active_builtin(builtin, var.storage)) { // Add a arg variable with the same type and decorations as the member uint32_t next_ids = ir.increase_bound_by(2); uint32_t ptr_type_id = next_ids + 0; uint32_t var_id = next_ids + 1; // Make sure we have an actual pointer type, // so that we will get the appropriate address space when declaring these builtins. auto &ptr = set(ptr_type_id, get(mbr_type_id)); ptr.self = mbr_type_id; ptr.storage = var.storage; ptr.pointer = true; ptr.pointer_depth++; ptr.parent_type = mbr_type_id; func.add_parameter(mbr_type_id, var_id, true); set(var_id, ptr_type_id, StorageClassFunction); ir.meta[var_id].decoration = ir.meta[type_id].members[mbr_idx]; } mbr_idx++; } } else { uint32_t next_id = ir.increase_bound_by(1); func.add_parameter(type_id, next_id, true); set(next_id, type_id, StorageClassFunction, 0, arg_id); // Ensure the existing variable has a valid name and the new variable has all the same meta info set_name(arg_id, ensure_valid_name(to_name(arg_id), "v")); ir.meta[next_id] = ir.meta[arg_id]; } } } } // For all variables that are some form of non-input-output interface block, mark that all the structs // that are recursively contained within the type referenced by that variable should be packed tightly. void CompilerMSL::mark_packable_structs() { ir.for_each_typed_id([&](uint32_t, SPIRVariable &var) { if (var.storage != StorageClassFunction && !is_hidden_variable(var)) { auto &type = this->get(var.basetype); if (type.pointer && (type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant || type.storage == StorageClassPushConstant || type.storage == StorageClassStorageBuffer) && (has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock))) mark_as_packable(type); } }); } // If the specified type is a struct, it and any nested structs // are marked as packable with the SPIRVCrossDecorationBufferBlockRepacked decoration, void CompilerMSL::mark_as_packable(SPIRType &type) { // If this is not the base type (eg. it's a pointer or array), tunnel down if (type.parent_type) { mark_as_packable(get(type.parent_type)); return; } if (type.basetype == SPIRType::Struct) { set_extended_decoration(type.self, SPIRVCrossDecorationBufferBlockRepacked); // Recurse uint32_t mbr_cnt = uint32_t(type.member_types.size()); for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++) { uint32_t mbr_type_id = type.member_types[mbr_idx]; auto &mbr_type = get(mbr_type_id); mark_as_packable(mbr_type); if (mbr_type.type_alias) { auto &mbr_type_alias = get(mbr_type.type_alias); mark_as_packable(mbr_type_alias); } } } } // If a shader input exists at the location, it is marked as being used by this shader void CompilerMSL::mark_location_as_used_by_shader(uint32_t location, const SPIRType &type, StorageClass storage, bool fallback) { if (storage != StorageClassInput) return; uint32_t count = type_to_location_count(type); for (uint32_t i = 0; i < count; i++) { location_inputs_in_use.insert(location + i); if (fallback) location_inputs_in_use_fallback.insert(location + i); } } uint32_t CompilerMSL::get_target_components_for_fragment_location(uint32_t location) const { auto itr = fragment_output_components.find(location); if (itr == end(fragment_output_components)) return 4; else return itr->second; } uint32_t CompilerMSL::build_extended_vector_type(uint32_t type_id, uint32_t components, SPIRType::BaseType basetype) { uint32_t new_type_id = ir.increase_bound_by(1); auto &old_type = get(type_id); auto *type = &set(new_type_id, old_type); type->vecsize = components; if (basetype != SPIRType::Unknown) type->basetype = basetype; type->self = new_type_id; type->parent_type = type_id; type->array.clear(); type->array_size_literal.clear(); type->pointer = false; if (is_array(old_type)) { uint32_t array_type_id = ir.increase_bound_by(1); type = &set(array_type_id, *type); type->parent_type = new_type_id; type->array = old_type.array; type->array_size_literal = old_type.array_size_literal; new_type_id = array_type_id; } if (old_type.pointer) { uint32_t ptr_type_id = ir.increase_bound_by(1); type = &set(ptr_type_id, *type); type->self = new_type_id; type->parent_type = new_type_id; type->storage = old_type.storage; type->pointer = true; type->pointer_depth++; new_type_id = ptr_type_id; } return new_type_id; } uint32_t CompilerMSL::build_msl_interpolant_type(uint32_t type_id, bool is_noperspective) { uint32_t new_type_id = ir.increase_bound_by(1); SPIRType &type = set(new_type_id, get(type_id)); type.basetype = SPIRType::Interpolant; type.parent_type = type_id; // In Metal, the pull-model interpolant type encodes perspective-vs-no-perspective in the type itself. // Add this decoration so we know which argument to pass to the template. if (is_noperspective) set_decoration(new_type_id, DecorationNoPerspective); return new_type_id; } bool CompilerMSL::add_component_variable_to_interface_block(spv::StorageClass storage, const std::string &ib_var_ref, SPIRVariable &var, const SPIRType &type, InterfaceBlockMeta &meta) { // Deal with Component decorations. const InterfaceBlockMeta::LocationMeta *location_meta = nullptr; uint32_t location = ~0u; if (has_decoration(var.self, DecorationLocation)) { location = get_decoration(var.self, DecorationLocation); auto location_meta_itr = meta.location_meta.find(location); if (location_meta_itr != end(meta.location_meta)) location_meta = &location_meta_itr->second; } // Check if we need to pad fragment output to match a certain number of components. if (location_meta) { bool pad_fragment_output = has_decoration(var.self, DecorationLocation) && msl_options.pad_fragment_output_components && get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput; auto &entry_func = get(ir.default_entry_point); uint32_t start_component = get_decoration(var.self, DecorationComponent); uint32_t type_components = type.vecsize; uint32_t num_components = location_meta->num_components; if (pad_fragment_output) { uint32_t locn = get_decoration(var.self, DecorationLocation); num_components = std::max(num_components, get_target_components_for_fragment_location(locn)); } // We have already declared an IO block member as m_location_N. // Just emit an early-declared variable and fixup as needed. // Arrays need to be unrolled here since each location might need a different number of components. entry_func.add_local_variable(var.self); vars_needing_early_declaration.push_back(var.self); if (var.storage == StorageClassInput) { entry_func.fixup_hooks_in.push_back([=, &type, &var]() { if (!type.array.empty()) { uint32_t array_size = to_array_size_literal(type); for (uint32_t loc_off = 0; loc_off < array_size; loc_off++) { statement(to_name(var.self), "[", loc_off, "]", " = ", ib_var_ref, ".m_location_", location + loc_off, vector_swizzle(type_components, start_component), ";"); } } else { statement(to_name(var.self), " = ", ib_var_ref, ".m_location_", location, vector_swizzle(type_components, start_component), ";"); } }); } else { entry_func.fixup_hooks_out.push_back([=, &type, &var]() { if (!type.array.empty()) { uint32_t array_size = to_array_size_literal(type); for (uint32_t loc_off = 0; loc_off < array_size; loc_off++) { statement(ib_var_ref, ".m_location_", location + loc_off, vector_swizzle(type_components, start_component), " = ", to_name(var.self), "[", loc_off, "];"); } } else { statement(ib_var_ref, ".m_location_", location, vector_swizzle(type_components, start_component), " = ", to_name(var.self), ";"); } }); } return true; } else return false; } void CompilerMSL::add_plain_variable_to_interface_block(StorageClass storage, const string &ib_var_ref, SPIRType &ib_type, SPIRVariable &var, InterfaceBlockMeta &meta) { bool is_builtin = is_builtin_variable(var); BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn)); bool is_flat = has_decoration(var.self, DecorationFlat); bool is_noperspective = has_decoration(var.self, DecorationNoPerspective); bool is_centroid = has_decoration(var.self, DecorationCentroid); bool is_sample = has_decoration(var.self, DecorationSample); // Add a reference to the variable type to the interface struct. uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size()); uint32_t type_id = ensure_correct_builtin_type(var.basetype, builtin); var.basetype = type_id; type_id = get_pointee_type_id(var.basetype); if (meta.strip_array && is_array(get(type_id))) type_id = get(type_id).parent_type; auto &type = get(type_id); uint32_t target_components = 0; uint32_t type_components = type.vecsize; bool padded_output = false; bool padded_input = false; uint32_t start_component = 0; auto &entry_func = get(ir.default_entry_point); if (add_component_variable_to_interface_block(storage, ib_var_ref, var, type, meta)) return; bool pad_fragment_output = has_decoration(var.self, DecorationLocation) && msl_options.pad_fragment_output_components && get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput; if (pad_fragment_output) { uint32_t locn = get_decoration(var.self, DecorationLocation); target_components = get_target_components_for_fragment_location(locn); if (type_components < target_components) { // Make a new type here. type_id = build_extended_vector_type(type_id, target_components); padded_output = true; } } if (storage == StorageClassInput && pull_model_inputs.count(var.self)) ib_type.member_types.push_back(build_msl_interpolant_type(type_id, is_noperspective)); else ib_type.member_types.push_back(type_id); // Give the member a name string mbr_name = ensure_valid_name(to_expression(var.self), "m"); set_member_name(ib_type.self, ib_mbr_idx, mbr_name); // Update the original variable reference to include the structure reference string qual_var_name = ib_var_ref + "." + mbr_name; // If using pull-model interpolation, need to add a call to the correct interpolation method. if (storage == StorageClassInput && pull_model_inputs.count(var.self)) { if (is_centroid) qual_var_name += ".interpolate_at_centroid()"; else if (is_sample) qual_var_name += join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")"); else qual_var_name += ".interpolate_at_center()"; } if (padded_output || padded_input) { entry_func.add_local_variable(var.self); vars_needing_early_declaration.push_back(var.self); if (padded_output) { entry_func.fixup_hooks_out.push_back([=, &var]() { statement(qual_var_name, vector_swizzle(type_components, start_component), " = ", to_name(var.self), ";"); }); } else { entry_func.fixup_hooks_in.push_back([=, &var]() { statement(to_name(var.self), " = ", qual_var_name, vector_swizzle(type_components, start_component), ";"); }); } } else if (!meta.strip_array) ir.meta[var.self].decoration.qualified_alias = qual_var_name; if (var.storage == StorageClassOutput && var.initializer != ID(0)) { if (padded_output || padded_input) { entry_func.fixup_hooks_in.push_back( [=, &var]() { statement(to_name(var.self), " = ", to_expression(var.initializer), ";"); }); } else { if (meta.strip_array) { entry_func.fixup_hooks_in.push_back([=, &var]() { uint32_t index = get_extended_decoration(var.self, SPIRVCrossDecorationInterfaceMemberIndex); auto invocation = to_tesc_invocation_id(); statement(to_expression(stage_out_ptr_var_id), "[", invocation, "].", to_member_name(ib_type, index), " = ", to_expression(var.initializer), "[", invocation, "];"); }); } else { entry_func.fixup_hooks_in.push_back([=, &var]() { statement(qual_var_name, " = ", to_expression(var.initializer), ";"); }); } } } // Copy the variable location from the original variable to the member if (get_decoration_bitset(var.self).get(DecorationLocation)) { uint32_t locn = get_decoration(var.self, DecorationLocation); uint32_t comp = get_decoration(var.self, DecorationComponent); if (storage == StorageClassInput) { type_id = ensure_correct_input_type(var.basetype, locn, comp, 0, meta.strip_array); var.basetype = type_id; type_id = get_pointee_type_id(type_id); if (meta.strip_array && is_array(get(type_id))) type_id = get(type_id).parent_type; if (pull_model_inputs.count(var.self)) ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(type_id, is_noperspective); else ib_type.member_types[ib_mbr_idx] = type_id; } set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn); if (comp) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp); mark_location_as_used_by_shader(locn, get(type_id), storage); } else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin)) { uint32_t locn = inputs_by_builtin[builtin].location; set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn); mark_location_as_used_by_shader(locn, type, storage); } if (get_decoration_bitset(var.self).get(DecorationComponent)) { uint32_t component = get_decoration(var.self, DecorationComponent); set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, component); } if (get_decoration_bitset(var.self).get(DecorationIndex)) { uint32_t index = get_decoration(var.self, DecorationIndex); set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index); } // Mark the member as builtin if needed if (is_builtin) { set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin); if (builtin == BuiltInPosition && storage == StorageClassOutput) qual_pos_var_name = qual_var_name; } // Copy interpolation decorations if needed if (storage != StorageClassInput || !pull_model_inputs.count(var.self)) { if (is_flat) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat); if (is_noperspective) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective); if (is_centroid) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid); if (is_sample) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample); } set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self); } void CompilerMSL::add_composite_variable_to_interface_block(StorageClass storage, const string &ib_var_ref, SPIRType &ib_type, SPIRVariable &var, InterfaceBlockMeta &meta) { auto &entry_func = get(ir.default_entry_point); auto &var_type = meta.strip_array ? get_variable_element_type(var) : get_variable_data_type(var); uint32_t elem_cnt = 0; if (add_component_variable_to_interface_block(storage, ib_var_ref, var, var_type, meta)) return; if (is_matrix(var_type)) { if (is_array(var_type)) SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables."); elem_cnt = var_type.columns; } else if (is_array(var_type)) { if (var_type.array.size() != 1) SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables."); elem_cnt = to_array_size_literal(var_type); } bool is_builtin = is_builtin_variable(var); BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn)); bool is_flat = has_decoration(var.self, DecorationFlat); bool is_noperspective = has_decoration(var.self, DecorationNoPerspective); bool is_centroid = has_decoration(var.self, DecorationCentroid); bool is_sample = has_decoration(var.self, DecorationSample); auto *usable_type = &var_type; if (usable_type->pointer) usable_type = &get(usable_type->parent_type); while (is_array(*usable_type) || is_matrix(*usable_type)) usable_type = &get(usable_type->parent_type); // If a builtin, force it to have the proper name. if (is_builtin) set_name(var.self, builtin_to_glsl(builtin, StorageClassFunction)); bool flatten_from_ib_var = false; string flatten_from_ib_mbr_name; if (storage == StorageClassOutput && is_builtin && builtin == BuiltInClipDistance) { // Also declare [[clip_distance]] attribute here. uint32_t clip_array_mbr_idx = uint32_t(ib_type.member_types.size()); ib_type.member_types.push_back(get_variable_data_type_id(var)); set_member_decoration(ib_type.self, clip_array_mbr_idx, DecorationBuiltIn, BuiltInClipDistance); flatten_from_ib_mbr_name = builtin_to_glsl(BuiltInClipDistance, StorageClassOutput); set_member_name(ib_type.self, clip_array_mbr_idx, flatten_from_ib_mbr_name); // When we flatten, we flatten directly from the "out" struct, // not from a function variable. flatten_from_ib_var = true; if (!msl_options.enable_clip_distance_user_varying) return; } else if (!meta.strip_array) { // Only flatten/unflatten IO composites for non-tessellation cases where arrays are not stripped. entry_func.add_local_variable(var.self); // We need to declare the variable early and at entry-point scope. vars_needing_early_declaration.push_back(var.self); } for (uint32_t i = 0; i < elem_cnt; i++) { // Add a reference to the variable type to the interface struct. uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size()); uint32_t target_components = 0; bool padded_output = false; uint32_t type_id = usable_type->self; // Check if we need to pad fragment output to match a certain number of components. if (get_decoration_bitset(var.self).get(DecorationLocation) && msl_options.pad_fragment_output_components && get_entry_point().model == ExecutionModelFragment && storage == StorageClassOutput) { uint32_t locn = get_decoration(var.self, DecorationLocation) + i; target_components = get_target_components_for_fragment_location(locn); if (usable_type->vecsize < target_components) { // Make a new type here. type_id = build_extended_vector_type(usable_type->self, target_components); padded_output = true; } } if (storage == StorageClassInput && pull_model_inputs.count(var.self)) ib_type.member_types.push_back(build_msl_interpolant_type(get_pointee_type_id(type_id), is_noperspective)); else ib_type.member_types.push_back(get_pointee_type_id(type_id)); // Give the member a name string mbr_name = ensure_valid_name(join(to_expression(var.self), "_", i), "m"); set_member_name(ib_type.self, ib_mbr_idx, mbr_name); // There is no qualified alias since we need to flatten the internal array on return. if (get_decoration_bitset(var.self).get(DecorationLocation)) { uint32_t locn = get_decoration(var.self, DecorationLocation) + i; uint32_t comp = get_decoration(var.self, DecorationComponent); if (storage == StorageClassInput) { var.basetype = ensure_correct_input_type(var.basetype, locn, comp, 0, meta.strip_array); uint32_t mbr_type_id = ensure_correct_input_type(usable_type->self, locn, comp, 0, meta.strip_array); if (storage == StorageClassInput && pull_model_inputs.count(var.self)) ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective); else ib_type.member_types[ib_mbr_idx] = mbr_type_id; } set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn); if (comp) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp); mark_location_as_used_by_shader(locn, *usable_type, storage); } else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin)) { uint32_t locn = inputs_by_builtin[builtin].location + i; set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn); mark_location_as_used_by_shader(locn, *usable_type, storage); } else if (is_builtin && (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance)) { // Declare the Clip/CullDistance as [[user(clip/cullN)]]. set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin); set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, i); } if (get_decoration_bitset(var.self).get(DecorationIndex)) { uint32_t index = get_decoration(var.self, DecorationIndex); set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, index); } if (storage != StorageClassInput || !pull_model_inputs.count(var.self)) { // Copy interpolation decorations if needed if (is_flat) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat); if (is_noperspective) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective); if (is_centroid) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid); if (is_sample) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample); } set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self); // Only flatten/unflatten IO composites for non-tessellation cases where arrays are not stripped. if (!meta.strip_array) { switch (storage) { case StorageClassInput: entry_func.fixup_hooks_in.push_back([=, &var]() { if (pull_model_inputs.count(var.self)) { string lerp_call; if (is_centroid) lerp_call = ".interpolate_at_centroid()"; else if (is_sample) lerp_call = join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")"); else lerp_call = ".interpolate_at_center()"; statement(to_name(var.self), "[", i, "] = ", ib_var_ref, ".", mbr_name, lerp_call, ";"); } else { statement(to_name(var.self), "[", i, "] = ", ib_var_ref, ".", mbr_name, ";"); } }); break; case StorageClassOutput: entry_func.fixup_hooks_out.push_back([=, &var]() { if (padded_output) { auto &padded_type = this->get(type_id); statement( ib_var_ref, ".", mbr_name, " = ", remap_swizzle(padded_type, usable_type->vecsize, join(to_name(var.self), "[", i, "]")), ";"); } else if (flatten_from_ib_var) statement(ib_var_ref, ".", mbr_name, " = ", ib_var_ref, ".", flatten_from_ib_mbr_name, "[", i, "];"); else statement(ib_var_ref, ".", mbr_name, " = ", to_name(var.self), "[", i, "];"); }); break; default: break; } } } } void CompilerMSL::add_composite_member_variable_to_interface_block(StorageClass storage, const string &ib_var_ref, SPIRType &ib_type, SPIRVariable &var, SPIRType &var_type, uint32_t mbr_idx, InterfaceBlockMeta &meta, const string &mbr_name_qual, const string &var_chain_qual, uint32_t &location, uint32_t &var_mbr_idx) { auto &entry_func = get(ir.default_entry_point); BuiltIn builtin = BuiltInMax; bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin); bool is_flat = has_member_decoration(var_type.self, mbr_idx, DecorationFlat) || has_decoration(var.self, DecorationFlat); bool is_noperspective = has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) || has_decoration(var.self, DecorationNoPerspective); bool is_centroid = has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) || has_decoration(var.self, DecorationCentroid); bool is_sample = has_member_decoration(var_type.self, mbr_idx, DecorationSample) || has_decoration(var.self, DecorationSample); uint32_t mbr_type_id = var_type.member_types[mbr_idx]; auto &mbr_type = get(mbr_type_id); uint32_t elem_cnt = 1; if (is_matrix(mbr_type)) { if (is_array(mbr_type)) SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables."); elem_cnt = mbr_type.columns; } else if (is_array(mbr_type)) { if (mbr_type.array.size() != 1) SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables."); elem_cnt = to_array_size_literal(mbr_type); } auto *usable_type = &mbr_type; if (usable_type->pointer) usable_type = &get(usable_type->parent_type); while (is_array(*usable_type) || is_matrix(*usable_type)) usable_type = &get(usable_type->parent_type); bool flatten_from_ib_var = false; string flatten_from_ib_mbr_name; if (storage == StorageClassOutput && is_builtin && builtin == BuiltInClipDistance) { // Also declare [[clip_distance]] attribute here. uint32_t clip_array_mbr_idx = uint32_t(ib_type.member_types.size()); ib_type.member_types.push_back(mbr_type_id); set_member_decoration(ib_type.self, clip_array_mbr_idx, DecorationBuiltIn, BuiltInClipDistance); flatten_from_ib_mbr_name = builtin_to_glsl(BuiltInClipDistance, StorageClassOutput); set_member_name(ib_type.self, clip_array_mbr_idx, flatten_from_ib_mbr_name); // When we flatten, we flatten directly from the "out" struct, // not from a function variable. flatten_from_ib_var = true; if (!msl_options.enable_clip_distance_user_varying) return; } // Recursively handle nested structures. if (mbr_type.basetype == SPIRType::Struct) { for (uint32_t i = 0; i < elem_cnt; i++) { string mbr_name = append_member_name(mbr_name_qual, var_type, mbr_idx) + (elem_cnt == 1 ? "" : join("_", i)); string var_chain = join(var_chain_qual, ".", to_member_name(var_type, mbr_idx), (elem_cnt == 1 ? "" : join("[", i, "]"))); uint32_t sub_mbr_cnt = uint32_t(mbr_type.member_types.size()); for (uint32_t sub_mbr_idx = 0; sub_mbr_idx < sub_mbr_cnt; sub_mbr_idx++) { add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type, var, mbr_type, sub_mbr_idx, meta, mbr_name, var_chain, location, var_mbr_idx); // FIXME: Recursive structs and tessellation breaks here. var_mbr_idx++; } } return; } for (uint32_t i = 0; i < elem_cnt; i++) { // Add a reference to the variable type to the interface struct. uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size()); if (storage == StorageClassInput && pull_model_inputs.count(var.self)) ib_type.member_types.push_back(build_msl_interpolant_type(usable_type->self, is_noperspective)); else ib_type.member_types.push_back(usable_type->self); // Give the member a name string mbr_name = ensure_valid_name(append_member_name(mbr_name_qual, var_type, mbr_idx) + (elem_cnt == 1 ? "" : join("_", i)), "m"); set_member_name(ib_type.self, ib_mbr_idx, mbr_name); // Once we determine the location of the first member within nested structures, // from a var of the topmost structure, the remaining flattened members of // the nested structures will have consecutive location values. At this point, // we've recursively tunnelled into structs, arrays, and matrices, and are // down to a single location for each member now. if (!is_builtin && location != UINT32_MAX) { set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); mark_location_as_used_by_shader(location, *usable_type, storage); location++; } else if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation)) { location = get_member_decoration(var_type.self, mbr_idx, DecorationLocation) + i; set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); mark_location_as_used_by_shader(location, *usable_type, storage); location++; } else if (has_decoration(var.self, DecorationLocation)) { location = get_accumulated_member_location(var, mbr_idx, meta.strip_array) + i; set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); mark_location_as_used_by_shader(location, *usable_type, storage); location++; } else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin)) { location = inputs_by_builtin[builtin].location + i; set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); mark_location_as_used_by_shader(location, *usable_type, storage); location++; } else if (is_builtin && (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance)) { // Declare the Clip/CullDistance as [[user(clip/cullN)]]. set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin); set_member_decoration(ib_type.self, ib_mbr_idx, DecorationIndex, i); } if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent)) SPIRV_CROSS_THROW("DecorationComponent on matrices and arrays is not supported."); if (storage != StorageClassInput || !pull_model_inputs.count(var.self)) { // Copy interpolation decorations if needed if (is_flat) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat); if (is_noperspective) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective); if (is_centroid) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid); if (is_sample) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample); } set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self); set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, var_mbr_idx); // Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate. if (!meta.strip_array && meta.allow_local_declaration) { string var_chain = join(var_chain_qual, ".", to_member_name(var_type, mbr_idx), (elem_cnt == 1 ? "" : join("[", i, "]"))); switch (storage) { case StorageClassInput: entry_func.fixup_hooks_in.push_back([=, &var]() { string lerp_call; if (pull_model_inputs.count(var.self)) { if (is_centroid) lerp_call = ".interpolate_at_centroid()"; else if (is_sample) lerp_call = join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")"); else lerp_call = ".interpolate_at_center()"; } statement(var_chain, " = ", ib_var_ref, ".", mbr_name, lerp_call, ";"); }); break; case StorageClassOutput: entry_func.fixup_hooks_out.push_back([=]() { if (flatten_from_ib_var) statement(ib_var_ref, ".", mbr_name, " = ", ib_var_ref, ".", flatten_from_ib_mbr_name, "[", i, "];"); else statement(ib_var_ref, ".", mbr_name, " = ", var_chain, ";"); }); break; default: break; } } } } void CompilerMSL::add_plain_member_variable_to_interface_block(StorageClass storage, const string &ib_var_ref, SPIRType &ib_type, SPIRVariable &var, SPIRType &var_type, uint32_t mbr_idx, InterfaceBlockMeta &meta, const string &mbr_name_qual, const string &var_chain_qual, uint32_t &location, uint32_t &var_mbr_idx) { auto &entry_func = get(ir.default_entry_point); BuiltIn builtin = BuiltInMax; bool is_builtin = is_member_builtin(var_type, mbr_idx, &builtin); bool is_flat = has_member_decoration(var_type.self, mbr_idx, DecorationFlat) || has_decoration(var.self, DecorationFlat); bool is_noperspective = has_member_decoration(var_type.self, mbr_idx, DecorationNoPerspective) || has_decoration(var.self, DecorationNoPerspective); bool is_centroid = has_member_decoration(var_type.self, mbr_idx, DecorationCentroid) || has_decoration(var.self, DecorationCentroid); bool is_sample = has_member_decoration(var_type.self, mbr_idx, DecorationSample) || has_decoration(var.self, DecorationSample); // Add a reference to the member to the interface struct. uint32_t mbr_type_id = var_type.member_types[mbr_idx]; uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size()); mbr_type_id = ensure_correct_builtin_type(mbr_type_id, builtin); var_type.member_types[mbr_idx] = mbr_type_id; if (storage == StorageClassInput && pull_model_inputs.count(var.self)) ib_type.member_types.push_back(build_msl_interpolant_type(mbr_type_id, is_noperspective)); else ib_type.member_types.push_back(mbr_type_id); // Give the member a name string mbr_name = ensure_valid_name(append_member_name(mbr_name_qual, var_type, mbr_idx), "m"); set_member_name(ib_type.self, ib_mbr_idx, mbr_name); // Update the original variable reference to include the structure reference string qual_var_name = ib_var_ref + "." + mbr_name; // If using pull-model interpolation, need to add a call to the correct interpolation method. if (storage == StorageClassInput && pull_model_inputs.count(var.self)) { if (is_centroid) qual_var_name += ".interpolate_at_centroid()"; else if (is_sample) qual_var_name += join(".interpolate_at_sample(", to_expression(builtin_sample_id_id), ")"); else qual_var_name += ".interpolate_at_center()"; } bool flatten_stage_out = false; string var_chain = var_chain_qual + "." + to_member_name(var_type, mbr_idx); if (is_builtin && !meta.strip_array) { // For the builtin gl_PerVertex, we cannot treat it as a block anyways, // so redirect to qualified name. set_member_qualified_name(var_type.self, mbr_idx, qual_var_name); } else if (!meta.strip_array && meta.allow_local_declaration) { // Unflatten or flatten from [[stage_in]] or [[stage_out]] as appropriate. switch (storage) { case StorageClassInput: entry_func.fixup_hooks_in.push_back([=]() { statement(var_chain, " = ", qual_var_name, ";"); }); break; case StorageClassOutput: flatten_stage_out = true; entry_func.fixup_hooks_out.push_back([=]() { statement(qual_var_name, " = ", var_chain, ";"); }); break; default: break; } } // Once we determine the location of the first member within nested structures, // from a var of the topmost structure, the remaining flattened members of // the nested structures will have consecutive location values. At this point, // we've recursively tunnelled into structs, arrays, and matrices, and are // down to a single location for each member now. if (!is_builtin && location != UINT32_MAX) { set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); mark_location_as_used_by_shader(location, get(mbr_type_id), storage); location++; } else if (has_member_decoration(var_type.self, mbr_idx, DecorationLocation)) { location = get_member_decoration(var_type.self, mbr_idx, DecorationLocation); uint32_t comp = get_member_decoration(var_type.self, mbr_idx, DecorationComponent); if (storage == StorageClassInput) { mbr_type_id = ensure_correct_input_type(mbr_type_id, location, comp, 0, meta.strip_array); var_type.member_types[mbr_idx] = mbr_type_id; if (storage == StorageClassInput && pull_model_inputs.count(var.self)) ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective); else ib_type.member_types[ib_mbr_idx] = mbr_type_id; } set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); mark_location_as_used_by_shader(location, get(mbr_type_id), storage); location++; } else if (has_decoration(var.self, DecorationLocation)) { location = get_accumulated_member_location(var, mbr_idx, meta.strip_array); if (storage == StorageClassInput) { mbr_type_id = ensure_correct_input_type(mbr_type_id, location, 0, 0, meta.strip_array); var_type.member_types[mbr_idx] = mbr_type_id; if (storage == StorageClassInput && pull_model_inputs.count(var.self)) ib_type.member_types[ib_mbr_idx] = build_msl_interpolant_type(mbr_type_id, is_noperspective); else ib_type.member_types[ib_mbr_idx] = mbr_type_id; } set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); mark_location_as_used_by_shader(location, get(mbr_type_id), storage); location++; } else if (is_builtin && is_tessellation_shader() && storage == StorageClassInput && inputs_by_builtin.count(builtin)) { location = inputs_by_builtin[builtin].location; set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); mark_location_as_used_by_shader(location, get(mbr_type_id), storage); location++; } // Copy the component location, if present. if (has_member_decoration(var_type.self, mbr_idx, DecorationComponent)) { uint32_t comp = get_member_decoration(var_type.self, mbr_idx, DecorationComponent); set_member_decoration(ib_type.self, ib_mbr_idx, DecorationComponent, comp); } // Mark the member as builtin if needed if (is_builtin) { set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin); if (builtin == BuiltInPosition && storage == StorageClassOutput) qual_pos_var_name = qual_var_name; } const SPIRConstant *c = nullptr; if (!flatten_stage_out && var.storage == StorageClassOutput && var.initializer != ID(0) && (c = maybe_get(var.initializer))) { if (meta.strip_array) { entry_func.fixup_hooks_in.push_back([=, &var]() { auto &type = this->get(var.basetype); uint32_t index = get_extended_member_decoration(var.self, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex); auto invocation = to_tesc_invocation_id(); auto constant_chain = join(to_expression(var.initializer), "[", invocation, "]"); statement(to_expression(stage_out_ptr_var_id), "[", invocation, "].", to_member_name(ib_type, index), " = ", constant_chain, ".", to_member_name(type, mbr_idx), ";"); }); } else { entry_func.fixup_hooks_in.push_back([=]() { statement(qual_var_name, " = ", constant_expression( this->get(c->subconstants[mbr_idx])), ";"); }); } } if (storage != StorageClassInput || !pull_model_inputs.count(var.self)) { // Copy interpolation decorations if needed if (is_flat) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat); if (is_noperspective) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective); if (is_centroid) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid); if (is_sample) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample); } set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceOrigID, var.self); set_extended_member_decoration(ib_type.self, ib_mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, var_mbr_idx); } // In Metal, the tessellation levels are stored as tightly packed half-precision floating point values. // But, stage-in attribute offsets and strides must be multiples of four, so we can't pass the levels // individually. Therefore, we must pass them as vectors. Triangles get a single float4, with the outer // levels in 'xyz' and the inner level in 'w'. Quads get a float4 containing the outer levels and a // float2 containing the inner levels. void CompilerMSL::add_tess_level_input_to_interface_block(const std::string &ib_var_ref, SPIRType &ib_type, SPIRVariable &var) { auto &entry_func = get(ir.default_entry_point); auto &var_type = get_variable_element_type(var); BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn)); // Force the variable to have the proper name. string var_name = builtin_to_glsl(builtin, StorageClassFunction); set_name(var.self, var_name); // We need to declare the variable early and at entry-point scope. entry_func.add_local_variable(var.self); vars_needing_early_declaration.push_back(var.self); bool triangles = get_execution_mode_bitset().get(ExecutionModeTriangles); string mbr_name; // Add a reference to the variable type to the interface struct. uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size()); const auto mark_locations = [&](const SPIRType &new_var_type) { if (get_decoration_bitset(var.self).get(DecorationLocation)) { uint32_t locn = get_decoration(var.self, DecorationLocation); set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn); mark_location_as_used_by_shader(locn, new_var_type, StorageClassInput); } else if (inputs_by_builtin.count(builtin)) { uint32_t locn = inputs_by_builtin[builtin].location; set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, locn); mark_location_as_used_by_shader(locn, new_var_type, StorageClassInput); } }; if (triangles) { // Triangles are tricky, because we want only one member in the struct. mbr_name = "gl_TessLevel"; // If we already added the other one, we can skip this step. if (!added_builtin_tess_level) { uint32_t type_id = build_extended_vector_type(var_type.self, 4); ib_type.member_types.push_back(type_id); // Give the member a name set_member_name(ib_type.self, ib_mbr_idx, mbr_name); // We cannot decorate both, but the important part is that // it's marked as builtin so we can get automatic attribute assignment if needed. set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin); mark_locations(var_type); added_builtin_tess_level = true; } } else { mbr_name = var_name; uint32_t type_id = build_extended_vector_type(var_type.self, builtin == BuiltInTessLevelOuter ? 4 : 2); uint32_t ptr_type_id = ir.increase_bound_by(1); auto &new_var_type = set(ptr_type_id, get(type_id)); new_var_type.pointer = true; new_var_type.pointer_depth++; new_var_type.storage = StorageClassInput; new_var_type.parent_type = type_id; ib_type.member_types.push_back(type_id); // Give the member a name set_member_name(ib_type.self, ib_mbr_idx, mbr_name); set_member_decoration(ib_type.self, ib_mbr_idx, DecorationBuiltIn, builtin); mark_locations(new_var_type); } if (builtin == BuiltInTessLevelOuter) { entry_func.fixup_hooks_in.push_back([=]() { statement(var_name, "[0] = ", ib_var_ref, ".", mbr_name, ".x;"); statement(var_name, "[1] = ", ib_var_ref, ".", mbr_name, ".y;"); statement(var_name, "[2] = ", ib_var_ref, ".", mbr_name, ".z;"); if (!triangles) statement(var_name, "[3] = ", ib_var_ref, ".", mbr_name, ".w;"); }); } else { entry_func.fixup_hooks_in.push_back([=]() { if (triangles) { statement(var_name, "[0] = ", ib_var_ref, ".", mbr_name, ".w;"); } else { statement(var_name, "[0] = ", ib_var_ref, ".", mbr_name, ".x;"); statement(var_name, "[1] = ", ib_var_ref, ".", mbr_name, ".y;"); } }); } } bool CompilerMSL::variable_storage_requires_stage_io(spv::StorageClass storage) const { if (storage == StorageClassOutput) return !capture_output_to_buffer; else if (storage == StorageClassInput) return !(get_execution_model() == ExecutionModelTessellationControl && msl_options.multi_patch_workgroup); else return false; } string CompilerMSL::to_tesc_invocation_id() { if (msl_options.multi_patch_workgroup) { // n.b. builtin_invocation_id_id here is the dispatch global invocation ID, // not the TC invocation ID. return join(to_expression(builtin_invocation_id_id), ".x % ", get_entry_point().output_vertices); } else return builtin_to_glsl(BuiltInInvocationId, StorageClassInput); } void CompilerMSL::emit_local_masked_variable(const SPIRVariable &masked_var, bool strip_array) { auto &entry_func = get(ir.default_entry_point); bool threadgroup_storage = variable_decl_is_remapped_storage(masked_var, StorageClassWorkgroup); if (threadgroup_storage && msl_options.multi_patch_workgroup) { // We need one threadgroup block per patch, so fake this. entry_func.fixup_hooks_in.push_back([this, &masked_var]() { auto &type = get_variable_data_type(masked_var); add_local_variable_name(masked_var.self); bool old_is_builtin = is_using_builtin_array; is_using_builtin_array = true; const uint32_t max_control_points_per_patch = 32u; uint32_t max_num_instances = (max_control_points_per_patch + get_entry_point().output_vertices - 1u) / get_entry_point().output_vertices; statement("threadgroup ", type_to_glsl(type), " ", "spvStorage", to_name(masked_var.self), "[", max_num_instances, "]", type_to_array_glsl(type), ";"); // Assign a threadgroup slice to each PrimitiveID. // We assume here that workgroup size is rounded to 32, // since that's the maximum number of control points per patch. // We cannot size the array based on fixed dispatch parameters, // since Metal does not allow that. :( // FIXME: We will likely need an option to support passing down target workgroup size, // so we can emit appropriate size here. statement("threadgroup ", type_to_glsl(type), " ", "(&", to_name(masked_var.self), ")", type_to_array_glsl(type), " = spvStorage", to_name(masked_var.self), "[", "(", to_expression(builtin_invocation_id_id), ".x / ", get_entry_point().output_vertices, ") % ", max_num_instances, "];"); is_using_builtin_array = old_is_builtin; }); } else { entry_func.add_local_variable(masked_var.self); } if (!threadgroup_storage) { vars_needing_early_declaration.push_back(masked_var.self); } else if (masked_var.initializer) { // Cannot directly initialize threadgroup variables. Need fixup hooks. ID initializer = masked_var.initializer; if (strip_array) { entry_func.fixup_hooks_in.push_back([this, &masked_var, initializer]() { auto invocation = to_tesc_invocation_id(); statement(to_expression(masked_var.self), "[", invocation, "] = ", to_expression(initializer), "[", invocation, "];"); }); } else { entry_func.fixup_hooks_in.push_back([this, &masked_var, initializer]() { statement(to_expression(masked_var.self), " = ", to_expression(initializer), ";"); }); } } } void CompilerMSL::add_variable_to_interface_block(StorageClass storage, const string &ib_var_ref, SPIRType &ib_type, SPIRVariable &var, InterfaceBlockMeta &meta) { auto &entry_func = get(ir.default_entry_point); // Tessellation control I/O variables and tessellation evaluation per-point inputs are // usually declared as arrays. In these cases, we want to add the element type to the // interface block, since in Metal it's the interface block itself which is arrayed. auto &var_type = meta.strip_array ? get_variable_element_type(var) : get_variable_data_type(var); bool is_builtin = is_builtin_variable(var); auto builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn)); bool is_block = has_decoration(var_type.self, DecorationBlock); // If stage variables are masked out, emit them as plain variables instead. // For builtins, we query them one by one later. // IO blocks are not masked here, we need to mask them per-member instead. if (storage == StorageClassOutput && is_stage_output_variable_masked(var)) { // If we ignore an output, we must still emit it, since it might be used by app. // Instead, just emit it as early declaration. emit_local_masked_variable(var, meta.strip_array); return; } // If variable names alias, they will end up with wrong names in the interface struct, because // there might be aliases in the member name cache and there would be a mismatch in fixup_in code. // Make sure to register the variables as unique resource names ahead of time. // This would normally conflict with the name cache when emitting local variables, // but this happens in the setup stage, before we hit compilation loops. // The name cache is cleared before we actually emit code, so this is safe. add_resource_name(var.self); if (var_type.basetype == SPIRType::Struct) { bool block_requires_flattening = variable_storage_requires_stage_io(storage) || is_block; bool needs_local_declaration = !is_builtin && block_requires_flattening && meta.allow_local_declaration; if (needs_local_declaration) { // For I/O blocks or structs, we will need to pass the block itself around // to functions if they are used globally in leaf functions. // Rather than passing down member by member, // we unflatten I/O blocks while running the shader, // and pass the actual struct type down to leaf functions. // We then unflatten inputs, and flatten outputs in the "fixup" stages. emit_local_masked_variable(var, meta.strip_array); } if (!block_requires_flattening) { // In Metal tessellation shaders, the interface block itself is arrayed. This makes things // very complicated, since stage-in structures in MSL don't support nested structures. // Luckily, for stage-out when capturing output, we can avoid this and just add // composite members directly, because the stage-out structure is stored to a buffer, // not returned. add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta); } else { bool masked_block = false; uint32_t location = UINT32_MAX; uint32_t var_mbr_idx = 0; uint32_t elem_cnt = 1; if (is_matrix(var_type)) { if (is_array(var_type)) SPIRV_CROSS_THROW("MSL cannot emit arrays-of-matrices in input and output variables."); elem_cnt = var_type.columns; } else if (is_array(var_type)) { if (var_type.array.size() != 1) SPIRV_CROSS_THROW("MSL cannot emit arrays-of-arrays in input and output variables."); elem_cnt = to_array_size_literal(var_type); } for (uint32_t elem_idx = 0; elem_idx < elem_cnt; elem_idx++) { // Flatten the struct members into the interface struct for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++) { builtin = BuiltInMax; is_builtin = is_member_builtin(var_type, mbr_idx, &builtin); auto &mbr_type = get(var_type.member_types[mbr_idx]); if (storage == StorageClassOutput && is_stage_output_block_member_masked(var, mbr_idx, meta.strip_array)) { location = UINT32_MAX; // Skip this member and resolve location again on next var member if (is_block) masked_block = true; // Non-builtin block output variables are just ignored, since they will still access // the block variable as-is. They're just not flattened. if (is_builtin && !meta.strip_array) { // Emit a fake variable instead. uint32_t ids = ir.increase_bound_by(2); uint32_t ptr_type_id = ids + 0; uint32_t var_id = ids + 1; auto ptr_type = mbr_type; ptr_type.pointer = true; ptr_type.pointer_depth++; ptr_type.parent_type = var_type.member_types[mbr_idx]; ptr_type.storage = StorageClassOutput; uint32_t initializer = 0; if (var.initializer) if (auto *c = maybe_get(var.initializer)) initializer = c->subconstants[mbr_idx]; set(ptr_type_id, ptr_type); set(var_id, ptr_type_id, StorageClassOutput, initializer); entry_func.add_local_variable(var_id); vars_needing_early_declaration.push_back(var_id); set_name(var_id, builtin_to_glsl(builtin, StorageClassOutput)); set_decoration(var_id, DecorationBuiltIn, builtin); } } else if (!is_builtin || has_active_builtin(builtin, storage)) { bool is_composite_type = is_matrix(mbr_type) || is_array(mbr_type) || mbr_type.basetype == SPIRType::Struct; bool attribute_load_store = storage == StorageClassInput && get_execution_model() != ExecutionModelFragment; bool storage_is_stage_io = variable_storage_requires_stage_io(storage); // Clip/CullDistance always need to be declared as user attributes. if (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance) is_builtin = false; const string var_name = to_name(var.self); string mbr_name_qual = var_name; string var_chain_qual = var_name; if (elem_cnt > 1) { mbr_name_qual += join("_", elem_idx); var_chain_qual += join("[", elem_idx, "]"); } if ((!is_builtin || attribute_load_store) && storage_is_stage_io && is_composite_type) { add_composite_member_variable_to_interface_block(storage, ib_var_ref, ib_type, var, var_type, mbr_idx, meta, mbr_name_qual, var_chain_qual, location, var_mbr_idx); } else { add_plain_member_variable_to_interface_block(storage, ib_var_ref, ib_type, var, var_type, mbr_idx, meta, mbr_name_qual, var_chain_qual, location, var_mbr_idx); } } var_mbr_idx++; } } // If we're redirecting a block, we might still need to access the original block // variable if we're masking some members. if (masked_block && !needs_local_declaration && (!is_builtin_variable(var) || get_execution_model() == ExecutionModelTessellationControl)) { if (is_builtin_variable(var)) { // Ensure correct names for the block members if we're actually going to // declare gl_PerVertex. for (uint32_t mbr_idx = 0; mbr_idx < uint32_t(var_type.member_types.size()); mbr_idx++) { set_member_name(var_type.self, mbr_idx, builtin_to_glsl( BuiltIn(get_member_decoration(var_type.self, mbr_idx, DecorationBuiltIn)), StorageClassOutput)); } set_name(var_type.self, "gl_PerVertex"); set_name(var.self, "gl_out_masked"); stage_out_masked_builtin_type_id = var_type.self; } emit_local_masked_variable(var, meta.strip_array); } } } else if (get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput && !meta.strip_array && is_builtin && (builtin == BuiltInTessLevelOuter || builtin == BuiltInTessLevelInner)) { add_tess_level_input_to_interface_block(ib_var_ref, ib_type, var); } else if (var_type.basetype == SPIRType::Boolean || var_type.basetype == SPIRType::Char || type_is_integral(var_type) || type_is_floating_point(var_type)) { if (!is_builtin || has_active_builtin(builtin, storage)) { bool is_composite_type = is_matrix(var_type) || is_array(var_type); bool storage_is_stage_io = variable_storage_requires_stage_io(storage); bool attribute_load_store = storage == StorageClassInput && get_execution_model() != ExecutionModelFragment; // Clip/CullDistance always needs to be declared as user attributes. if (builtin == BuiltInClipDistance || builtin == BuiltInCullDistance) is_builtin = false; // MSL does not allow matrices or arrays in input or output variables, so need to handle it specially. if ((!is_builtin || attribute_load_store) && storage_is_stage_io && is_composite_type) { add_composite_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta); } else { add_plain_variable_to_interface_block(storage, ib_var_ref, ib_type, var, meta); } } } } // Fix up the mapping of variables to interface member indices, which is used to compile access chains // for per-vertex variables in a tessellation control shader. void CompilerMSL::fix_up_interface_member_indices(StorageClass storage, uint32_t ib_type_id) { // Only needed for tessellation shaders and pull-model interpolants. // Need to redirect interface indices back to variables themselves. // For structs, each member of the struct need a separate instance. if (get_execution_model() != ExecutionModelTessellationControl && !(get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput) && !(get_execution_model() == ExecutionModelFragment && storage == StorageClassInput && !pull_model_inputs.empty())) return; auto mbr_cnt = uint32_t(ir.meta[ib_type_id].members.size()); for (uint32_t i = 0; i < mbr_cnt; i++) { uint32_t var_id = get_extended_member_decoration(ib_type_id, i, SPIRVCrossDecorationInterfaceOrigID); if (!var_id) continue; auto &var = get(var_id); auto &type = get_variable_element_type(var); bool flatten_composites = variable_storage_requires_stage_io(var.storage); bool is_block = has_decoration(type.self, DecorationBlock); uint32_t mbr_idx = uint32_t(-1); if (type.basetype == SPIRType::Struct && (flatten_composites || is_block)) mbr_idx = get_extended_member_decoration(ib_type_id, i, SPIRVCrossDecorationInterfaceMemberIndex); if (mbr_idx != uint32_t(-1)) { // Only set the lowest InterfaceMemberIndex for each variable member. // IB struct members will be emitted in-order w.r.t. interface member index. if (!has_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex)) set_extended_member_decoration(var_id, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex, i); } else { // Only set the lowest InterfaceMemberIndex for each variable. // IB struct members will be emitted in-order w.r.t. interface member index. if (!has_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex)) set_extended_decoration(var_id, SPIRVCrossDecorationInterfaceMemberIndex, i); } } } // Add an interface structure for the type of storage, which is either StorageClassInput or StorageClassOutput. // Returns the ID of the newly added variable, or zero if no variable was added. uint32_t CompilerMSL::add_interface_block(StorageClass storage, bool patch) { // Accumulate the variables that should appear in the interface struct. SmallVector vars; bool incl_builtins = storage == StorageClassOutput || is_tessellation_shader(); bool has_seen_barycentric = false; InterfaceBlockMeta meta; // Varying interfaces between stages which use "user()" attribute can be dealt with // without explicit packing and unpacking of components. For any variables which link against the runtime // in some way (vertex attributes, fragment output, etc), we'll need to deal with it somehow. bool pack_components = (storage == StorageClassInput && get_execution_model() == ExecutionModelVertex) || (storage == StorageClassOutput && get_execution_model() == ExecutionModelFragment) || (storage == StorageClassOutput && get_execution_model() == ExecutionModelVertex && capture_output_to_buffer); ir.for_each_typed_id([&](uint32_t var_id, SPIRVariable &var) { if (var.storage != storage) return; auto &type = this->get(var.basetype); bool is_builtin = is_builtin_variable(var); bool is_block = has_decoration(type.self, DecorationBlock); auto bi_type = BuiltInMax; bool builtin_is_gl_in_out = false; if (is_builtin && !is_block) { bi_type = BuiltIn(get_decoration(var_id, DecorationBuiltIn)); builtin_is_gl_in_out = bi_type == BuiltInPosition || bi_type == BuiltInPointSize || bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance; } if (is_builtin && is_block) builtin_is_gl_in_out = true; uint32_t location = get_decoration(var_id, DecorationLocation); bool builtin_is_stage_in_out = builtin_is_gl_in_out || bi_type == BuiltInLayer || bi_type == BuiltInViewportIndex || bi_type == BuiltInBaryCoordNV || bi_type == BuiltInBaryCoordNoPerspNV || bi_type == BuiltInFragDepth || bi_type == BuiltInFragStencilRefEXT || bi_type == BuiltInSampleMask; // These builtins are part of the stage in/out structs. bool is_interface_block_builtin = builtin_is_stage_in_out || (get_execution_model() == ExecutionModelTessellationEvaluation && (bi_type == BuiltInTessLevelOuter || bi_type == BuiltInTessLevelInner)); bool is_active = interface_variable_exists_in_entry_point(var.self); if (is_builtin && is_active) { // Only emit the builtin if it's active in this entry point. Interface variable list might lie. if (is_block) { // If any builtin is active, the block is active. uint32_t mbr_cnt = uint32_t(type.member_types.size()); for (uint32_t i = 0; !is_active && i < mbr_cnt; i++) is_active = has_active_builtin(BuiltIn(get_member_decoration(type.self, i, DecorationBuiltIn)), storage); } else { is_active = has_active_builtin(bi_type, storage); } } bool filter_patch_decoration = (has_decoration(var_id, DecorationPatch) || is_patch_block(type)) == patch; bool hidden = is_hidden_variable(var, incl_builtins); // ClipDistance is never hidden, we need to emulate it when used as an input. if (bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance) hidden = false; // It's not enough to simply avoid marking fragment outputs if the pipeline won't // accept them. We can't put them in the struct at all, or otherwise the compiler // complains that the outputs weren't explicitly marked. // Frag depth and stencil outputs are incompatible with explicit early fragment tests. // In GLSL, depth and stencil outputs are just ignored when explicit early fragment tests are required. // In Metal, it's a compilation error, so we need to exclude them from the output struct. if (get_execution_model() == ExecutionModelFragment && storage == StorageClassOutput && !patch && ((is_builtin && ((bi_type == BuiltInFragDepth && (!msl_options.enable_frag_depth_builtin || uses_explicit_early_fragment_test())) || (bi_type == BuiltInFragStencilRefEXT && (!msl_options.enable_frag_stencil_ref_builtin || uses_explicit_early_fragment_test())))) || (!is_builtin && !(msl_options.enable_frag_output_mask & (1 << location))))) { hidden = true; disabled_frag_outputs.push_back(var_id); // If a builtin, force it to have the proper name, and mark it as not part of the output struct. if (is_builtin) { set_name(var_id, builtin_to_glsl(bi_type, StorageClassFunction)); mask_stage_output_by_builtin(bi_type); } } // Barycentric inputs must be emitted in stage-in, because they can have interpolation arguments. if (is_active && (bi_type == BuiltInBaryCoordNV || bi_type == BuiltInBaryCoordNoPerspNV)) { if (has_seen_barycentric) SPIRV_CROSS_THROW("Cannot declare both BaryCoordNV and BaryCoordNoPerspNV in same shader in MSL."); has_seen_barycentric = true; hidden = false; } if (is_active && !hidden && type.pointer && filter_patch_decoration && (!is_builtin || is_interface_block_builtin)) { vars.push_back(&var); if (!is_builtin) { // Need to deal specially with DecorationComponent. // Multiple variables can alias the same Location, and try to make sure each location is declared only once. // We will swizzle data in and out to make this work. // This is only relevant for vertex inputs and fragment outputs. // Technically tessellation as well, but it is too complicated to support. uint32_t component = get_decoration(var_id, DecorationComponent); if (component != 0) { if (is_tessellation_shader()) SPIRV_CROSS_THROW("Component decoration is not supported in tessellation shaders."); else if (pack_components) { uint32_t array_size = 1; if (!type.array.empty()) array_size = to_array_size_literal(type); for (uint32_t location_offset = 0; location_offset < array_size; location_offset++) { auto &location_meta = meta.location_meta[location + location_offset]; location_meta.num_components = std::max(location_meta.num_components, component + type.vecsize); // For variables sharing location, decorations and base type must match. location_meta.base_type_id = type.self; location_meta.flat = has_decoration(var.self, DecorationFlat); location_meta.noperspective = has_decoration(var.self, DecorationNoPerspective); location_meta.centroid = has_decoration(var.self, DecorationCentroid); location_meta.sample = has_decoration(var.self, DecorationSample); } } } } } }); // If no variables qualify, leave. // For patch input in a tessellation evaluation shader, the per-vertex stage inputs // are included in a special patch control point array. if (vars.empty() && !(storage == StorageClassInput && patch && stage_in_var_id)) return 0; // Add a new typed variable for this interface structure. // The initializer expression is allocated here, but populated when the function // declaraion is emitted, because it is cleared after each compilation pass. uint32_t next_id = ir.increase_bound_by(3); uint32_t ib_type_id = next_id++; auto &ib_type = set(ib_type_id); ib_type.basetype = SPIRType::Struct; ib_type.storage = storage; set_decoration(ib_type_id, DecorationBlock); uint32_t ib_var_id = next_id++; auto &var = set(ib_var_id, ib_type_id, storage, 0); var.initializer = next_id++; string ib_var_ref; auto &entry_func = get(ir.default_entry_point); switch (storage) { case StorageClassInput: ib_var_ref = patch ? patch_stage_in_var_name : stage_in_var_name; if (get_execution_model() == ExecutionModelTessellationControl) { // Add a hook to populate the shared workgroup memory containing the gl_in array. entry_func.fixup_hooks_in.push_back([=]() { // Can't use PatchVertices, PrimitiveId, or InvocationId yet; the hooks for those may not have run yet. if (msl_options.multi_patch_workgroup) { // n.b. builtin_invocation_id_id here is the dispatch global invocation ID, // not the TC invocation ID. statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_in = &", input_buffer_var_name, "[min(", to_expression(builtin_invocation_id_id), ".x / ", get_entry_point().output_vertices, ", spvIndirectParams[1] - 1) * spvIndirectParams[0]];"); } else { // It's safe to use InvocationId here because it's directly mapped to a // Metal builtin, and therefore doesn't need a hook. statement("if (", to_expression(builtin_invocation_id_id), " < spvIndirectParams[0])"); statement(" ", input_wg_var_name, "[", to_expression(builtin_invocation_id_id), "] = ", ib_var_ref, ";"); statement("threadgroup_barrier(mem_flags::mem_threadgroup);"); statement("if (", to_expression(builtin_invocation_id_id), " >= ", get_entry_point().output_vertices, ")"); statement(" return;"); } }); } break; case StorageClassOutput: { ib_var_ref = patch ? patch_stage_out_var_name : stage_out_var_name; // Add the output interface struct as a local variable to the entry function. // If the entry point should return the output struct, set the entry function // to return the output interface struct, otherwise to return nothing. // Watch out for the rare case where the terminator of the last entry point block is a // Kill, instead of a Return. Based on SPIR-V's block-domination rules, we assume that // any block that has a Kill will also have a terminating Return, except the last block. // Indicate the output var requires early initialization. bool ep_should_return_output = !get_is_rasterization_disabled(); uint32_t rtn_id = ep_should_return_output ? ib_var_id : 0; if (!capture_output_to_buffer) { entry_func.add_local_variable(ib_var_id); for (auto &blk_id : entry_func.blocks) { auto &blk = get(blk_id); if (blk.terminator == SPIRBlock::Return || (blk.terminator == SPIRBlock::Kill && blk_id == entry_func.blocks.back())) blk.return_value = rtn_id; } vars_needing_early_declaration.push_back(ib_var_id); } else { switch (get_execution_model()) { case ExecutionModelVertex: case ExecutionModelTessellationEvaluation: // Instead of declaring a struct variable to hold the output and then // copying that to the output buffer, we'll declare the output variable // as a reference to the final output element in the buffer. Then we can // avoid the extra copy. entry_func.fixup_hooks_in.push_back([=]() { if (stage_out_var_id) { // The first member of the indirect buffer is always the number of vertices // to draw. // We zero-base the InstanceID & VertexID variables for HLSL emulation elsewhere, so don't do it twice if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation) { statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, " = ", output_buffer_var_name, "[", to_expression(builtin_invocation_id_id), ".y * ", to_expression(builtin_stage_input_size_id), ".x + ", to_expression(builtin_invocation_id_id), ".x];"); } else if (msl_options.enable_base_index_zero) { statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, " = ", output_buffer_var_name, "[", to_expression(builtin_instance_idx_id), " * spvIndirectParams[0] + ", to_expression(builtin_vertex_idx_id), "];"); } else { statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, " = ", output_buffer_var_name, "[(", to_expression(builtin_instance_idx_id), " - ", to_expression(builtin_base_instance_id), ") * spvIndirectParams[0] + ", to_expression(builtin_vertex_idx_id), " - ", to_expression(builtin_base_vertex_id), "];"); } } }); break; case ExecutionModelTessellationControl: if (msl_options.multi_patch_workgroup) { // We cannot use PrimitiveId here, because the hook may not have run yet. if (patch) { entry_func.fixup_hooks_in.push_back([=]() { statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, " = ", patch_output_buffer_var_name, "[", to_expression(builtin_invocation_id_id), ".x / ", get_entry_point().output_vertices, "];"); }); } else { entry_func.fixup_hooks_in.push_back([=]() { statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_out = &", output_buffer_var_name, "[", to_expression(builtin_invocation_id_id), ".x - ", to_expression(builtin_invocation_id_id), ".x % ", get_entry_point().output_vertices, "];"); }); } } else { if (patch) { entry_func.fixup_hooks_in.push_back([=]() { statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "& ", ib_var_ref, " = ", patch_output_buffer_var_name, "[", to_expression(builtin_primitive_id_id), "];"); }); } else { entry_func.fixup_hooks_in.push_back([=]() { statement("device ", to_name(ir.default_entry_point), "_", ib_var_ref, "* gl_out = &", output_buffer_var_name, "[", to_expression(builtin_primitive_id_id), " * ", get_entry_point().output_vertices, "];"); }); } } break; default: break; } } break; } default: break; } set_name(ib_type_id, to_name(ir.default_entry_point) + "_" + ib_var_ref); set_name(ib_var_id, ib_var_ref); for (auto *p_var : vars) { bool strip_array = (get_execution_model() == ExecutionModelTessellationControl || (get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput)) && !patch; // Fixing up flattened stores in TESC is impossible since the memory is group shared either via // device (not masked) or threadgroup (masked) storage classes and it's race condition city. meta.strip_array = strip_array; meta.allow_local_declaration = !strip_array && !(get_execution_model() == ExecutionModelTessellationControl && storage == StorageClassOutput); add_variable_to_interface_block(storage, ib_var_ref, ib_type, *p_var, meta); } if (get_execution_model() == ExecutionModelTessellationControl && msl_options.multi_patch_workgroup && storage == StorageClassInput) { // For tessellation control inputs, add all outputs from the vertex shader to ensure // the struct containing them is the correct size and layout. for (auto &input : inputs_by_location) { if (location_inputs_in_use.count(input.first.location) != 0) continue; // Create a fake variable to put at the location. uint32_t offset = ir.increase_bound_by(4); uint32_t type_id = offset; uint32_t array_type_id = offset + 1; uint32_t ptr_type_id = offset + 2; uint32_t var_id = offset + 3; SPIRType type; switch (input.second.format) { case MSL_SHADER_INPUT_FORMAT_UINT16: case MSL_SHADER_INPUT_FORMAT_ANY16: type.basetype = SPIRType::UShort; type.width = 16; break; case MSL_SHADER_INPUT_FORMAT_ANY32: default: type.basetype = SPIRType::UInt; type.width = 32; break; } type.vecsize = input.second.vecsize; set(type_id, type); type.array.push_back(0); type.array_size_literal.push_back(true); type.parent_type = type_id; set(array_type_id, type); type.pointer = true; type.pointer_depth++; type.parent_type = array_type_id; type.storage = storage; auto &ptr_type = set(ptr_type_id, type); ptr_type.self = array_type_id; auto &fake_var = set(var_id, ptr_type_id, storage); set_decoration(var_id, DecorationLocation, input.first.location); if (input.first.component) set_decoration(var_id, DecorationComponent, input.first.component); meta.strip_array = true; meta.allow_local_declaration = false; add_variable_to_interface_block(storage, ib_var_ref, ib_type, fake_var, meta); } } // When multiple variables need to access same location, // unroll locations one by one and we will flatten output or input as necessary. for (auto &loc : meta.location_meta) { uint32_t location = loc.first; auto &location_meta = loc.second; uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size()); uint32_t type_id = build_extended_vector_type(location_meta.base_type_id, location_meta.num_components); ib_type.member_types.push_back(type_id); set_member_name(ib_type.self, ib_mbr_idx, join("m_location_", location)); set_member_decoration(ib_type.self, ib_mbr_idx, DecorationLocation, location); mark_location_as_used_by_shader(location, get(type_id), storage); if (location_meta.flat) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationFlat); if (location_meta.noperspective) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationNoPerspective); if (location_meta.centroid) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationCentroid); if (location_meta.sample) set_member_decoration(ib_type.self, ib_mbr_idx, DecorationSample); } // Sort the members of the structure by their locations. MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::LocationThenBuiltInType); member_sorter.sort(); // The member indices were saved to the original variables, but after the members // were sorted, those indices are now likely incorrect. Fix those up now. fix_up_interface_member_indices(storage, ib_type_id); // For patch inputs, add one more member, holding the array of control point data. if (get_execution_model() == ExecutionModelTessellationEvaluation && storage == StorageClassInput && patch && stage_in_var_id) { uint32_t pcp_type_id = ir.increase_bound_by(1); auto &pcp_type = set(pcp_type_id, ib_type); pcp_type.basetype = SPIRType::ControlPointArray; pcp_type.parent_type = pcp_type.type_alias = get_stage_in_struct_type().self; pcp_type.storage = storage; ir.meta[pcp_type_id] = ir.meta[ib_type.self]; uint32_t mbr_idx = uint32_t(ib_type.member_types.size()); ib_type.member_types.push_back(pcp_type_id); set_member_name(ib_type.self, mbr_idx, "gl_in"); } return ib_var_id; } uint32_t CompilerMSL::add_interface_block_pointer(uint32_t ib_var_id, StorageClass storage) { if (!ib_var_id) return 0; uint32_t ib_ptr_var_id; uint32_t next_id = ir.increase_bound_by(3); auto &ib_type = expression_type(ib_var_id); if (get_execution_model() == ExecutionModelTessellationControl) { // Tessellation control per-vertex I/O is presented as an array, so we must // do the same with our struct here. uint32_t ib_ptr_type_id = next_id++; auto &ib_ptr_type = set(ib_ptr_type_id, ib_type); ib_ptr_type.parent_type = ib_ptr_type.type_alias = ib_type.self; ib_ptr_type.pointer = true; ib_ptr_type.pointer_depth++; ib_ptr_type.storage = storage == StorageClassInput ? (msl_options.multi_patch_workgroup ? StorageClassStorageBuffer : StorageClassWorkgroup) : StorageClassStorageBuffer; ir.meta[ib_ptr_type_id] = ir.meta[ib_type.self]; // To ensure that get_variable_data_type() doesn't strip off the pointer, // which we need, use another pointer. uint32_t ib_ptr_ptr_type_id = next_id++; auto &ib_ptr_ptr_type = set(ib_ptr_ptr_type_id, ib_ptr_type); ib_ptr_ptr_type.parent_type = ib_ptr_type_id; ib_ptr_ptr_type.type_alias = ib_type.self; ib_ptr_ptr_type.storage = StorageClassFunction; ir.meta[ib_ptr_ptr_type_id] = ir.meta[ib_type.self]; ib_ptr_var_id = next_id; set(ib_ptr_var_id, ib_ptr_ptr_type_id, StorageClassFunction, 0); set_name(ib_ptr_var_id, storage == StorageClassInput ? "gl_in" : "gl_out"); } else { // Tessellation evaluation per-vertex inputs are also presented as arrays. // But, in Metal, this array uses a very special type, 'patch_control_point', // which is a container that can be used to access the control point data. // To represent this, a special 'ControlPointArray' type has been added to the // SPIRV-Cross type system. It should only be generated by and seen in the MSL // backend (i.e. this one). uint32_t pcp_type_id = next_id++; auto &pcp_type = set(pcp_type_id, ib_type); pcp_type.basetype = SPIRType::ControlPointArray; pcp_type.parent_type = pcp_type.type_alias = ib_type.self; pcp_type.storage = storage; ir.meta[pcp_type_id] = ir.meta[ib_type.self]; ib_ptr_var_id = next_id; set(ib_ptr_var_id, pcp_type_id, storage, 0); set_name(ib_ptr_var_id, "gl_in"); ir.meta[ib_ptr_var_id].decoration.qualified_alias = join(patch_stage_in_var_name, ".gl_in"); } return ib_ptr_var_id; } // Ensure that the type is compatible with the builtin. // If it is, simply return the given type ID. // Otherwise, create a new type, and return it's ID. uint32_t CompilerMSL::ensure_correct_builtin_type(uint32_t type_id, BuiltIn builtin) { auto &type = get(type_id); if ((builtin == BuiltInSampleMask && is_array(type)) || ((builtin == BuiltInLayer || builtin == BuiltInViewportIndex || builtin == BuiltInFragStencilRefEXT) && type.basetype != SPIRType::UInt)) { uint32_t next_id = ir.increase_bound_by(type.pointer ? 2 : 1); uint32_t base_type_id = next_id++; auto &base_type = set(base_type_id); base_type.basetype = SPIRType::UInt; base_type.width = 32; if (!type.pointer) return base_type_id; uint32_t ptr_type_id = next_id++; auto &ptr_type = set(ptr_type_id); ptr_type = base_type; ptr_type.pointer = true; ptr_type.pointer_depth++; ptr_type.storage = type.storage; ptr_type.parent_type = base_type_id; return ptr_type_id; } return type_id; } // Ensure that the type is compatible with the shader input. // If it is, simply return the given type ID. // Otherwise, create a new type, and return its ID. uint32_t CompilerMSL::ensure_correct_input_type(uint32_t type_id, uint32_t location, uint32_t component, uint32_t num_components, bool strip_array) { auto &type = get(type_id); uint32_t max_array_dimensions = strip_array ? 1 : 0; // Struct and array types must match exactly. if (type.basetype == SPIRType::Struct || type.array.size() > max_array_dimensions) return type_id; auto p_va = inputs_by_location.find({location, component}); if (p_va == end(inputs_by_location)) { if (num_components > type.vecsize) return build_extended_vector_type(type_id, num_components); else return type_id; } if (num_components == 0) num_components = p_va->second.vecsize; switch (p_va->second.format) { case MSL_SHADER_INPUT_FORMAT_UINT8: { switch (type.basetype) { case SPIRType::UByte: case SPIRType::UShort: case SPIRType::UInt: if (num_components > type.vecsize) return build_extended_vector_type(type_id, num_components); else return type_id; case SPIRType::Short: return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize, SPIRType::UShort); case SPIRType::Int: return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize, SPIRType::UInt); default: SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader"); } } case MSL_SHADER_INPUT_FORMAT_UINT16: { switch (type.basetype) { case SPIRType::UShort: case SPIRType::UInt: if (num_components > type.vecsize) return build_extended_vector_type(type_id, num_components); else return type_id; case SPIRType::Int: return build_extended_vector_type(type_id, num_components > type.vecsize ? num_components : type.vecsize, SPIRType::UInt); default: SPIRV_CROSS_THROW("Vertex attribute type mismatch between host and shader"); } } default: if (num_components > type.vecsize) type_id = build_extended_vector_type(type_id, num_components); break; } return type_id; } void CompilerMSL::mark_struct_members_packed(const SPIRType &type) { set_extended_decoration(type.self, SPIRVCrossDecorationPhysicalTypePacked); // Problem case! Struct needs to be placed at an awkward alignment. // Mark every member of the child struct as packed. uint32_t mbr_cnt = uint32_t(type.member_types.size()); for (uint32_t i = 0; i < mbr_cnt; i++) { auto &mbr_type = get(type.member_types[i]); if (mbr_type.basetype == SPIRType::Struct) { // Recursively mark structs as packed. auto *struct_type = &mbr_type; while (!struct_type->array.empty()) struct_type = &get(struct_type->parent_type); mark_struct_members_packed(*struct_type); } else if (!is_scalar(mbr_type)) set_extended_member_decoration(type.self, i, SPIRVCrossDecorationPhysicalTypePacked); } } void CompilerMSL::mark_scalar_layout_structs(const SPIRType &type) { uint32_t mbr_cnt = uint32_t(type.member_types.size()); for (uint32_t i = 0; i < mbr_cnt; i++) { auto &mbr_type = get(type.member_types[i]); if (mbr_type.basetype == SPIRType::Struct) { auto *struct_type = &mbr_type; while (!struct_type->array.empty()) struct_type = &get(struct_type->parent_type); if (has_extended_decoration(struct_type->self, SPIRVCrossDecorationPhysicalTypePacked)) continue; uint32_t msl_alignment = get_declared_struct_member_alignment_msl(type, i); uint32_t msl_size = get_declared_struct_member_size_msl(type, i); uint32_t spirv_offset = type_struct_member_offset(type, i); uint32_t spirv_offset_next; if (i + 1 < mbr_cnt) spirv_offset_next = type_struct_member_offset(type, i + 1); else spirv_offset_next = spirv_offset + msl_size; // Both are complicated cases. In scalar layout, a struct of float3 might just consume 12 bytes, // and the next member will be placed at offset 12. bool struct_is_misaligned = (spirv_offset % msl_alignment) != 0; bool struct_is_too_large = spirv_offset + msl_size > spirv_offset_next; uint32_t array_stride = 0; bool struct_needs_explicit_padding = false; // Verify that if a struct is used as an array that ArrayStride matches the effective size of the struct. if (!mbr_type.array.empty()) { array_stride = type_struct_member_array_stride(type, i); uint32_t dimensions = uint32_t(mbr_type.array.size() - 1); for (uint32_t dim = 0; dim < dimensions; dim++) { uint32_t array_size = to_array_size_literal(mbr_type, dim); array_stride /= max(array_size, 1u); } // Set expected struct size based on ArrayStride. struct_needs_explicit_padding = true; // If struct size is larger than array stride, we might be able to fit, if we tightly pack. if (get_declared_struct_size_msl(*struct_type) > array_stride) struct_is_too_large = true; } if (struct_is_misaligned || struct_is_too_large) mark_struct_members_packed(*struct_type); mark_scalar_layout_structs(*struct_type); if (struct_needs_explicit_padding) { msl_size = get_declared_struct_size_msl(*struct_type, true, true); if (array_stride < msl_size) { SPIRV_CROSS_THROW("Cannot express an array stride smaller than size of struct type."); } else { if (has_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget)) { if (array_stride != get_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget)) SPIRV_CROSS_THROW( "A struct is used with different array strides. Cannot express this in MSL."); } else set_extended_decoration(struct_type->self, SPIRVCrossDecorationPaddingTarget, array_stride); } } } } } // Sort the members of the struct type by offset, and pack and then pad members where needed // to align MSL members with SPIR-V offsets. The struct members are iterated twice. Packing // occurs first, followed by padding, because packing a member reduces both its size and its // natural alignment, possibly requiring a padding member to be added ahead of it. void CompilerMSL::align_struct(SPIRType &ib_type, unordered_set &aligned_structs) { // We align structs recursively, so stop any redundant work. ID &ib_type_id = ib_type.self; if (aligned_structs.count(ib_type_id)) return; aligned_structs.insert(ib_type_id); // Sort the members of the interface structure by their offset. // They should already be sorted per SPIR-V spec anyway. MemberSorter member_sorter(ib_type, ir.meta[ib_type_id], MemberSorter::Offset); member_sorter.sort(); auto mbr_cnt = uint32_t(ib_type.member_types.size()); for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++) { // Pack any dependent struct types before we pack a parent struct. auto &mbr_type = get(ib_type.member_types[mbr_idx]); if (mbr_type.basetype == SPIRType::Struct) align_struct(mbr_type, aligned_structs); } // Test the alignment of each member, and if a member should be closer to the previous // member than the default spacing expects, it is likely that the previous member is in // a packed format. If so, and the previous member is packable, pack it. // For example ... this applies to any 3-element vector that is followed by a scalar. uint32_t msl_offset = 0; for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++) { // This checks the member in isolation, if the member needs some kind of type remapping to conform to SPIR-V // offsets, array strides and matrix strides. ensure_member_packing_rules_msl(ib_type, mbr_idx); // Align current offset to the current member's default alignment. If the member was packed, it will observe // the updated alignment here. uint32_t msl_align_mask = get_declared_struct_member_alignment_msl(ib_type, mbr_idx) - 1; uint32_t aligned_msl_offset = (msl_offset + msl_align_mask) & ~msl_align_mask; // Fetch the member offset as declared in the SPIRV. uint32_t spirv_mbr_offset = get_member_decoration(ib_type_id, mbr_idx, DecorationOffset); if (spirv_mbr_offset > aligned_msl_offset) { // Since MSL and SPIR-V have slightly different struct member alignment and // size rules, we'll pad to standard C-packing rules with a char[] array. If the member is farther // away than C-packing, expects, add an inert padding member before the the member. uint32_t padding_bytes = spirv_mbr_offset - aligned_msl_offset; set_extended_member_decoration(ib_type_id, mbr_idx, SPIRVCrossDecorationPaddingTarget, padding_bytes); // Re-align as a sanity check that aligning post-padding matches up. msl_offset += padding_bytes; aligned_msl_offset = (msl_offset + msl_align_mask) & ~msl_align_mask; } else if (spirv_mbr_offset < aligned_msl_offset) { // This should not happen, but deal with unexpected scenarios. // It *might* happen if a sub-struct has a larger alignment requirement in MSL than SPIR-V. SPIRV_CROSS_THROW("Cannot represent buffer block correctly in MSL."); } assert(aligned_msl_offset == spirv_mbr_offset); // Increment the current offset to be positioned immediately after the current member. // Don't do this for the last member since it can be unsized, and it is not relevant for padding purposes here. if (mbr_idx + 1 < mbr_cnt) msl_offset = aligned_msl_offset + get_declared_struct_member_size_msl(ib_type, mbr_idx); } } bool CompilerMSL::validate_member_packing_rules_msl(const SPIRType &type, uint32_t index) const { auto &mbr_type = get(type.member_types[index]); uint32_t spirv_offset = get_member_decoration(type.self, index, DecorationOffset); if (index + 1 < type.member_types.size()) { // First, we will check offsets. If SPIR-V offset + MSL size > SPIR-V offset of next member, // we *must* perform some kind of remapping, no way getting around it. // We can always pad after this member if necessary, so that case is fine. uint32_t spirv_offset_next = get_member_decoration(type.self, index + 1, DecorationOffset); assert(spirv_offset_next >= spirv_offset); uint32_t maximum_size = spirv_offset_next - spirv_offset; uint32_t msl_mbr_size = get_declared_struct_member_size_msl(type, index); if (msl_mbr_size > maximum_size) return false; } if (!mbr_type.array.empty()) { // If we have an array type, array stride must match exactly with SPIR-V. // An exception to this requirement is if we have one array element. // This comes from DX scalar layout workaround. // If app tries to be cheeky and access the member out of bounds, this will not work, but this is the best we can do. // In OpAccessChain with logical memory models, access chains must be in-bounds in SPIR-V specification. bool relax_array_stride = mbr_type.array.back() == 1 && mbr_type.array_size_literal.back(); if (!relax_array_stride) { uint32_t spirv_array_stride = type_struct_member_array_stride(type, index); uint32_t msl_array_stride = get_declared_struct_member_array_stride_msl(type, index); if (spirv_array_stride != msl_array_stride) return false; } } if (is_matrix(mbr_type)) { // Need to check MatrixStride as well. uint32_t spirv_matrix_stride = type_struct_member_matrix_stride(type, index); uint32_t msl_matrix_stride = get_declared_struct_member_matrix_stride_msl(type, index); if (spirv_matrix_stride != msl_matrix_stride) return false; } // Now, we check alignment. uint32_t msl_alignment = get_declared_struct_member_alignment_msl(type, index); if ((spirv_offset % msl_alignment) != 0) return false; // We're in the clear. return true; } // Here we need to verify that the member type we declare conforms to Offset, ArrayStride or MatrixStride restrictions. // If there is a mismatch, we need to emit remapped types, either normal types, or "packed_X" types. // In odd cases we need to emit packed and remapped types, for e.g. weird matrices or arrays with weird array strides. void CompilerMSL::ensure_member_packing_rules_msl(SPIRType &ib_type, uint32_t index) { if (validate_member_packing_rules_msl(ib_type, index)) return; // We failed validation. // This case will be nightmare-ish to deal with. This could possibly happen if struct alignment does not quite // match up with what we want. Scalar block layout comes to mind here where we might have to work around the rule // that struct alignment == max alignment of all members and struct size depends on this alignment. auto &mbr_type = get(ib_type.member_types[index]); if (mbr_type.basetype == SPIRType::Struct) SPIRV_CROSS_THROW("Cannot perform any repacking for structs when it is used as a member of another struct."); // Perform remapping here. // There is nothing to be gained by using packed scalars, so don't attempt it. if (!is_scalar(ib_type)) set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked); // Try validating again, now with packed. if (validate_member_packing_rules_msl(ib_type, index)) return; // We're in deep trouble, and we need to create a new PhysicalType which matches up with what we expect. // A lot of work goes here ... // We will need remapping on Load and Store to translate the types between Logical and Physical. // First, we check if we have small vector std140 array. // We detect this if we have an array of vectors, and array stride is greater than number of elements. if (!mbr_type.array.empty() && !is_matrix(mbr_type)) { uint32_t array_stride = type_struct_member_array_stride(ib_type, index); // Hack off array-of-arrays until we find the array stride per element we must have to make it work. uint32_t dimensions = uint32_t(mbr_type.array.size() - 1); for (uint32_t dim = 0; dim < dimensions; dim++) array_stride /= max(to_array_size_literal(mbr_type, dim), 1u); uint32_t elems_per_stride = array_stride / (mbr_type.width / 8); if (elems_per_stride == 3) SPIRV_CROSS_THROW("Cannot use ArrayStride of 3 elements in remapping scenarios."); else if (elems_per_stride > 4) SPIRV_CROSS_THROW("Cannot represent vectors with more than 4 elements in MSL."); auto physical_type = mbr_type; physical_type.vecsize = elems_per_stride; physical_type.parent_type = 0; uint32_t type_id = ir.increase_bound_by(1); set(type_id, physical_type); set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID, type_id); set_decoration(type_id, DecorationArrayStride, array_stride); // Remove packed_ for vectors of size 1, 2 and 4. unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked); } else if (is_matrix(mbr_type)) { // MatrixStride might be std140-esque. uint32_t matrix_stride = type_struct_member_matrix_stride(ib_type, index); uint32_t elems_per_stride = matrix_stride / (mbr_type.width / 8); if (elems_per_stride == 3) SPIRV_CROSS_THROW("Cannot use ArrayStride of 3 elements in remapping scenarios."); else if (elems_per_stride > 4) SPIRV_CROSS_THROW("Cannot represent vectors with more than 4 elements in MSL."); bool row_major = has_member_decoration(ib_type.self, index, DecorationRowMajor); auto physical_type = mbr_type; physical_type.parent_type = 0; if (row_major) physical_type.columns = elems_per_stride; else physical_type.vecsize = elems_per_stride; uint32_t type_id = ir.increase_bound_by(1); set(type_id, physical_type); set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID, type_id); // Remove packed_ for vectors of size 1, 2 and 4. unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked); } else SPIRV_CROSS_THROW("Found a buffer packing case which we cannot represent in MSL."); // Try validating again, now with physical type remapping. if (validate_member_packing_rules_msl(ib_type, index)) return; // We might have a particular odd scalar layout case where the last element of an array // does not take up as much space as the ArrayStride or MatrixStride. This can happen with DX cbuffers. // The "proper" workaround for this is extremely painful and essentially impossible in the edge case of float3[], // so we hack around it by declaring the offending array or matrix with one less array size/col/row, // and rely on padding to get the correct value. We will technically access arrays out of bounds into the padding region, // but it should spill over gracefully without too much trouble. We rely on behavior like this for unsized arrays anyways. // E.g. we might observe a physical layout of: // { float2 a[2]; float b; } in cbuffer layout where ArrayStride of a is 16, but offset of b is 24, packed right after a[1] ... uint32_t type_id = get_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID); auto &type = get(type_id); // Modify the physical type in-place. This is safe since each physical type workaround is a copy. if (is_array(type)) { if (type.array.back() > 1) { if (!type.array_size_literal.back()) SPIRV_CROSS_THROW("Cannot apply scalar layout workaround with spec constant array size."); type.array.back() -= 1; } else { // We have an array of size 1, so we cannot decrement that. Our only option now is to // force a packed layout instead, and drop the physical type remap since ArrayStride is meaningless now. unset_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypeID); set_extended_member_decoration(ib_type.self, index, SPIRVCrossDecorationPhysicalTypePacked); } } else if (is_matrix(type)) { bool row_major = has_member_decoration(ib_type.self, index, DecorationRowMajor); if (!row_major) { // Slice off one column. If we only have 2 columns, this might turn the matrix into a vector with one array element instead. if (type.columns > 2) { type.columns--; } else if (type.columns == 2) { type.columns = 1; assert(type.array.empty()); type.array.push_back(1); type.array_size_literal.push_back(true); } } else { // Slice off one row. If we only have 2 rows, this might turn the matrix into a vector with one array element instead. if (type.vecsize > 2) { type.vecsize--; } else if (type.vecsize == 2) { type.vecsize = type.columns; type.columns = 1; assert(type.array.empty()); type.array.push_back(1); type.array_size_literal.push_back(true); } } } // This better validate now, or we must fail gracefully. if (!validate_member_packing_rules_msl(ib_type, index)) SPIRV_CROSS_THROW("Found a buffer packing case which we cannot represent in MSL."); } void CompilerMSL::emit_store_statement(uint32_t lhs_expression, uint32_t rhs_expression) { auto &type = expression_type(rhs_expression); bool lhs_remapped_type = has_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypeID); bool lhs_packed_type = has_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypePacked); auto *lhs_e = maybe_get(lhs_expression); auto *rhs_e = maybe_get(rhs_expression); bool transpose = lhs_e && lhs_e->need_transpose; // No physical type remapping, and no packed type, so can just emit a store directly. if (!lhs_remapped_type && !lhs_packed_type) { // We might not be dealing with remapped physical types or packed types, // but we might be doing a clean store to a row-major matrix. // In this case, we just flip transpose states, and emit the store, a transpose must be in the RHS expression, if any. if (is_matrix(type) && lhs_e && lhs_e->need_transpose) { lhs_e->need_transpose = false; if (rhs_e && rhs_e->need_transpose) { // Direct copy, but might need to unpack RHS. // Skip the transpose, as we will transpose when writing to LHS and transpose(transpose(T)) == T. rhs_e->need_transpose = false; statement(to_expression(lhs_expression), " = ", to_unpacked_row_major_matrix_expression(rhs_expression), ";"); rhs_e->need_transpose = true; } else statement(to_expression(lhs_expression), " = transpose(", to_unpacked_expression(rhs_expression), ");"); lhs_e->need_transpose = true; register_write(lhs_expression); } else if (lhs_e && lhs_e->need_transpose) { lhs_e->need_transpose = false; // Storing a column to a row-major matrix. Unroll the write. for (uint32_t c = 0; c < type.vecsize; c++) { auto lhs_expr = to_dereferenced_expression(lhs_expression); auto column_index = lhs_expr.find_last_of('['); if (column_index != string::npos) { statement(lhs_expr.insert(column_index, join('[', c, ']')), " = ", to_extract_component_expression(rhs_expression, c), ";"); } } lhs_e->need_transpose = true; register_write(lhs_expression); } else CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression); } else if (!lhs_remapped_type && !is_matrix(type) && !transpose) { // Even if the target type is packed, we can directly store to it. We cannot store to packed matrices directly, // since they are declared as array of vectors instead, and we need the fallback path below. CompilerGLSL::emit_store_statement(lhs_expression, rhs_expression); } else { // Special handling when storing to a remapped physical type. // This is mostly to deal with std140 padded matrices or vectors. TypeID physical_type_id = lhs_remapped_type ? ID(get_extended_decoration(lhs_expression, SPIRVCrossDecorationPhysicalTypeID)) : type.self; auto &physical_type = get(physical_type_id); if (is_matrix(type)) { const char *packed_pfx = lhs_packed_type ? "packed_" : ""; // Packed matrices are stored as arrays of packed vectors, so we need // to assign the vectors one at a time. // For row-major matrices, we need to transpose the *right-hand* side, // not the left-hand side. // Lots of cases to cover here ... bool rhs_transpose = rhs_e && rhs_e->need_transpose; SPIRType write_type = type; string cast_expr; // We're dealing with transpose manually. if (rhs_transpose) rhs_e->need_transpose = false; if (transpose) { // We're dealing with transpose manually. lhs_e->need_transpose = false; write_type.vecsize = type.columns; write_type.columns = 1; if (physical_type.columns != type.columns) cast_expr = join("(device ", packed_pfx, type_to_glsl(write_type), "&)"); if (rhs_transpose) { // If RHS is also transposed, we can just copy row by row. for (uint32_t i = 0; i < type.vecsize; i++) { statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ", to_unpacked_row_major_matrix_expression(rhs_expression), "[", i, "];"); } } else { auto vector_type = expression_type(rhs_expression); vector_type.vecsize = vector_type.columns; vector_type.columns = 1; // Transpose on the fly. Emitting a lot of full transpose() ops and extracting lanes seems very bad, // so pick out individual components instead. for (uint32_t i = 0; i < type.vecsize; i++) { string rhs_row = type_to_glsl_constructor(vector_type) + "("; for (uint32_t j = 0; j < vector_type.vecsize; j++) { rhs_row += join(to_enclosed_unpacked_expression(rhs_expression), "[", j, "][", i, "]"); if (j + 1 < vector_type.vecsize) rhs_row += ", "; } rhs_row += ")"; statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ", rhs_row, ";"); } } // We're dealing with transpose manually. lhs_e->need_transpose = true; } else { write_type.columns = 1; if (physical_type.vecsize != type.vecsize) cast_expr = join("(device ", packed_pfx, type_to_glsl(write_type), "&)"); if (rhs_transpose) { auto vector_type = expression_type(rhs_expression); vector_type.columns = 1; // Transpose on the fly. Emitting a lot of full transpose() ops and extracting lanes seems very bad, // so pick out individual components instead. for (uint32_t i = 0; i < type.columns; i++) { string rhs_row = type_to_glsl_constructor(vector_type) + "("; for (uint32_t j = 0; j < vector_type.vecsize; j++) { // Need to explicitly unpack expression since we've mucked with transpose state. auto unpacked_expr = to_unpacked_row_major_matrix_expression(rhs_expression); rhs_row += join(unpacked_expr, "[", j, "][", i, "]"); if (j + 1 < vector_type.vecsize) rhs_row += ", "; } rhs_row += ")"; statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ", rhs_row, ";"); } } else { // Copy column-by-column. for (uint32_t i = 0; i < type.columns; i++) { statement(cast_expr, to_enclosed_expression(lhs_expression), "[", i, "]", " = ", to_enclosed_unpacked_expression(rhs_expression), "[", i, "];"); } } } // We're dealing with transpose manually. if (rhs_transpose) rhs_e->need_transpose = true; } else if (transpose) { lhs_e->need_transpose = false; SPIRType write_type = type; write_type.vecsize = 1; write_type.columns = 1; // Storing a column to a row-major matrix. Unroll the write. for (uint32_t c = 0; c < type.vecsize; c++) { auto lhs_expr = to_enclosed_expression(lhs_expression); auto column_index = lhs_expr.find_last_of('['); if (column_index != string::npos) { statement("((device ", type_to_glsl(write_type), "*)&", lhs_expr.insert(column_index, join('[', c, ']', ")")), " = ", to_extract_component_expression(rhs_expression, c), ";"); } } lhs_e->need_transpose = true; } else if ((is_matrix(physical_type) || is_array(physical_type)) && physical_type.vecsize > type.vecsize) { assert(type.vecsize >= 1 && type.vecsize <= 3); // If we have packed types, we cannot use swizzled stores. // We could technically unroll the store for each element if needed. // When remapping to a std140 physical type, we always get float4, // and the packed decoration should always be removed. assert(!lhs_packed_type); string lhs = to_dereferenced_expression(lhs_expression); string rhs = to_pointer_expression(rhs_expression); // Unpack the expression so we can store to it with a float or float2. // It's still an l-value, so it's fine. Most other unpacking of expressions turn them into r-values instead. lhs = join("(device ", type_to_glsl(type), "&)", enclose_expression(lhs)); if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs)) statement(lhs, " = ", rhs, ";"); } else if (!is_matrix(type)) { string lhs = to_dereferenced_expression(lhs_expression); string rhs = to_pointer_expression(rhs_expression); if (!optimize_read_modify_write(expression_type(rhs_expression), lhs, rhs)) statement(lhs, " = ", rhs, ";"); } register_write(lhs_expression); } } static bool expression_ends_with(const string &expr_str, const std::string &ending) { if (expr_str.length() >= ending.length()) return (expr_str.compare(expr_str.length() - ending.length(), ending.length(), ending) == 0); else return false; } // Converts the format of the current expression from packed to unpacked, // by wrapping the expression in a constructor of the appropriate type. // Also, handle special physical ID remapping scenarios, similar to emit_store_statement(). string CompilerMSL::unpack_expression_type(string expr_str, const SPIRType &type, uint32_t physical_type_id, bool packed, bool row_major) { // Trivial case, nothing to do. if (physical_type_id == 0 && !packed) return expr_str; const SPIRType *physical_type = nullptr; if (physical_type_id) physical_type = &get(physical_type_id); static const char *swizzle_lut[] = { ".x", ".xy", ".xyz", }; if (physical_type && is_vector(*physical_type) && is_array(*physical_type) && physical_type->vecsize > type.vecsize && !expression_ends_with(expr_str, swizzle_lut[type.vecsize - 1])) { // std140 array cases for vectors. assert(type.vecsize >= 1 && type.vecsize <= 3); return enclose_expression(expr_str) + swizzle_lut[type.vecsize - 1]; } else if (physical_type && is_matrix(*physical_type) && is_vector(type) && physical_type->vecsize > type.vecsize) { // Extract column from padded matrix. assert(type.vecsize >= 1 && type.vecsize <= 3); return enclose_expression(expr_str) + swizzle_lut[type.vecsize - 1]; } else if (is_matrix(type)) { // Packed matrices are stored as arrays of packed vectors. Unfortunately, // we can't just pass the array straight to the matrix constructor. We have to // pass each vector individually, so that they can be unpacked to normal vectors. if (!physical_type) physical_type = &type; uint32_t vecsize = type.vecsize; uint32_t columns = type.columns; if (row_major) swap(vecsize, columns); uint32_t physical_vecsize = row_major ? physical_type->columns : physical_type->vecsize; const char *base_type = type.width == 16 ? "half" : "float"; string unpack_expr = join(base_type, columns, "x", vecsize, "("); const char *load_swiz = ""; if (physical_vecsize != vecsize) load_swiz = swizzle_lut[vecsize - 1]; for (uint32_t i = 0; i < columns; i++) { if (i > 0) unpack_expr += ", "; if (packed) unpack_expr += join(base_type, physical_vecsize, "(", expr_str, "[", i, "]", ")", load_swiz); else unpack_expr += join(expr_str, "[", i, "]", load_swiz); } unpack_expr += ")"; return unpack_expr; } else { return join(type_to_glsl(type), "(", expr_str, ")"); } } // Emits the file header info void CompilerMSL::emit_header() { // This particular line can be overridden during compilation, so make it a flag and not a pragma line. if (suppress_missing_prototypes) statement("#pragma clang diagnostic ignored \"-Wmissing-prototypes\""); // Disable warning about missing braces for array template to make arrays a value type if (spv_function_implementations.count(SPVFuncImplUnsafeArray) != 0) statement("#pragma clang diagnostic ignored \"-Wmissing-braces\""); for (auto &pragma : pragma_lines) statement(pragma); if (!pragma_lines.empty() || suppress_missing_prototypes) statement(""); statement("#include "); statement("#include "); for (auto &header : header_lines) statement(header); statement(""); statement("using namespace metal;"); statement(""); for (auto &td : typedef_lines) statement(td); if (!typedef_lines.empty()) statement(""); } void CompilerMSL::add_pragma_line(const string &line) { auto rslt = pragma_lines.insert(line); if (rslt.second) force_recompile(); } void CompilerMSL::add_typedef_line(const string &line) { auto rslt = typedef_lines.insert(line); if (rslt.second) force_recompile(); } // Template struct like spvUnsafeArray<> need to be declared *before* any resources are declared void CompilerMSL::emit_custom_templates() { for (const auto &spv_func : spv_function_implementations) { switch (spv_func) { case SPVFuncImplUnsafeArray: statement("template"); statement("struct spvUnsafeArray"); begin_scope(); statement("T elements[Num ? Num : 1];"); statement(""); statement("thread T& operator [] (size_t pos) thread"); begin_scope(); statement("return elements[pos];"); end_scope(); statement("constexpr const thread T& operator [] (size_t pos) const thread"); begin_scope(); statement("return elements[pos];"); end_scope(); statement(""); statement("device T& operator [] (size_t pos) device"); begin_scope(); statement("return elements[pos];"); end_scope(); statement("constexpr const device T& operator [] (size_t pos) const device"); begin_scope(); statement("return elements[pos];"); end_scope(); statement(""); statement("constexpr const constant T& operator [] (size_t pos) const constant"); begin_scope(); statement("return elements[pos];"); end_scope(); statement(""); statement("threadgroup T& operator [] (size_t pos) threadgroup"); begin_scope(); statement("return elements[pos];"); end_scope(); statement("constexpr const threadgroup T& operator [] (size_t pos) const threadgroup"); begin_scope(); statement("return elements[pos];"); end_scope(); end_scope_decl(); statement(""); break; default: break; } } } // Emits any needed custom function bodies. // Metal helper functions must be static force-inline, i.e. static inline __attribute__((always_inline)) // otherwise they will cause problems when linked together in a single Metallib. void CompilerMSL::emit_custom_functions() { for (uint32_t i = kArrayCopyMultidimMax; i >= 2; i--) if (spv_function_implementations.count(static_cast(SPVFuncImplArrayCopyMultidimBase + i))) spv_function_implementations.insert(static_cast(SPVFuncImplArrayCopyMultidimBase + i - 1)); if (spv_function_implementations.count(SPVFuncImplDynamicImageSampler)) { // Unfortunately, this one needs a lot of the other functions to compile OK. if (!msl_options.supports_msl_version(2)) SPIRV_CROSS_THROW( "spvDynamicImageSampler requires default-constructible texture objects, which require MSL 2.0."); spv_function_implementations.insert(SPVFuncImplForwardArgs); spv_function_implementations.insert(SPVFuncImplTextureSwizzle); if (msl_options.swizzle_texture_samples) spv_function_implementations.insert(SPVFuncImplGatherSwizzle); for (uint32_t i = SPVFuncImplChromaReconstructNearest2Plane; i <= SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane; i++) spv_function_implementations.insert(static_cast(i)); spv_function_implementations.insert(SPVFuncImplExpandITUFullRange); spv_function_implementations.insert(SPVFuncImplExpandITUNarrowRange); spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT709); spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT601); spv_function_implementations.insert(SPVFuncImplConvertYCbCrBT2020); } for (uint32_t i = SPVFuncImplChromaReconstructNearest2Plane; i <= SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane; i++) if (spv_function_implementations.count(static_cast(i))) spv_function_implementations.insert(SPVFuncImplForwardArgs); if (spv_function_implementations.count(SPVFuncImplTextureSwizzle) || spv_function_implementations.count(SPVFuncImplGatherSwizzle) || spv_function_implementations.count(SPVFuncImplGatherCompareSwizzle)) { spv_function_implementations.insert(SPVFuncImplForwardArgs); spv_function_implementations.insert(SPVFuncImplGetSwizzle); } for (const auto &spv_func : spv_function_implementations) { switch (spv_func) { case SPVFuncImplMod: statement("// Implementation of the GLSL mod() function, which is slightly different than Metal fmod()"); statement("template"); statement("inline Tx mod(Tx x, Ty y)"); begin_scope(); statement("return x - y * floor(x / y);"); end_scope(); statement(""); break; case SPVFuncImplRadians: statement("// Implementation of the GLSL radians() function"); statement("template"); statement("inline T radians(T d)"); begin_scope(); statement("return d * T(0.01745329251);"); end_scope(); statement(""); break; case SPVFuncImplDegrees: statement("// Implementation of the GLSL degrees() function"); statement("template"); statement("inline T degrees(T r)"); begin_scope(); statement("return r * T(57.2957795131);"); end_scope(); statement(""); break; case SPVFuncImplFindILsb: statement("// Implementation of the GLSL findLSB() function"); statement("template"); statement("inline T spvFindLSB(T x)"); begin_scope(); statement("return select(ctz(x), T(-1), x == T(0));"); end_scope(); statement(""); break; case SPVFuncImplFindUMsb: statement("// Implementation of the unsigned GLSL findMSB() function"); statement("template"); statement("inline T spvFindUMSB(T x)"); begin_scope(); statement("return select(clz(T(0)) - (clz(x) + T(1)), T(-1), x == T(0));"); end_scope(); statement(""); break; case SPVFuncImplFindSMsb: statement("// Implementation of the signed GLSL findMSB() function"); statement("template"); statement("inline T spvFindSMSB(T x)"); begin_scope(); statement("T v = select(x, T(-1) - x, x < T(0));"); statement("return select(clz(T(0)) - (clz(v) + T(1)), T(-1), v == T(0));"); end_scope(); statement(""); break; case SPVFuncImplSSign: statement("// Implementation of the GLSL sign() function for integer types"); statement("template::value>::type>"); statement("inline T sign(T x)"); begin_scope(); statement("return select(select(select(x, T(0), x == T(0)), T(1), x > T(0)), T(-1), x < T(0));"); end_scope(); statement(""); break; case SPVFuncImplArrayCopy: case SPVFuncImplArrayOfArrayCopy2Dim: case SPVFuncImplArrayOfArrayCopy3Dim: case SPVFuncImplArrayOfArrayCopy4Dim: case SPVFuncImplArrayOfArrayCopy5Dim: case SPVFuncImplArrayOfArrayCopy6Dim: { // Unfortunately we cannot template on the address space, so combinatorial explosion it is. static const char *function_name_tags[] = { "FromConstantToStack", "FromConstantToThreadGroup", "FromStackToStack", "FromStackToThreadGroup", "FromThreadGroupToStack", "FromThreadGroupToThreadGroup", "FromDeviceToDevice", "FromConstantToDevice", "FromStackToDevice", "FromThreadGroupToDevice", "FromDeviceToStack", "FromDeviceToThreadGroup", }; static const char *src_address_space[] = { "constant", "constant", "thread const", "thread const", "threadgroup const", "threadgroup const", "device const", "constant", "thread const", "threadgroup const", "device const", "device const", }; static const char *dst_address_space[] = { "thread", "threadgroup", "thread", "threadgroup", "thread", "threadgroup", "device", "device", "device", "device", "thread", "threadgroup", }; for (uint32_t variant = 0; variant < 12; variant++) { uint32_t dimensions = spv_func - SPVFuncImplArrayCopyMultidimBase; string tmp = "template 0) { string tex_width_str = convert_to_string(msl_options.texel_buffer_texture_width); statement("// Returns 2D texture coords corresponding to 1D texel buffer coords"); statement(force_inline); statement("uint2 spvTexelBufferCoord(uint tc)"); begin_scope(); statement(join("return uint2(tc % ", tex_width_str, ", tc / ", tex_width_str, ");")); end_scope(); statement(""); } else { statement("// Returns 2D texture coords corresponding to 1D texel buffer coords"); statement( "#define spvTexelBufferCoord(tc, tex) uint2((tc) % (tex).get_width(), (tc) / (tex).get_width())"); statement(""); } break; } // Emulate texture2D atomic operations case SPVFuncImplImage2DAtomicCoords: { if (msl_options.supports_msl_version(1, 2)) { statement("// The required alignment of a linear texture of R32Uint format."); statement("constant uint spvLinearTextureAlignmentOverride [[function_constant(", msl_options.r32ui_alignment_constant_id, ")]];"); statement("constant uint spvLinearTextureAlignment = ", "is_function_constant_defined(spvLinearTextureAlignmentOverride) ? ", "spvLinearTextureAlignmentOverride : ", msl_options.r32ui_linear_texture_alignment, ";"); } else { statement("// The required alignment of a linear texture of R32Uint format."); statement("constant uint spvLinearTextureAlignment = ", msl_options.r32ui_linear_texture_alignment, ";"); } statement("// Returns buffer coords corresponding to 2D texture coords for emulating 2D texture atomics"); statement("#define spvImage2DAtomicCoord(tc, tex) (((((tex).get_width() + ", " spvLinearTextureAlignment / 4 - 1) & ~(", " spvLinearTextureAlignment / 4 - 1)) * (tc).y) + (tc).x)"); statement(""); break; } // "fadd" intrinsic support case SPVFuncImplFAdd: statement("template"); statement("[[clang::optnone]] T spvFAdd(T l, T r)"); begin_scope(); statement("return fma(T(1), l, r);"); end_scope(); statement(""); break; // "fsub" intrinsic support case SPVFuncImplFSub: statement("template"); statement("[[clang::optnone]] T spvFSub(T l, T r)"); begin_scope(); statement("return fma(T(-1), r, l);"); end_scope(); statement(""); break; // "fmul' intrinsic support case SPVFuncImplFMul: statement("template"); statement("[[clang::optnone]] T spvFMul(T l, T r)"); begin_scope(); statement("return fma(l, r, T(0));"); end_scope(); statement(""); statement("template"); statement("[[clang::optnone]] vec spvFMulVectorMatrix(vec v, matrix m)"); begin_scope(); statement("vec res = vec(0);"); statement("for (uint i = Rows; i > 0; --i)"); begin_scope(); statement("vec tmp(0);"); statement("for (uint j = 0; j < Cols; ++j)"); begin_scope(); statement("tmp[j] = m[j][i - 1];"); end_scope(); statement("res = fma(tmp, vec(v[i - 1]), res);"); end_scope(); statement("return res;"); end_scope(); statement(""); statement("template"); statement("[[clang::optnone]] vec spvFMulMatrixVector(matrix m, vec v)"); begin_scope(); statement("vec res = vec(0);"); statement("for (uint i = Cols; i > 0; --i)"); begin_scope(); statement("res = fma(m[i - 1], vec(v[i - 1]), res);"); end_scope(); statement("return res;"); end_scope(); statement(""); statement("template"); statement("[[clang::optnone]] matrix spvFMulMatrixMatrix(matrix l, matrix r)"); begin_scope(); statement("matrix res;"); statement("for (uint i = 0; i < RCols; i++)"); begin_scope(); statement("vec tmp(0);"); statement("for (uint j = 0; j < LCols; j++)"); begin_scope(); statement("tmp = fma(vec(r[i][j]), l[j], tmp);"); end_scope(); statement("res[i] = tmp;"); end_scope(); statement("return res;"); end_scope(); statement(""); break; case SPVFuncImplQuantizeToF16: // Ensure fast-math is disabled to match Vulkan results. // SpvHalfTypeSelector is used to match the half* template type to the float* template type. // Depending on GPU, MSL does not always flush converted subnormal halfs to zero, // as required by OpQuantizeToF16, so check for subnormals and flush them to zero. statement("template struct SpvHalfTypeSelector;"); statement("template <> struct SpvHalfTypeSelector { public: using H = half; };"); statement("template struct SpvHalfTypeSelector> { using H = vec; };"); statement("template::H>"); statement("[[clang::optnone]] F spvQuantizeToF16(F fval)"); begin_scope(); statement("H hval = H(fval);"); statement("hval = select(copysign(H(0), hval), hval, isnormal(hval) || isinf(hval) || isnan(hval));"); statement("return F(hval);"); end_scope(); statement(""); break; // Emulate texturecube_array with texture2d_array for iOS where this type is not available case SPVFuncImplCubemapTo2DArrayFace: statement(force_inline); statement("float3 spvCubemapTo2DArrayFace(float3 P)"); begin_scope(); statement("float3 Coords = abs(P.xyz);"); statement("float CubeFace = 0;"); statement("float ProjectionAxis = 0;"); statement("float u = 0;"); statement("float v = 0;"); statement("if (Coords.x >= Coords.y && Coords.x >= Coords.z)"); begin_scope(); statement("CubeFace = P.x >= 0 ? 0 : 1;"); statement("ProjectionAxis = Coords.x;"); statement("u = P.x >= 0 ? -P.z : P.z;"); statement("v = -P.y;"); end_scope(); statement("else if (Coords.y >= Coords.x && Coords.y >= Coords.z)"); begin_scope(); statement("CubeFace = P.y >= 0 ? 2 : 3;"); statement("ProjectionAxis = Coords.y;"); statement("u = P.x;"); statement("v = P.y >= 0 ? P.z : -P.z;"); end_scope(); statement("else"); begin_scope(); statement("CubeFace = P.z >= 0 ? 4 : 5;"); statement("ProjectionAxis = Coords.z;"); statement("u = P.z >= 0 ? P.x : -P.x;"); statement("v = -P.y;"); end_scope(); statement("u = 0.5 * (u/ProjectionAxis + 1);"); statement("v = 0.5 * (v/ProjectionAxis + 1);"); statement("return float3(u, v, CubeFace);"); end_scope(); statement(""); break; case SPVFuncImplInverse4x4: statement("// Returns the determinant of a 2x2 matrix."); statement(force_inline); statement("float spvDet2x2(float a1, float a2, float b1, float b2)"); begin_scope(); statement("return a1 * b2 - b1 * a2;"); end_scope(); statement(""); statement("// Returns the determinant of a 3x3 matrix."); statement(force_inline); statement("float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, " "float c2, float c3)"); begin_scope(); statement("return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, " "b2, b3);"); end_scope(); statement(""); statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical"); statement("// adjoint and dividing by the determinant. The contents of the matrix are changed."); statement(force_inline); statement("float4x4 spvInverse4x4(float4x4 m)"); begin_scope(); statement("float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)"); statement_no_indent(""); statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix."); statement("adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], " "m[3][3]);"); statement("adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], " "m[3][3]);"); statement("adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], " "m[3][3]);"); statement("adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], " "m[2][3]);"); statement_no_indent(""); statement("adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], " "m[3][3]);"); statement("adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], " "m[3][3]);"); statement("adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], " "m[3][3]);"); statement("adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], " "m[2][3]);"); statement_no_indent(""); statement("adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], " "m[3][3]);"); statement("adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], " "m[3][3]);"); statement("adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], " "m[3][3]);"); statement("adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], " "m[2][3]);"); statement_no_indent(""); statement("adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], " "m[3][2]);"); statement("adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], " "m[3][2]);"); statement("adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], " "m[3][2]);"); statement("adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], " "m[2][2]);"); statement_no_indent(""); statement("// Calculate the determinant as a combination of the cofactors of the first row."); statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] " "* m[3][0]);"); statement_no_indent(""); statement("// Divide the classical adjoint matrix by the determinant."); statement("// If determinant is zero, matrix is not invertable, so leave it unchanged."); statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;"); end_scope(); statement(""); break; case SPVFuncImplInverse3x3: if (spv_function_implementations.count(SPVFuncImplInverse4x4) == 0) { statement("// Returns the determinant of a 2x2 matrix."); statement(force_inline); statement("float spvDet2x2(float a1, float a2, float b1, float b2)"); begin_scope(); statement("return a1 * b2 - b1 * a2;"); end_scope(); statement(""); } statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical"); statement("// adjoint and dividing by the determinant. The contents of the matrix are changed."); statement(force_inline); statement("float3x3 spvInverse3x3(float3x3 m)"); begin_scope(); statement("float3x3 adj; // The adjoint matrix (inverse after dividing by determinant)"); statement_no_indent(""); statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix."); statement("adj[0][0] = spvDet2x2(m[1][1], m[1][2], m[2][1], m[2][2]);"); statement("adj[0][1] = -spvDet2x2(m[0][1], m[0][2], m[2][1], m[2][2]);"); statement("adj[0][2] = spvDet2x2(m[0][1], m[0][2], m[1][1], m[1][2]);"); statement_no_indent(""); statement("adj[1][0] = -spvDet2x2(m[1][0], m[1][2], m[2][0], m[2][2]);"); statement("adj[1][1] = spvDet2x2(m[0][0], m[0][2], m[2][0], m[2][2]);"); statement("adj[1][2] = -spvDet2x2(m[0][0], m[0][2], m[1][0], m[1][2]);"); statement_no_indent(""); statement("adj[2][0] = spvDet2x2(m[1][0], m[1][1], m[2][0], m[2][1]);"); statement("adj[2][1] = -spvDet2x2(m[0][0], m[0][1], m[2][0], m[2][1]);"); statement("adj[2][2] = spvDet2x2(m[0][0], m[0][1], m[1][0], m[1][1]);"); statement_no_indent(""); statement("// Calculate the determinant as a combination of the cofactors of the first row."); statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);"); statement_no_indent(""); statement("// Divide the classical adjoint matrix by the determinant."); statement("// If determinant is zero, matrix is not invertable, so leave it unchanged."); statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;"); end_scope(); statement(""); break; case SPVFuncImplInverse2x2: statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical"); statement("// adjoint and dividing by the determinant. The contents of the matrix are changed."); statement(force_inline); statement("float2x2 spvInverse2x2(float2x2 m)"); begin_scope(); statement("float2x2 adj; // The adjoint matrix (inverse after dividing by determinant)"); statement_no_indent(""); statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix."); statement("adj[0][0] = m[1][1];"); statement("adj[0][1] = -m[0][1];"); statement_no_indent(""); statement("adj[1][0] = -m[1][0];"); statement("adj[1][1] = m[0][0];"); statement_no_indent(""); statement("// Calculate the determinant as a combination of the cofactors of the first row."); statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);"); statement_no_indent(""); statement("// Divide the classical adjoint matrix by the determinant."); statement("// If determinant is zero, matrix is not invertable, so leave it unchanged."); statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;"); end_scope(); statement(""); break; case SPVFuncImplForwardArgs: statement("template struct spvRemoveReference { typedef T type; };"); statement("template struct spvRemoveReference { typedef T type; };"); statement("template struct spvRemoveReference { typedef T type; };"); statement("template inline constexpr thread T&& spvForward(thread typename " "spvRemoveReference::type& x)"); begin_scope(); statement("return static_cast(x);"); end_scope(); statement("template inline constexpr thread T&& spvForward(thread typename " "spvRemoveReference::type&& x)"); begin_scope(); statement("return static_cast(x);"); end_scope(); statement(""); break; case SPVFuncImplGetSwizzle: statement("enum class spvSwizzle : uint"); begin_scope(); statement("none = 0,"); statement("zero,"); statement("one,"); statement("red,"); statement("green,"); statement("blue,"); statement("alpha"); end_scope_decl(); statement(""); statement("template"); statement("inline T spvGetSwizzle(vec x, T c, spvSwizzle s)"); begin_scope(); statement("switch (s)"); begin_scope(); statement("case spvSwizzle::none:"); statement(" return c;"); statement("case spvSwizzle::zero:"); statement(" return 0;"); statement("case spvSwizzle::one:"); statement(" return 1;"); statement("case spvSwizzle::red:"); statement(" return x.r;"); statement("case spvSwizzle::green:"); statement(" return x.g;"); statement("case spvSwizzle::blue:"); statement(" return x.b;"); statement("case spvSwizzle::alpha:"); statement(" return x.a;"); end_scope(); end_scope(); statement(""); break; case SPVFuncImplTextureSwizzle: statement("// Wrapper function that swizzles texture samples and fetches."); statement("template"); statement("inline vec spvTextureSwizzle(vec x, uint s)"); begin_scope(); statement("if (!s)"); statement(" return x;"); statement("return vec(spvGetSwizzle(x, x.r, spvSwizzle((s >> 0) & 0xFF)), " "spvGetSwizzle(x, x.g, spvSwizzle((s >> 8) & 0xFF)), spvGetSwizzle(x, x.b, spvSwizzle((s >> 16) " "& 0xFF)), " "spvGetSwizzle(x, x.a, spvSwizzle((s >> 24) & 0xFF)));"); end_scope(); statement(""); statement("template"); statement("inline T spvTextureSwizzle(T x, uint s)"); begin_scope(); statement("return spvTextureSwizzle(vec(x, 0, 0, 1), s).x;"); end_scope(); statement(""); break; case SPVFuncImplGatherSwizzle: statement("// Wrapper function that swizzles texture gathers."); statement("template class Tex, " "typename... Ts>"); statement("inline vec spvGatherSwizzle(const thread Tex& t, sampler s, " "uint sw, component c, Ts... params) METAL_CONST_ARG(c)"); begin_scope(); statement("if (sw)"); begin_scope(); statement("switch (spvSwizzle((sw >> (uint(c) * 8)) & 0xFF))"); begin_scope(); statement("case spvSwizzle::none:"); statement(" break;"); statement("case spvSwizzle::zero:"); statement(" return vec(0, 0, 0, 0);"); statement("case spvSwizzle::one:"); statement(" return vec(1, 1, 1, 1);"); statement("case spvSwizzle::red:"); statement(" return t.gather(s, spvForward(params)..., component::x);"); statement("case spvSwizzle::green:"); statement(" return t.gather(s, spvForward(params)..., component::y);"); statement("case spvSwizzle::blue:"); statement(" return t.gather(s, spvForward(params)..., component::z);"); statement("case spvSwizzle::alpha:"); statement(" return t.gather(s, spvForward(params)..., component::w);"); end_scope(); end_scope(); // texture::gather insists on its component parameter being a constant // expression, so we need this silly workaround just to compile the shader. statement("switch (c)"); begin_scope(); statement("case component::x:"); statement(" return t.gather(s, spvForward(params)..., component::x);"); statement("case component::y:"); statement(" return t.gather(s, spvForward(params)..., component::y);"); statement("case component::z:"); statement(" return t.gather(s, spvForward(params)..., component::z);"); statement("case component::w:"); statement(" return t.gather(s, spvForward(params)..., component::w);"); end_scope(); end_scope(); statement(""); break; case SPVFuncImplGatherCompareSwizzle: statement("// Wrapper function that swizzles depth texture gathers."); statement("template class Tex, " "typename... Ts>"); statement("inline vec spvGatherCompareSwizzle(const thread Tex& t, sampler " "s, uint sw, Ts... params) "); begin_scope(); statement("if (sw)"); begin_scope(); statement("switch (spvSwizzle(sw & 0xFF))"); begin_scope(); statement("case spvSwizzle::none:"); statement("case spvSwizzle::red:"); statement(" break;"); statement("case spvSwizzle::zero:"); statement("case spvSwizzle::green:"); statement("case spvSwizzle::blue:"); statement("case spvSwizzle::alpha:"); statement(" return vec(0, 0, 0, 0);"); statement("case spvSwizzle::one:"); statement(" return vec(1, 1, 1, 1);"); end_scope(); end_scope(); statement("return t.gather_compare(s, spvForward(params)...);"); end_scope(); statement(""); break; case SPVFuncImplSubgroupBroadcast: // Metal doesn't allow broadcasting boolean values directly, but we can work around that by broadcasting // them as integers. statement("template"); statement("inline T spvSubgroupBroadcast(T value, ushort lane)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return quad_broadcast(value, lane);"); else statement("return simd_broadcast(value, lane);"); end_scope(); statement(""); statement("template<>"); statement("inline bool spvSubgroupBroadcast(bool value, ushort lane)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return !!quad_broadcast((ushort)value, lane);"); else statement("return !!simd_broadcast((ushort)value, lane);"); end_scope(); statement(""); statement("template"); statement("inline vec spvSubgroupBroadcast(vec value, ushort lane)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return (vec)quad_broadcast((vec)value, lane);"); else statement("return (vec)simd_broadcast((vec)value, lane);"); end_scope(); statement(""); break; case SPVFuncImplSubgroupBroadcastFirst: statement("template"); statement("inline T spvSubgroupBroadcastFirst(T value)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return quad_broadcast_first(value);"); else statement("return simd_broadcast_first(value);"); end_scope(); statement(""); statement("template<>"); statement("inline bool spvSubgroupBroadcastFirst(bool value)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return !!quad_broadcast_first((ushort)value);"); else statement("return !!simd_broadcast_first((ushort)value);"); end_scope(); statement(""); statement("template"); statement("inline vec spvSubgroupBroadcastFirst(vec value)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return (vec)quad_broadcast_first((vec)value);"); else statement("return (vec)simd_broadcast_first((vec)value);"); end_scope(); statement(""); break; case SPVFuncImplSubgroupBallot: statement("inline uint4 spvSubgroupBallot(bool value)"); begin_scope(); if (msl_options.use_quadgroup_operation()) { statement("return uint4((quad_vote::vote_t)quad_ballot(value), 0, 0, 0);"); } else if (msl_options.is_ios()) { // The current simd_vote on iOS uses a 32-bit integer-like object. statement("return uint4((simd_vote::vote_t)simd_ballot(value), 0, 0, 0);"); } else { statement("simd_vote vote = simd_ballot(value);"); statement("// simd_ballot() returns a 64-bit integer-like object, but"); statement("// SPIR-V callers expect a uint4. We must convert."); statement("// FIXME: This won't include higher bits if Apple ever supports"); statement("// 128 lanes in an SIMD-group."); statement("return uint4(as_type((simd_vote::vote_t)vote), 0, 0);"); } end_scope(); statement(""); break; case SPVFuncImplSubgroupBallotBitExtract: statement("inline bool spvSubgroupBallotBitExtract(uint4 ballot, uint bit)"); begin_scope(); statement("return !!extract_bits(ballot[bit / 32], bit % 32, 1);"); end_scope(); statement(""); break; case SPVFuncImplSubgroupBallotFindLSB: statement("inline uint spvSubgroupBallotFindLSB(uint4 ballot, uint gl_SubgroupSize)"); begin_scope(); if (msl_options.is_ios()) { statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));"); } else { statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), " "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));"); } statement("ballot &= mask;"); statement("return select(ctz(ballot.x), select(32 + ctz(ballot.y), select(64 + ctz(ballot.z), select(96 + " "ctz(ballot.w), uint(-1), ballot.w == 0), ballot.z == 0), ballot.y == 0), ballot.x == 0);"); end_scope(); statement(""); break; case SPVFuncImplSubgroupBallotFindMSB: statement("inline uint spvSubgroupBallotFindMSB(uint4 ballot, uint gl_SubgroupSize)"); begin_scope(); if (msl_options.is_ios()) { statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));"); } else { statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), " "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));"); } statement("ballot &= mask;"); statement("return select(128 - (clz(ballot.w) + 1), select(96 - (clz(ballot.z) + 1), select(64 - " "(clz(ballot.y) + 1), select(32 - (clz(ballot.x) + 1), uint(-1), ballot.x == 0), ballot.y == 0), " "ballot.z == 0), ballot.w == 0);"); end_scope(); statement(""); break; case SPVFuncImplSubgroupBallotBitCount: statement("inline uint spvPopCount4(uint4 ballot)"); begin_scope(); statement("return popcount(ballot.x) + popcount(ballot.y) + popcount(ballot.z) + popcount(ballot.w);"); end_scope(); statement(""); statement("inline uint spvSubgroupBallotBitCount(uint4 ballot, uint gl_SubgroupSize)"); begin_scope(); if (msl_options.is_ios()) { statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupSize), uint3(0));"); } else { statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupSize, 32u)), " "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupSize - 32, 0)), uint2(0));"); } statement("return spvPopCount4(ballot & mask);"); end_scope(); statement(""); statement("inline uint spvSubgroupBallotInclusiveBitCount(uint4 ballot, uint gl_SubgroupInvocationID)"); begin_scope(); if (msl_options.is_ios()) { statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupInvocationID + 1), uint3(0));"); } else { statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupInvocationID + 1, 32u)), " "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupInvocationID + 1 - 32, 0)), " "uint2(0));"); } statement("return spvPopCount4(ballot & mask);"); end_scope(); statement(""); statement("inline uint spvSubgroupBallotExclusiveBitCount(uint4 ballot, uint gl_SubgroupInvocationID)"); begin_scope(); if (msl_options.is_ios()) { statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, gl_SubgroupInvocationID), uint2(0));"); } else { statement("uint4 mask = uint4(extract_bits(0xFFFFFFFF, 0, min(gl_SubgroupInvocationID, 32u)), " "extract_bits(0xFFFFFFFF, 0, (uint)max((int)gl_SubgroupInvocationID - 32, 0)), uint2(0));"); } statement("return spvPopCount4(ballot & mask);"); end_scope(); statement(""); break; case SPVFuncImplSubgroupAllEqual: // Metal doesn't provide a function to evaluate this directly. But, we can // implement this by comparing every thread's value to one thread's value // (in this case, the value of the first active thread). Then, by the transitive // property of equality, if all comparisons return true, then they are all equal. statement("template"); statement("inline bool spvSubgroupAllEqual(T value)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return quad_all(all(value == quad_broadcast_first(value)));"); else statement("return simd_all(all(value == simd_broadcast_first(value)));"); end_scope(); statement(""); statement("template<>"); statement("inline bool spvSubgroupAllEqual(bool value)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return quad_all(value) || !quad_any(value);"); else statement("return simd_all(value) || !simd_any(value);"); end_scope(); statement(""); statement("template"); statement("inline bool spvSubgroupAllEqual(vec value)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return quad_all(all(value == (vec)quad_broadcast_first((vec)value)));"); else statement("return simd_all(all(value == (vec)simd_broadcast_first((vec)value)));"); end_scope(); statement(""); break; case SPVFuncImplSubgroupShuffle: statement("template"); statement("inline T spvSubgroupShuffle(T value, ushort lane)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return quad_shuffle(value, lane);"); else statement("return simd_shuffle(value, lane);"); end_scope(); statement(""); statement("template<>"); statement("inline bool spvSubgroupShuffle(bool value, ushort lane)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return !!quad_shuffle((ushort)value, lane);"); else statement("return !!simd_shuffle((ushort)value, lane);"); end_scope(); statement(""); statement("template"); statement("inline vec spvSubgroupShuffle(vec value, ushort lane)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return (vec)quad_shuffle((vec)value, lane);"); else statement("return (vec)simd_shuffle((vec)value, lane);"); end_scope(); statement(""); break; case SPVFuncImplSubgroupShuffleXor: statement("template"); statement("inline T spvSubgroupShuffleXor(T value, ushort mask)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return quad_shuffle_xor(value, mask);"); else statement("return simd_shuffle_xor(value, mask);"); end_scope(); statement(""); statement("template<>"); statement("inline bool spvSubgroupShuffleXor(bool value, ushort mask)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return !!quad_shuffle_xor((ushort)value, mask);"); else statement("return !!simd_shuffle_xor((ushort)value, mask);"); end_scope(); statement(""); statement("template"); statement("inline vec spvSubgroupShuffleXor(vec value, ushort mask)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return (vec)quad_shuffle_xor((vec)value, mask);"); else statement("return (vec)simd_shuffle_xor((vec)value, mask);"); end_scope(); statement(""); break; case SPVFuncImplSubgroupShuffleUp: statement("template"); statement("inline T spvSubgroupShuffleUp(T value, ushort delta)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return quad_shuffle_up(value, delta);"); else statement("return simd_shuffle_up(value, delta);"); end_scope(); statement(""); statement("template<>"); statement("inline bool spvSubgroupShuffleUp(bool value, ushort delta)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return !!quad_shuffle_up((ushort)value, delta);"); else statement("return !!simd_shuffle_up((ushort)value, delta);"); end_scope(); statement(""); statement("template"); statement("inline vec spvSubgroupShuffleUp(vec value, ushort delta)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return (vec)quad_shuffle_up((vec)value, delta);"); else statement("return (vec)simd_shuffle_up((vec)value, delta);"); end_scope(); statement(""); break; case SPVFuncImplSubgroupShuffleDown: statement("template"); statement("inline T spvSubgroupShuffleDown(T value, ushort delta)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return quad_shuffle_down(value, delta);"); else statement("return simd_shuffle_down(value, delta);"); end_scope(); statement(""); statement("template<>"); statement("inline bool spvSubgroupShuffleDown(bool value, ushort delta)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return !!quad_shuffle_down((ushort)value, delta);"); else statement("return !!simd_shuffle_down((ushort)value, delta);"); end_scope(); statement(""); statement("template"); statement("inline vec spvSubgroupShuffleDown(vec value, ushort delta)"); begin_scope(); if (msl_options.use_quadgroup_operation()) statement("return (vec)quad_shuffle_down((vec)value, delta);"); else statement("return (vec)simd_shuffle_down((vec)value, delta);"); end_scope(); statement(""); break; case SPVFuncImplQuadBroadcast: statement("template"); statement("inline T spvQuadBroadcast(T value, uint lane)"); begin_scope(); statement("return quad_broadcast(value, lane);"); end_scope(); statement(""); statement("template<>"); statement("inline bool spvQuadBroadcast(bool value, uint lane)"); begin_scope(); statement("return !!quad_broadcast((ushort)value, lane);"); end_scope(); statement(""); statement("template"); statement("inline vec spvQuadBroadcast(vec value, uint lane)"); begin_scope(); statement("return (vec)quad_broadcast((vec)value, lane);"); end_scope(); statement(""); break; case SPVFuncImplQuadSwap: // We can implement this easily based on the following table giving // the target lane ID from the direction and current lane ID: // Direction // | 0 | 1 | 2 | // ---+---+---+---+ // L 0 | 1 2 3 // a 1 | 0 3 2 // n 2 | 3 0 1 // e 3 | 2 1 0 // Notice that target = source ^ (direction + 1). statement("template"); statement("inline T spvQuadSwap(T value, uint dir)"); begin_scope(); statement("return quad_shuffle_xor(value, dir + 1);"); end_scope(); statement(""); statement("template<>"); statement("inline bool spvQuadSwap(bool value, uint dir)"); begin_scope(); statement("return !!quad_shuffle_xor((ushort)value, dir + 1);"); end_scope(); statement(""); statement("template"); statement("inline vec spvQuadSwap(vec value, uint dir)"); begin_scope(); statement("return (vec)quad_shuffle_xor((vec)value, dir + 1);"); end_scope(); statement(""); break; case SPVFuncImplReflectScalar: // Metal does not support scalar versions of these functions. // Ensure fast-math is disabled to match Vulkan results. statement("template"); statement("[[clang::optnone]] T spvReflect(T i, T n)"); begin_scope(); statement("return i - T(2) * i * n * n;"); end_scope(); statement(""); break; case SPVFuncImplRefractScalar: // Metal does not support scalar versions of these functions. statement("template"); statement("inline T spvRefract(T i, T n, T eta)"); begin_scope(); statement("T NoI = n * i;"); statement("T NoI2 = NoI * NoI;"); statement("T k = T(1) - eta * eta * (T(1) - NoI2);"); statement("if (k < T(0))"); begin_scope(); statement("return T(0);"); end_scope(); statement("else"); begin_scope(); statement("return eta * i - (eta * NoI + sqrt(k)) * n;"); end_scope(); end_scope(); statement(""); break; case SPVFuncImplFaceForwardScalar: // Metal does not support scalar versions of these functions. statement("template"); statement("inline T spvFaceForward(T n, T i, T nref)"); begin_scope(); statement("return i * nref < T(0) ? n : -n;"); end_scope(); statement(""); break; case SPVFuncImplChromaReconstructNearest2Plane: statement("template"); statement("inline vec spvChromaReconstructNearest(texture2d plane0, texture2d plane1, sampler " "samp, float2 coord, LodOptions... options)"); begin_scope(); statement("vec ycbcr = vec(0, 0, 0, 1);"); statement("ycbcr.g = plane0.sample(samp, coord, spvForward(options)...).r;"); statement("ycbcr.br = plane1.sample(samp, coord, spvForward(options)...).rg;"); statement("return ycbcr;"); end_scope(); statement(""); break; case SPVFuncImplChromaReconstructNearest3Plane: statement("template"); statement("inline vec spvChromaReconstructNearest(texture2d plane0, texture2d plane1, " "texture2d plane2, sampler samp, float2 coord, LodOptions... options)"); begin_scope(); statement("vec ycbcr = vec(0, 0, 0, 1);"); statement("ycbcr.g = plane0.sample(samp, coord, spvForward(options)...).r;"); statement("ycbcr.b = plane1.sample(samp, coord, spvForward(options)...).r;"); statement("ycbcr.r = plane2.sample(samp, coord, spvForward(options)...).r;"); statement("return ycbcr;"); end_scope(); statement(""); break; case SPVFuncImplChromaReconstructLinear422CositedEven2Plane: statement("template"); statement("inline vec spvChromaReconstructLinear422CositedEven(texture2d plane0, texture2d " "plane1, sampler samp, float2 coord, LodOptions... options)"); begin_scope(); statement("vec ycbcr = vec(0, 0, 0, 1);"); statement("ycbcr.g = plane0.sample(samp, coord, spvForward(options)...).r;"); statement("if (fract(coord.x * plane1.get_width()) != 0.0)"); begin_scope(); statement("ycbcr.br = vec(mix(plane1.sample(samp, coord, spvForward(options)...), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 0)), 0.5).rg);"); end_scope(); statement("else"); begin_scope(); statement("ycbcr.br = plane1.sample(samp, coord, spvForward(options)...).rg;"); end_scope(); statement("return ycbcr;"); end_scope(); statement(""); break; case SPVFuncImplChromaReconstructLinear422CositedEven3Plane: statement("template"); statement("inline vec spvChromaReconstructLinear422CositedEven(texture2d plane0, texture2d " "plane1, texture2d plane2, sampler samp, float2 coord, LodOptions... options)"); begin_scope(); statement("vec ycbcr = vec(0, 0, 0, 1);"); statement("ycbcr.g = plane0.sample(samp, coord, spvForward(options)...).r;"); statement("if (fract(coord.x * plane1.get_width()) != 0.0)"); begin_scope(); statement("ycbcr.b = T(mix(plane1.sample(samp, coord, spvForward(options)...), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 0)), 0.5).r);"); statement("ycbcr.r = T(mix(plane2.sample(samp, coord, spvForward(options)...), " "plane2.sample(samp, coord, spvForward(options)..., int2(1, 0)), 0.5).r);"); end_scope(); statement("else"); begin_scope(); statement("ycbcr.b = plane1.sample(samp, coord, spvForward(options)...).r;"); statement("ycbcr.r = plane2.sample(samp, coord, spvForward(options)...).r;"); end_scope(); statement("return ycbcr;"); end_scope(); statement(""); break; case SPVFuncImplChromaReconstructLinear422Midpoint2Plane: statement("template"); statement("inline vec spvChromaReconstructLinear422Midpoint(texture2d plane0, texture2d " "plane1, sampler samp, float2 coord, LodOptions... options)"); begin_scope(); statement("vec ycbcr = vec(0, 0, 0, 1);"); statement("ycbcr.g = plane0.sample(samp, coord, spvForward(options)...).r;"); statement("int2 offs = int2(fract(coord.x * plane1.get_width()) != 0.0 ? 1 : -1, 0);"); statement("ycbcr.br = vec(mix(plane1.sample(samp, coord, spvForward(options)...), " "plane1.sample(samp, coord, spvForward(options)..., offs), 0.25).rg);"); statement("return ycbcr;"); end_scope(); statement(""); break; case SPVFuncImplChromaReconstructLinear422Midpoint3Plane: statement("template"); statement("inline vec spvChromaReconstructLinear422Midpoint(texture2d plane0, texture2d " "plane1, texture2d plane2, sampler samp, float2 coord, LodOptions... options)"); begin_scope(); statement("vec ycbcr = vec(0, 0, 0, 1);"); statement("ycbcr.g = plane0.sample(samp, coord, spvForward(options)...).r;"); statement("int2 offs = int2(fract(coord.x * plane1.get_width()) != 0.0 ? 1 : -1, 0);"); statement("ycbcr.b = T(mix(plane1.sample(samp, coord, spvForward(options)...), " "plane1.sample(samp, coord, spvForward(options)..., offs), 0.25).r);"); statement("ycbcr.r = T(mix(plane2.sample(samp, coord, spvForward(options)...), " "plane2.sample(samp, coord, spvForward(options)..., offs), 0.25).r);"); statement("return ycbcr;"); end_scope(); statement(""); break; case SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane: statement("template"); statement("inline vec spvChromaReconstructLinear420XCositedEvenYCositedEven(texture2d plane0, " "texture2d plane1, sampler samp, float2 coord, LodOptions... options)"); begin_scope(); statement("vec ycbcr = vec(0, 0, 0, 1);"); statement("ycbcr.g = plane0.sample(samp, coord, spvForward(options)...).r;"); statement("float2 ab = fract(round(coord * float2(plane0.get_width(), plane0.get_height())) * 0.5);"); statement("ycbcr.br = vec(mix(mix(plane1.sample(samp, coord, spvForward(options)...), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 0)), ab.x), " "mix(plane1.sample(samp, coord, spvForward(options)..., int2(0, 1)), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 1)), ab.x), ab.y).rg);"); statement("return ycbcr;"); end_scope(); statement(""); break; case SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane: statement("template"); statement("inline vec spvChromaReconstructLinear420XCositedEvenYCositedEven(texture2d plane0, " "texture2d plane1, texture2d plane2, sampler samp, float2 coord, LodOptions... options)"); begin_scope(); statement("vec ycbcr = vec(0, 0, 0, 1);"); statement("ycbcr.g = plane0.sample(samp, coord, spvForward(options)...).r;"); statement("float2 ab = fract(round(coord * float2(plane0.get_width(), plane0.get_height())) * 0.5);"); statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward(options)...), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 0)), ab.x), " "mix(plane1.sample(samp, coord, spvForward(options)..., int2(0, 1)), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 1)), ab.x), ab.y).r);"); statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward(options)...), " "plane2.sample(samp, coord, spvForward(options)..., int2(1, 0)), ab.x), " "mix(plane2.sample(samp, coord, spvForward(options)..., int2(0, 1)), " "plane2.sample(samp, coord, spvForward(options)..., int2(1, 1)), ab.x), ab.y).r);"); statement("return ycbcr;"); end_scope(); statement(""); break; case SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane: statement("template"); statement("inline vec spvChromaReconstructLinear420XMidpointYCositedEven(texture2d plane0, " "texture2d plane1, sampler samp, float2 coord, LodOptions... options)"); begin_scope(); statement("vec ycbcr = vec(0, 0, 0, 1);"); statement("ycbcr.g = plane0.sample(samp, coord, spvForward(options)...).r;"); statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, " "0)) * 0.5);"); statement("ycbcr.br = vec(mix(mix(plane1.sample(samp, coord, spvForward(options)...), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 0)), ab.x), " "mix(plane1.sample(samp, coord, spvForward(options)..., int2(0, 1)), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 1)), ab.x), ab.y).rg);"); statement("return ycbcr;"); end_scope(); statement(""); break; case SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane: statement("template"); statement("inline vec spvChromaReconstructLinear420XMidpointYCositedEven(texture2d plane0, " "texture2d plane1, texture2d plane2, sampler samp, float2 coord, LodOptions... options)"); begin_scope(); statement("vec ycbcr = vec(0, 0, 0, 1);"); statement("ycbcr.g = plane0.sample(samp, coord, spvForward(options)...).r;"); statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, " "0)) * 0.5);"); statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward(options)...), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 0)), ab.x), " "mix(plane1.sample(samp, coord, spvForward(options)..., int2(0, 1)), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 1)), ab.x), ab.y).r);"); statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward(options)...), " "plane2.sample(samp, coord, spvForward(options)..., int2(1, 0)), ab.x), " "mix(plane2.sample(samp, coord, spvForward(options)..., int2(0, 1)), " "plane2.sample(samp, coord, spvForward(options)..., int2(1, 1)), ab.x), ab.y).r);"); statement("return ycbcr;"); end_scope(); statement(""); break; case SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane: statement("template"); statement("inline vec spvChromaReconstructLinear420XCositedEvenYMidpoint(texture2d plane0, " "texture2d plane1, sampler samp, float2 coord, LodOptions... options)"); begin_scope(); statement("vec ycbcr = vec(0, 0, 0, 1);"); statement("ycbcr.g = plane0.sample(samp, coord, spvForward(options)...).r;"); statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0, " "0.5)) * 0.5);"); statement("ycbcr.br = vec(mix(mix(plane1.sample(samp, coord, spvForward(options)...), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 0)), ab.x), " "mix(plane1.sample(samp, coord, spvForward(options)..., int2(0, 1)), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 1)), ab.x), ab.y).rg);"); statement("return ycbcr;"); end_scope(); statement(""); break; case SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane: statement("template"); statement("inline vec spvChromaReconstructLinear420XCositedEvenYMidpoint(texture2d plane0, " "texture2d plane1, texture2d plane2, sampler samp, float2 coord, LodOptions... options)"); begin_scope(); statement("vec ycbcr = vec(0, 0, 0, 1);"); statement("ycbcr.g = plane0.sample(samp, coord, spvForward(options)...).r;"); statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0, " "0.5)) * 0.5);"); statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward(options)...), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 0)), ab.x), " "mix(plane1.sample(samp, coord, spvForward(options)..., int2(0, 1)), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 1)), ab.x), ab.y).r);"); statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward(options)...), " "plane2.sample(samp, coord, spvForward(options)..., int2(1, 0)), ab.x), " "mix(plane2.sample(samp, coord, spvForward(options)..., int2(0, 1)), " "plane2.sample(samp, coord, spvForward(options)..., int2(1, 1)), ab.x), ab.y).r);"); statement("return ycbcr;"); end_scope(); statement(""); break; case SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane: statement("template"); statement("inline vec spvChromaReconstructLinear420XMidpointYMidpoint(texture2d plane0, " "texture2d plane1, sampler samp, float2 coord, LodOptions... options)"); begin_scope(); statement("vec ycbcr = vec(0, 0, 0, 1);"); statement("ycbcr.g = plane0.sample(samp, coord, spvForward(options)...).r;"); statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, " "0.5)) * 0.5);"); statement("ycbcr.br = vec(mix(mix(plane1.sample(samp, coord, spvForward(options)...), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 0)), ab.x), " "mix(plane1.sample(samp, coord, spvForward(options)..., int2(0, 1)), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 1)), ab.x), ab.y).rg);"); statement("return ycbcr;"); end_scope(); statement(""); break; case SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane: statement("template"); statement("inline vec spvChromaReconstructLinear420XMidpointYMidpoint(texture2d plane0, " "texture2d plane1, texture2d plane2, sampler samp, float2 coord, LodOptions... options)"); begin_scope(); statement("vec ycbcr = vec(0, 0, 0, 1);"); statement("ycbcr.g = plane0.sample(samp, coord, spvForward(options)...).r;"); statement("float2 ab = fract((round(coord * float2(plane0.get_width(), plane0.get_height())) - float2(0.5, " "0.5)) * 0.5);"); statement("ycbcr.b = T(mix(mix(plane1.sample(samp, coord, spvForward(options)...), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 0)), ab.x), " "mix(plane1.sample(samp, coord, spvForward(options)..., int2(0, 1)), " "plane1.sample(samp, coord, spvForward(options)..., int2(1, 1)), ab.x), ab.y).r);"); statement("ycbcr.r = T(mix(mix(plane2.sample(samp, coord, spvForward(options)...), " "plane2.sample(samp, coord, spvForward(options)..., int2(1, 0)), ab.x), " "mix(plane2.sample(samp, coord, spvForward(options)..., int2(0, 1)), " "plane2.sample(samp, coord, spvForward(options)..., int2(1, 1)), ab.x), ab.y).r);"); statement("return ycbcr;"); end_scope(); statement(""); break; case SPVFuncImplExpandITUFullRange: statement("template"); statement("inline vec spvExpandITUFullRange(vec ycbcr, int n)"); begin_scope(); statement("ycbcr.br -= exp2(T(n-1))/(exp2(T(n))-1);"); statement("return ycbcr;"); end_scope(); statement(""); break; case SPVFuncImplExpandITUNarrowRange: statement("template"); statement("inline vec spvExpandITUNarrowRange(vec ycbcr, int n)"); begin_scope(); statement("ycbcr.g = (ycbcr.g * (exp2(T(n)) - 1) - ldexp(T(16), n - 8))/ldexp(T(219), n - 8);"); statement("ycbcr.br = (ycbcr.br * (exp2(T(n)) - 1) - ldexp(T(128), n - 8))/ldexp(T(224), n - 8);"); statement("return ycbcr;"); end_scope(); statement(""); break; case SPVFuncImplConvertYCbCrBT709: statement("// cf. Khronos Data Format Specification, section 15.1.1"); statement("constant float3x3 spvBT709Factors = {{1, 1, 1}, {0, -0.13397432/0.7152, 1.8556}, {1.5748, " "-0.33480248/0.7152, 0}};"); statement(""); statement("template"); statement("inline vec spvConvertYCbCrBT709(vec ycbcr)"); begin_scope(); statement("vec rgba;"); statement("rgba.rgb = vec(spvBT709Factors * ycbcr.gbr);"); statement("rgba.a = ycbcr.a;"); statement("return rgba;"); end_scope(); statement(""); break; case SPVFuncImplConvertYCbCrBT601: statement("// cf. Khronos Data Format Specification, section 15.1.2"); statement("constant float3x3 spvBT601Factors = {{1, 1, 1}, {0, -0.202008/0.587, 1.772}, {1.402, " "-0.419198/0.587, 0}};"); statement(""); statement("template"); statement("inline vec spvConvertYCbCrBT601(vec ycbcr)"); begin_scope(); statement("vec rgba;"); statement("rgba.rgb = vec(spvBT601Factors * ycbcr.gbr);"); statement("rgba.a = ycbcr.a;"); statement("return rgba;"); end_scope(); statement(""); break; case SPVFuncImplConvertYCbCrBT2020: statement("// cf. Khronos Data Format Specification, section 15.1.3"); statement("constant float3x3 spvBT2020Factors = {{1, 1, 1}, {0, -0.11156702/0.6780, 1.8814}, {1.4746, " "-0.38737742/0.6780, 0}};"); statement(""); statement("template"); statement("inline vec spvConvertYCbCrBT2020(vec ycbcr)"); begin_scope(); statement("vec rgba;"); statement("rgba.rgb = vec(spvBT2020Factors * ycbcr.gbr);"); statement("rgba.a = ycbcr.a;"); statement("return rgba;"); end_scope(); statement(""); break; case SPVFuncImplDynamicImageSampler: statement("enum class spvFormatResolution"); begin_scope(); statement("_444 = 0,"); statement("_422,"); statement("_420"); end_scope_decl(); statement(""); statement("enum class spvChromaFilter"); begin_scope(); statement("nearest = 0,"); statement("linear"); end_scope_decl(); statement(""); statement("enum class spvXChromaLocation"); begin_scope(); statement("cosited_even = 0,"); statement("midpoint"); end_scope_decl(); statement(""); statement("enum class spvYChromaLocation"); begin_scope(); statement("cosited_even = 0,"); statement("midpoint"); end_scope_decl(); statement(""); statement("enum class spvYCbCrModelConversion"); begin_scope(); statement("rgb_identity = 0,"); statement("ycbcr_identity,"); statement("ycbcr_bt_709,"); statement("ycbcr_bt_601,"); statement("ycbcr_bt_2020"); end_scope_decl(); statement(""); statement("enum class spvYCbCrRange"); begin_scope(); statement("itu_full = 0,"); statement("itu_narrow"); end_scope_decl(); statement(""); statement("struct spvComponentBits"); begin_scope(); statement("constexpr explicit spvComponentBits(int v) thread : value(v) {}"); statement("uchar value : 6;"); end_scope_decl(); statement("// A class corresponding to metal::sampler which holds sampler"); statement("// Y'CbCr conversion info."); statement("struct spvYCbCrSampler"); begin_scope(); statement("constexpr spvYCbCrSampler() thread : val(build()) {}"); statement("template"); statement("constexpr spvYCbCrSampler(Ts... t) thread : val(build(t...)) {}"); statement("constexpr spvYCbCrSampler(const thread spvYCbCrSampler& s) thread = default;"); statement(""); statement("spvFormatResolution get_resolution() const thread"); begin_scope(); statement("return spvFormatResolution((val & resolution_mask) >> resolution_base);"); end_scope(); statement("spvChromaFilter get_chroma_filter() const thread"); begin_scope(); statement("return spvChromaFilter((val & chroma_filter_mask) >> chroma_filter_base);"); end_scope(); statement("spvXChromaLocation get_x_chroma_offset() const thread"); begin_scope(); statement("return spvXChromaLocation((val & x_chroma_off_mask) >> x_chroma_off_base);"); end_scope(); statement("spvYChromaLocation get_y_chroma_offset() const thread"); begin_scope(); statement("return spvYChromaLocation((val & y_chroma_off_mask) >> y_chroma_off_base);"); end_scope(); statement("spvYCbCrModelConversion get_ycbcr_model() const thread"); begin_scope(); statement("return spvYCbCrModelConversion((val & ycbcr_model_mask) >> ycbcr_model_base);"); end_scope(); statement("spvYCbCrRange get_ycbcr_range() const thread"); begin_scope(); statement("return spvYCbCrRange((val & ycbcr_range_mask) >> ycbcr_range_base);"); end_scope(); statement("int get_bpc() const thread { return (val & bpc_mask) >> bpc_base; }"); statement(""); statement("private:"); statement("ushort val;"); statement(""); statement("constexpr static constant ushort resolution_bits = 2;"); statement("constexpr static constant ushort chroma_filter_bits = 2;"); statement("constexpr static constant ushort x_chroma_off_bit = 1;"); statement("constexpr static constant ushort y_chroma_off_bit = 1;"); statement("constexpr static constant ushort ycbcr_model_bits = 3;"); statement("constexpr static constant ushort ycbcr_range_bit = 1;"); statement("constexpr static constant ushort bpc_bits = 6;"); statement(""); statement("constexpr static constant ushort resolution_base = 0;"); statement("constexpr static constant ushort chroma_filter_base = 2;"); statement("constexpr static constant ushort x_chroma_off_base = 4;"); statement("constexpr static constant ushort y_chroma_off_base = 5;"); statement("constexpr static constant ushort ycbcr_model_base = 6;"); statement("constexpr static constant ushort ycbcr_range_base = 9;"); statement("constexpr static constant ushort bpc_base = 10;"); statement(""); statement( "constexpr static constant ushort resolution_mask = ((1 << resolution_bits) - 1) << resolution_base;"); statement("constexpr static constant ushort chroma_filter_mask = ((1 << chroma_filter_bits) - 1) << " "chroma_filter_base;"); statement("constexpr static constant ushort x_chroma_off_mask = ((1 << x_chroma_off_bit) - 1) << " "x_chroma_off_base;"); statement("constexpr static constant ushort y_chroma_off_mask = ((1 << y_chroma_off_bit) - 1) << " "y_chroma_off_base;"); statement("constexpr static constant ushort ycbcr_model_mask = ((1 << ycbcr_model_bits) - 1) << " "ycbcr_model_base;"); statement("constexpr static constant ushort ycbcr_range_mask = ((1 << ycbcr_range_bit) - 1) << " "ycbcr_range_base;"); statement("constexpr static constant ushort bpc_mask = ((1 << bpc_bits) - 1) << bpc_base;"); statement(""); statement("static constexpr ushort build()"); begin_scope(); statement("return 0;"); end_scope(); statement(""); statement("template"); statement("static constexpr ushort build(spvFormatResolution res, Ts... t)"); begin_scope(); statement("return (ushort(res) << resolution_base) | (build(t...) & ~resolution_mask);"); end_scope(); statement(""); statement("template"); statement("static constexpr ushort build(spvChromaFilter filt, Ts... t)"); begin_scope(); statement("return (ushort(filt) << chroma_filter_base) | (build(t...) & ~chroma_filter_mask);"); end_scope(); statement(""); statement("template"); statement("static constexpr ushort build(spvXChromaLocation loc, Ts... t)"); begin_scope(); statement("return (ushort(loc) << x_chroma_off_base) | (build(t...) & ~x_chroma_off_mask);"); end_scope(); statement(""); statement("template"); statement("static constexpr ushort build(spvYChromaLocation loc, Ts... t)"); begin_scope(); statement("return (ushort(loc) << y_chroma_off_base) | (build(t...) & ~y_chroma_off_mask);"); end_scope(); statement(""); statement("template"); statement("static constexpr ushort build(spvYCbCrModelConversion model, Ts... t)"); begin_scope(); statement("return (ushort(model) << ycbcr_model_base) | (build(t...) & ~ycbcr_model_mask);"); end_scope(); statement(""); statement("template"); statement("static constexpr ushort build(spvYCbCrRange range, Ts... t)"); begin_scope(); statement("return (ushort(range) << ycbcr_range_base) | (build(t...) & ~ycbcr_range_mask);"); end_scope(); statement(""); statement("template"); statement("static constexpr ushort build(spvComponentBits bpc, Ts... t)"); begin_scope(); statement("return (ushort(bpc.value) << bpc_base) | (build(t...) & ~bpc_mask);"); end_scope(); end_scope_decl(); statement(""); statement("// A class which can hold up to three textures and a sampler, including"); statement("// Y'CbCr conversion info, used to pass combined image-samplers"); statement("// dynamically to functions."); statement("template"); statement("struct spvDynamicImageSampler"); begin_scope(); statement("texture2d plane0;"); statement("texture2d plane1;"); statement("texture2d plane2;"); statement("sampler samp;"); statement("spvYCbCrSampler ycbcr_samp;"); statement("uint swizzle = 0;"); statement(""); if (msl_options.swizzle_texture_samples) { statement("constexpr spvDynamicImageSampler(texture2d tex, sampler samp, uint sw) thread :"); statement(" plane0(tex), samp(samp), swizzle(sw) {}"); } else { statement("constexpr spvDynamicImageSampler(texture2d tex, sampler samp) thread :"); statement(" plane0(tex), samp(samp) {}"); } statement("constexpr spvDynamicImageSampler(texture2d tex, sampler samp, spvYCbCrSampler ycbcr_samp, " "uint sw) thread :"); statement(" plane0(tex), samp(samp), ycbcr_samp(ycbcr_samp), swizzle(sw) {}"); statement("constexpr spvDynamicImageSampler(texture2d plane0, texture2d plane1,"); statement(" sampler samp, spvYCbCrSampler ycbcr_samp, uint sw) thread :"); statement(" plane0(plane0), plane1(plane1), samp(samp), ycbcr_samp(ycbcr_samp), swizzle(sw) {}"); statement( "constexpr spvDynamicImageSampler(texture2d plane0, texture2d plane1, texture2d plane2,"); statement(" sampler samp, spvYCbCrSampler ycbcr_samp, uint sw) thread :"); statement(" plane0(plane0), plane1(plane1), plane2(plane2), samp(samp), ycbcr_samp(ycbcr_samp), " "swizzle(sw) {}"); statement(""); // XXX This is really hard to follow... I've left comments to make it a bit easier. statement("template"); statement("vec do_sample(float2 coord, LodOptions... options) const thread"); begin_scope(); statement("if (!is_null_texture(plane1))"); begin_scope(); statement("if (ycbcr_samp.get_resolution() == spvFormatResolution::_444 ||"); statement(" ycbcr_samp.get_chroma_filter() == spvChromaFilter::nearest)"); begin_scope(); statement("if (!is_null_texture(plane2))"); statement(" return spvChromaReconstructNearest(plane0, plane1, plane2, samp, coord,"); statement(" spvForward(options)...);"); statement( "return spvChromaReconstructNearest(plane0, plane1, samp, coord, spvForward(options)...);"); end_scope(); // if (resolution == 422 || chroma_filter == nearest) statement("switch (ycbcr_samp.get_resolution())"); begin_scope(); statement("case spvFormatResolution::_444: break;"); statement("case spvFormatResolution::_422:"); begin_scope(); statement("switch (ycbcr_samp.get_x_chroma_offset())"); begin_scope(); statement("case spvXChromaLocation::cosited_even:"); statement(" if (!is_null_texture(plane2))"); statement(" return spvChromaReconstructLinear422CositedEven("); statement(" plane0, plane1, plane2, samp,"); statement(" coord, spvForward(options)...);"); statement(" return spvChromaReconstructLinear422CositedEven("); statement(" plane0, plane1, samp, coord,"); statement(" spvForward(options)...);"); statement("case spvXChromaLocation::midpoint:"); statement(" if (!is_null_texture(plane2))"); statement(" return spvChromaReconstructLinear422Midpoint("); statement(" plane0, plane1, plane2, samp,"); statement(" coord, spvForward(options)...);"); statement(" return spvChromaReconstructLinear422Midpoint("); statement(" plane0, plane1, samp, coord,"); statement(" spvForward(options)...);"); end_scope(); // switch (x_chroma_offset) end_scope(); // case 422: statement("case spvFormatResolution::_420:"); begin_scope(); statement("switch (ycbcr_samp.get_x_chroma_offset())"); begin_scope(); statement("case spvXChromaLocation::cosited_even:"); begin_scope(); statement("switch (ycbcr_samp.get_y_chroma_offset())"); begin_scope(); statement("case spvYChromaLocation::cosited_even:"); statement(" if (!is_null_texture(plane2))"); statement(" return spvChromaReconstructLinear420XCositedEvenYCositedEven("); statement(" plane0, plane1, plane2, samp,"); statement(" coord, spvForward(options)...);"); statement(" return spvChromaReconstructLinear420XCositedEvenYCositedEven("); statement(" plane0, plane1, samp, coord,"); statement(" spvForward(options)...);"); statement("case spvYChromaLocation::midpoint:"); statement(" if (!is_null_texture(plane2))"); statement(" return spvChromaReconstructLinear420XCositedEvenYMidpoint("); statement(" plane0, plane1, plane2, samp,"); statement(" coord, spvForward(options)...);"); statement(" return spvChromaReconstructLinear420XCositedEvenYMidpoint("); statement(" plane0, plane1, samp, coord,"); statement(" spvForward(options)...);"); end_scope(); // switch (y_chroma_offset) end_scope(); // case x::cosited_even: statement("case spvXChromaLocation::midpoint:"); begin_scope(); statement("switch (ycbcr_samp.get_y_chroma_offset())"); begin_scope(); statement("case spvYChromaLocation::cosited_even:"); statement(" if (!is_null_texture(plane2))"); statement(" return spvChromaReconstructLinear420XMidpointYCositedEven("); statement(" plane0, plane1, plane2, samp,"); statement(" coord, spvForward(options)...);"); statement(" return spvChromaReconstructLinear420XMidpointYCositedEven("); statement(" plane0, plane1, samp, coord,"); statement(" spvForward(options)...);"); statement("case spvYChromaLocation::midpoint:"); statement(" if (!is_null_texture(plane2))"); statement(" return spvChromaReconstructLinear420XMidpointYMidpoint("); statement(" plane0, plane1, plane2, samp,"); statement(" coord, spvForward(options)...);"); statement(" return spvChromaReconstructLinear420XMidpointYMidpoint("); statement(" plane0, plane1, samp, coord,"); statement(" spvForward(options)...);"); end_scope(); // switch (y_chroma_offset) end_scope(); // case x::midpoint end_scope(); // switch (x_chroma_offset) end_scope(); // case 420: end_scope(); // switch (resolution) end_scope(); // if (multiplanar) statement("return plane0.sample(samp, coord, spvForward(options)...);"); end_scope(); // do_sample() statement("template "); statement("vec sample(float2 coord, LodOptions... options) const thread"); begin_scope(); statement( "vec s = spvTextureSwizzle(do_sample(coord, spvForward(options)...), swizzle);"); statement("if (ycbcr_samp.get_ycbcr_model() == spvYCbCrModelConversion::rgb_identity)"); statement(" return s;"); statement(""); statement("switch (ycbcr_samp.get_ycbcr_range())"); begin_scope(); statement("case spvYCbCrRange::itu_full:"); statement(" s = spvExpandITUFullRange(s, ycbcr_samp.get_bpc());"); statement(" break;"); statement("case spvYCbCrRange::itu_narrow:"); statement(" s = spvExpandITUNarrowRange(s, ycbcr_samp.get_bpc());"); statement(" break;"); end_scope(); statement(""); statement("switch (ycbcr_samp.get_ycbcr_model())"); begin_scope(); statement("case spvYCbCrModelConversion::rgb_identity:"); // Silence Clang warning statement("case spvYCbCrModelConversion::ycbcr_identity:"); statement(" return s;"); statement("case spvYCbCrModelConversion::ycbcr_bt_709:"); statement(" return spvConvertYCbCrBT709(s);"); statement("case spvYCbCrModelConversion::ycbcr_bt_601:"); statement(" return spvConvertYCbCrBT601(s);"); statement("case spvYCbCrModelConversion::ycbcr_bt_2020:"); statement(" return spvConvertYCbCrBT2020(s);"); end_scope(); end_scope(); statement(""); // Sampler Y'CbCr conversion forbids offsets. statement("vec sample(float2 coord, int2 offset) const thread"); begin_scope(); if (msl_options.swizzle_texture_samples) statement("return spvTextureSwizzle(plane0.sample(samp, coord, offset), swizzle);"); else statement("return plane0.sample(samp, coord, offset);"); end_scope(); statement("template"); statement("vec sample(float2 coord, lod_options options, int2 offset) const thread"); begin_scope(); if (msl_options.swizzle_texture_samples) statement("return spvTextureSwizzle(plane0.sample(samp, coord, options, offset), swizzle);"); else statement("return plane0.sample(samp, coord, options, offset);"); end_scope(); statement("#if __HAVE_MIN_LOD_CLAMP__"); statement("vec sample(float2 coord, bias b, min_lod_clamp min_lod, int2 offset) const thread"); begin_scope(); statement("return plane0.sample(samp, coord, b, min_lod, offset);"); end_scope(); statement( "vec sample(float2 coord, gradient2d grad, min_lod_clamp min_lod, int2 offset) const thread"); begin_scope(); statement("return plane0.sample(samp, coord, grad, min_lod, offset);"); end_scope(); statement("#endif"); statement(""); // Y'CbCr conversion forbids all operations but sampling. statement("vec read(uint2 coord, uint lod = 0) const thread"); begin_scope(); statement("return plane0.read(coord, lod);"); end_scope(); statement(""); statement("vec gather(float2 coord, int2 offset = int2(0), component c = component::x) const thread"); begin_scope(); if (msl_options.swizzle_texture_samples) statement("return spvGatherSwizzle(plane0, samp, swizzle, c, coord, offset);"); else statement("return plane0.gather(samp, coord, offset, c);"); end_scope(); end_scope_decl(); statement(""); default: break; } } } static string inject_top_level_storage_qualifier(const string &expr, const string &qualifier) { // Easier to do this through text munging since the qualifier does not exist in the type system at all, // and plumbing in all that information is not very helpful. size_t last_reference = expr.find_last_of('&'); size_t last_pointer = expr.find_last_of('*'); size_t last_significant = string::npos; if (last_reference == string::npos) last_significant = last_pointer; else if (last_pointer == string::npos) last_significant = last_reference; else last_significant = std::max(last_reference, last_pointer); if (last_significant == string::npos) return join(qualifier, " ", expr); else { return join(expr.substr(0, last_significant + 1), " ", qualifier, expr.substr(last_significant + 1, string::npos)); } } // Undefined global memory is not allowed in MSL. // Declare constant and init to zeros. Use {}, as global constructors can break Metal. void CompilerMSL::declare_undefined_values() { bool emitted = false; ir.for_each_typed_id([&](uint32_t, SPIRUndef &undef) { auto &type = this->get(undef.basetype); // OpUndef can be void for some reason ... if (type.basetype == SPIRType::Void) return; statement(inject_top_level_storage_qualifier( variable_decl(type, to_name(undef.self), undef.self), "constant"), " = {};"); emitted = true; }); if (emitted) statement(""); } void CompilerMSL::declare_constant_arrays() { bool fully_inlined = ir.ids_for_type[TypeFunction].size() == 1; // MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to // global constants directly, so we are able to use constants as variable expressions. bool emitted = false; ir.for_each_typed_id([&](uint32_t, SPIRConstant &c) { if (c.specialization) return; auto &type = this->get(c.constant_type); // Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries. // FIXME: However, hoisting constants to main() means we need to pass down constant arrays to leaf functions if they are used there. // If there are multiple functions in the module, drop this case to avoid breaking use cases which do not need to // link into Metal libraries. This is hacky. if (!type.array.empty() && (!fully_inlined || is_scalar(type) || is_vector(type))) { add_resource_name(c.self); auto name = to_name(c.self); statement(inject_top_level_storage_qualifier(variable_decl(type, name), "constant"), " = ", constant_expression(c), ";"); emitted = true; } }); if (emitted) statement(""); } // Constant arrays of non-primitive types (i.e. matrices) won't link properly into Metal libraries void CompilerMSL::declare_complex_constant_arrays() { // If we do not have a fully inlined module, we did not opt in to // declaring constant arrays of complex types. See CompilerMSL::declare_constant_arrays(). bool fully_inlined = ir.ids_for_type[TypeFunction].size() == 1; if (!fully_inlined) return; // MSL cannot declare arrays inline (except when declaring a variable), so we must move them out to // global constants directly, so we are able to use constants as variable expressions. bool emitted = false; ir.for_each_typed_id([&](uint32_t, SPIRConstant &c) { if (c.specialization) return; auto &type = this->get(c.constant_type); if (!type.array.empty() && !(is_scalar(type) || is_vector(type))) { add_resource_name(c.self); auto name = to_name(c.self); statement("", variable_decl(type, name), " = ", constant_expression(c), ";"); emitted = true; } }); if (emitted) statement(""); } void CompilerMSL::emit_resources() { declare_constant_arrays(); declare_undefined_values(); // Emit the special [[stage_in]] and [[stage_out]] interface blocks which we created. emit_interface_block(stage_out_var_id); emit_interface_block(patch_stage_out_var_id); emit_interface_block(stage_in_var_id); emit_interface_block(patch_stage_in_var_id); } // Emit declarations for the specialization Metal function constants void CompilerMSL::emit_specialization_constants_and_structs() { SpecializationConstant wg_x, wg_y, wg_z; ID workgroup_size_id = get_work_group_size_specialization_constants(wg_x, wg_y, wg_z); bool emitted = false; unordered_set declared_structs; unordered_set aligned_structs; // First, we need to deal with scalar block layout. // It is possible that a struct may have to be placed at an alignment which does not match the innate alignment of the struct itself. // In that case, if such a case exists for a struct, we must force that all elements of the struct become packed_ types. // This makes the struct alignment as small as physically possible. // When we actually align the struct later, we can insert padding as necessary to make the packed members behave like normally aligned types. ir.for_each_typed_id([&](uint32_t type_id, const SPIRType &type) { if (type.basetype == SPIRType::Struct && has_extended_decoration(type_id, SPIRVCrossDecorationBufferBlockRepacked)) mark_scalar_layout_structs(type); }); bool builtin_block_type_is_required = false; // Very special case. If gl_PerVertex is initialized as an array (tessellation) // we have to potentially emit the gl_PerVertex struct type so that we can emit a constant LUT. ir.for_each_typed_id([&](uint32_t, SPIRConstant &c) { auto &type = this->get(c.constant_type); if (is_array(type) && has_decoration(type.self, DecorationBlock) && is_builtin_type(type)) builtin_block_type_is_required = true; }); // Very particular use of the soft loop lock. // align_struct may need to create custom types on the fly, but we don't care about // these types for purpose of iterating over them in ir.ids_for_type and friends. auto loop_lock = ir.create_loop_soft_lock(); for (auto &id_ : ir.ids_for_constant_or_type) { auto &id = ir.ids[id_]; if (id.get_type() == TypeConstant) { auto &c = id.get(); if (c.self == workgroup_size_id) { // TODO: This can be expressed as a [[threads_per_threadgroup]] input semantic, but we need to know // the work group size at compile time in SPIR-V, and [[threads_per_threadgroup]] would need to be passed around as a global. // The work group size may be a specialization constant. statement("constant uint3 ", builtin_to_glsl(BuiltInWorkgroupSize, StorageClassWorkgroup), " [[maybe_unused]] = ", constant_expression(get(workgroup_size_id)), ";"); emitted = true; } else if (c.specialization) { auto &type = get(c.constant_type); string sc_type_name = type_to_glsl(type); add_resource_name(c.self); string sc_name = to_name(c.self); string sc_tmp_name = sc_name + "_tmp"; // Function constants are only supported in MSL 1.2 and later. // If we don't support it just declare the "default" directly. // This "default" value can be overridden to the true specialization constant by the API user. // Specialization constants which are used as array length expressions cannot be function constants in MSL, // so just fall back to macros. if (msl_options.supports_msl_version(1, 2) && has_decoration(c.self, DecorationSpecId) && !c.is_used_as_array_length) { uint32_t constant_id = get_decoration(c.self, DecorationSpecId); // Only scalar, non-composite values can be function constants. statement("constant ", sc_type_name, " ", sc_tmp_name, " [[function_constant(", constant_id, ")]];"); statement("constant ", sc_type_name, " ", sc_name, " = is_function_constant_defined(", sc_tmp_name, ") ? ", sc_tmp_name, " : ", constant_expression(c), ";"); } else if (has_decoration(c.self, DecorationSpecId)) { // Fallback to macro overrides. c.specialization_constant_macro_name = constant_value_macro_name(get_decoration(c.self, DecorationSpecId)); statement("#ifndef ", c.specialization_constant_macro_name); statement("#define ", c.specialization_constant_macro_name, " ", constant_expression(c)); statement("#endif"); statement("constant ", sc_type_name, " ", sc_name, " = ", c.specialization_constant_macro_name, ";"); } else { // Composite specialization constants must be built from other specialization constants. statement("constant ", sc_type_name, " ", sc_name, " = ", constant_expression(c), ";"); } emitted = true; } } else if (id.get_type() == TypeConstantOp) { auto &c = id.get(); auto &type = get(c.basetype); add_resource_name(c.self); auto name = to_name(c.self); statement("constant ", variable_decl(type, name), " = ", constant_op_expression(c), ";"); emitted = true; } else if (id.get_type() == TypeType) { // Output non-builtin interface structs. These include local function structs // and structs nested within uniform and read-write buffers. auto &type = id.get(); TypeID type_id = type.self; bool is_struct = (type.basetype == SPIRType::Struct) && type.array.empty() && !type.pointer; bool is_block = has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock); bool is_builtin_block = is_block && is_builtin_type(type); bool is_declarable_struct = is_struct && (!is_builtin_block || builtin_block_type_is_required); // We'll declare this later. if (stage_out_var_id && get_stage_out_struct_type().self == type_id) is_declarable_struct = false; if (patch_stage_out_var_id && get_patch_stage_out_struct_type().self == type_id) is_declarable_struct = false; if (stage_in_var_id && get_stage_in_struct_type().self == type_id) is_declarable_struct = false; if (patch_stage_in_var_id && get_patch_stage_in_struct_type().self == type_id) is_declarable_struct = false; // Special case. Declare builtin struct anyways if we need to emit a threadgroup version of it. if (stage_out_masked_builtin_type_id == type_id) is_declarable_struct = true; // Align and emit declarable structs...but avoid declaring each more than once. if (is_declarable_struct && declared_structs.count(type_id) == 0) { if (emitted) statement(""); emitted = false; declared_structs.insert(type_id); if (has_extended_decoration(type_id, SPIRVCrossDecorationBufferBlockRepacked)) align_struct(type, aligned_structs); // Make sure we declare the underlying struct type, and not the "decorated" type with pointers, etc. emit_struct(get(type_id)); } } } if (emitted) statement(""); } void CompilerMSL::emit_binary_unord_op(uint32_t result_type, uint32_t result_id, uint32_t op0, uint32_t op1, const char *op) { bool forward = should_forward(op0) && should_forward(op1); emit_op(result_type, result_id, join("(isunordered(", to_enclosed_unpacked_expression(op0), ", ", to_enclosed_unpacked_expression(op1), ") || ", to_enclosed_unpacked_expression(op0), " ", op, " ", to_enclosed_unpacked_expression(op1), ")"), forward); inherit_expression_dependencies(result_id, op0); inherit_expression_dependencies(result_id, op1); } bool CompilerMSL::emit_tessellation_io_load(uint32_t result_type_id, uint32_t id, uint32_t ptr) { auto &ptr_type = expression_type(ptr); auto &result_type = get(result_type_id); if (ptr_type.storage != StorageClassInput && ptr_type.storage != StorageClassOutput) return false; if (ptr_type.storage == StorageClassOutput && get_execution_model() == ExecutionModelTessellationEvaluation) return false; if (has_decoration(ptr, DecorationPatch)) return false; bool ptr_is_io_variable = ir.ids[ptr].get_type() == TypeVariable; bool flattened_io = variable_storage_requires_stage_io(ptr_type.storage); bool flat_data_type = flattened_io && (is_matrix(result_type) || is_array(result_type) || result_type.basetype == SPIRType::Struct); // Edge case, even with multi-patch workgroups, we still need to unroll load // if we're loading control points directly. if (ptr_is_io_variable && is_array(result_type)) flat_data_type = true; if (!flat_data_type) return false; // Now, we must unflatten a composite type and take care of interleaving array access with gl_in/gl_out. // Lots of painful code duplication since we *really* should not unroll these kinds of loads in entry point fixup // unless we're forced to do this when the code is emitting inoptimal OpLoads. string expr; uint32_t interface_index = get_extended_decoration(ptr, SPIRVCrossDecorationInterfaceMemberIndex); auto *var = maybe_get_backing_variable(ptr); auto &expr_type = get_pointee_type(ptr_type.self); const auto &iface_type = expression_type(stage_in_ptr_var_id); if (!flattened_io) { // Simplest case for multi-patch workgroups, just unroll array as-is. if (interface_index == uint32_t(-1)) return false; expr += type_to_glsl(result_type) + "({ "; uint32_t num_control_points = to_array_size_literal(result_type, uint32_t(result_type.array.size()) - 1); for (uint32_t i = 0; i < num_control_points; i++) { const uint32_t indices[2] = { i, interface_index }; AccessChainMeta meta; expr += access_chain_internal(stage_in_ptr_var_id, indices, 2, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta); if (i + 1 < num_control_points) expr += ", "; } expr += " })"; } else if (result_type.array.size() > 2) { SPIRV_CROSS_THROW("Cannot load tessellation IO variables with more than 2 dimensions."); } else if (result_type.array.size() == 2) { if (!ptr_is_io_variable) SPIRV_CROSS_THROW("Loading an array-of-array must be loaded directly from an IO variable."); if (interface_index == uint32_t(-1)) SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue."); if (result_type.basetype == SPIRType::Struct || is_matrix(result_type)) SPIRV_CROSS_THROW("Cannot load array-of-array of composite type in tessellation IO."); expr += type_to_glsl(result_type) + "({ "; uint32_t num_control_points = to_array_size_literal(result_type, 1); uint32_t base_interface_index = interface_index; auto &sub_type = get(result_type.parent_type); for (uint32_t i = 0; i < num_control_points; i++) { expr += type_to_glsl(sub_type) + "({ "; interface_index = base_interface_index; uint32_t array_size = to_array_size_literal(result_type, 0); for (uint32_t j = 0; j < array_size; j++, interface_index++) { const uint32_t indices[2] = { i, interface_index }; AccessChainMeta meta; expr += access_chain_internal(stage_in_ptr_var_id, indices, 2, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta); if (!is_matrix(sub_type) && sub_type.basetype != SPIRType::Struct && expr_type.vecsize > sub_type.vecsize) expr += vector_swizzle(sub_type.vecsize, 0); if (j + 1 < array_size) expr += ", "; } expr += " })"; if (i + 1 < num_control_points) expr += ", "; } expr += " })"; } else if (result_type.basetype == SPIRType::Struct) { bool is_array_of_struct = is_array(result_type); if (is_array_of_struct && !ptr_is_io_variable) SPIRV_CROSS_THROW("Loading array of struct from IO variable must come directly from IO variable."); uint32_t num_control_points = 1; if (is_array_of_struct) { num_control_points = to_array_size_literal(result_type, 0); expr += type_to_glsl(result_type) + "({ "; } auto &struct_type = is_array_of_struct ? get(result_type.parent_type) : result_type; assert(struct_type.array.empty()); for (uint32_t i = 0; i < num_control_points; i++) { expr += type_to_glsl(struct_type) + "{ "; for (uint32_t j = 0; j < uint32_t(struct_type.member_types.size()); j++) { // The base interface index is stored per variable for structs. if (var) { interface_index = get_extended_member_decoration(var->self, j, SPIRVCrossDecorationInterfaceMemberIndex); } if (interface_index == uint32_t(-1)) SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue."); const auto &mbr_type = get(struct_type.member_types[j]); const auto &expr_mbr_type = get(expr_type.member_types[j]); if (is_matrix(mbr_type) && ptr_type.storage == StorageClassInput) { expr += type_to_glsl(mbr_type) + "("; for (uint32_t k = 0; k < mbr_type.columns; k++, interface_index++) { if (is_array_of_struct) { const uint32_t indices[2] = { i, interface_index }; AccessChainMeta meta; expr += access_chain_internal( stage_in_ptr_var_id, indices, 2, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta); } else expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index); if (expr_mbr_type.vecsize > mbr_type.vecsize) expr += vector_swizzle(mbr_type.vecsize, 0); if (k + 1 < mbr_type.columns) expr += ", "; } expr += ")"; } else if (is_array(mbr_type)) { expr += type_to_glsl(mbr_type) + "({ "; uint32_t array_size = to_array_size_literal(mbr_type, 0); for (uint32_t k = 0; k < array_size; k++, interface_index++) { if (is_array_of_struct) { const uint32_t indices[2] = { i, interface_index }; AccessChainMeta meta; expr += access_chain_internal( stage_in_ptr_var_id, indices, 2, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta); } else expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index); if (expr_mbr_type.vecsize > mbr_type.vecsize) expr += vector_swizzle(mbr_type.vecsize, 0); if (k + 1 < array_size) expr += ", "; } expr += " })"; } else { if (is_array_of_struct) { const uint32_t indices[2] = { i, interface_index }; AccessChainMeta meta; expr += access_chain_internal(stage_in_ptr_var_id, indices, 2, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta); } else expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index); if (expr_mbr_type.vecsize > mbr_type.vecsize) expr += vector_swizzle(mbr_type.vecsize, 0); } if (j + 1 < struct_type.member_types.size()) expr += ", "; } expr += " }"; if (i + 1 < num_control_points) expr += ", "; } if (is_array_of_struct) expr += " })"; } else if (is_matrix(result_type)) { bool is_array_of_matrix = is_array(result_type); if (is_array_of_matrix && !ptr_is_io_variable) SPIRV_CROSS_THROW("Loading array of matrix from IO variable must come directly from IO variable."); if (interface_index == uint32_t(-1)) SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue."); if (is_array_of_matrix) { // Loading a matrix from each control point. uint32_t base_interface_index = interface_index; uint32_t num_control_points = to_array_size_literal(result_type, 0); expr += type_to_glsl(result_type) + "({ "; auto &matrix_type = get_variable_element_type(get(ptr)); for (uint32_t i = 0; i < num_control_points; i++) { interface_index = base_interface_index; expr += type_to_glsl(matrix_type) + "("; for (uint32_t j = 0; j < result_type.columns; j++, interface_index++) { const uint32_t indices[2] = { i, interface_index }; AccessChainMeta meta; expr += access_chain_internal(stage_in_ptr_var_id, indices, 2, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta); if (expr_type.vecsize > result_type.vecsize) expr += vector_swizzle(result_type.vecsize, 0); if (j + 1 < result_type.columns) expr += ", "; } expr += ")"; if (i + 1 < num_control_points) expr += ", "; } expr += " })"; } else { expr += type_to_glsl(result_type) + "("; for (uint32_t i = 0; i < result_type.columns; i++, interface_index++) { expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index); if (expr_type.vecsize > result_type.vecsize) expr += vector_swizzle(result_type.vecsize, 0); if (i + 1 < result_type.columns) expr += ", "; } expr += ")"; } } else if (ptr_is_io_variable) { assert(is_array(result_type)); assert(result_type.array.size() == 1); if (interface_index == uint32_t(-1)) SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue."); // We're loading an array directly from a global variable. // This means we're loading one member from each control point. expr += type_to_glsl(result_type) + "({ "; uint32_t num_control_points = to_array_size_literal(result_type, 0); for (uint32_t i = 0; i < num_control_points; i++) { const uint32_t indices[2] = { i, interface_index }; AccessChainMeta meta; expr += access_chain_internal(stage_in_ptr_var_id, indices, 2, ACCESS_CHAIN_INDEX_IS_LITERAL_BIT | ACCESS_CHAIN_PTR_CHAIN_BIT, &meta); if (expr_type.vecsize > result_type.vecsize) expr += vector_swizzle(result_type.vecsize, 0); if (i + 1 < num_control_points) expr += ", "; } expr += " })"; } else { // We're loading an array from a concrete control point. assert(is_array(result_type)); assert(result_type.array.size() == 1); if (interface_index == uint32_t(-1)) SPIRV_CROSS_THROW("Interface index is unknown. Cannot continue."); expr += type_to_glsl(result_type) + "({ "; uint32_t array_size = to_array_size_literal(result_type, 0); for (uint32_t i = 0; i < array_size; i++, interface_index++) { expr += to_expression(ptr) + "." + to_member_name(iface_type, interface_index); if (expr_type.vecsize > result_type.vecsize) expr += vector_swizzle(result_type.vecsize, 0); if (i + 1 < array_size) expr += ", "; } expr += " })"; } emit_op(result_type_id, id, expr, false); register_read(id, ptr, false); return true; } bool CompilerMSL::emit_tessellation_access_chain(const uint32_t *ops, uint32_t length) { // If this is a per-vertex output, remap it to the I/O array buffer. // Any object which did not go through IO flattening shenanigans will go there instead. // We will unflatten on-demand instead as needed, but not all possible cases can be supported, especially with arrays. auto *var = maybe_get_backing_variable(ops[2]); bool patch = false; bool flat_data = false; bool ptr_is_chain = false; bool flatten_composites = false; bool is_block = false; if (var) is_block = has_decoration(get_variable_data_type(*var).self, DecorationBlock); if (var) { flatten_composites = variable_storage_requires_stage_io(var->storage); patch = has_decoration(ops[2], DecorationPatch) || is_patch_block(get_variable_data_type(*var)); // Should match strip_array in add_interface_block. flat_data = var->storage == StorageClassInput || (var->storage == StorageClassOutput && get_execution_model() == ExecutionModelTessellationControl); // Patch inputs are treated as normal block IO variables, so they don't deal with this path at all. if (patch && (!is_block || var->storage == StorageClassInput)) flat_data = false; // We might have a chained access chain, where // we first take the access chain to the control point, and then we chain into a member or something similar. // In this case, we need to skip gl_in/gl_out remapping. // Also, skip ptr chain for patches. ptr_is_chain = var->self != ID(ops[2]); } bool builtin_variable = false; bool variable_is_flat = false; if (var && flat_data) { builtin_variable = is_builtin_variable(*var); BuiltIn bi_type = BuiltInMax; if (builtin_variable && !is_block) bi_type = BuiltIn(get_decoration(var->self, DecorationBuiltIn)); variable_is_flat = !builtin_variable || is_block || bi_type == BuiltInPosition || bi_type == BuiltInPointSize || bi_type == BuiltInClipDistance || bi_type == BuiltInCullDistance; } if (variable_is_flat) { // If output is masked, it is emitted as a "normal" variable, just go through normal code paths. // Only check this for the first level of access chain. // Dealing with this for partial access chains should be possible, but awkward. if (var->storage == StorageClassOutput && !ptr_is_chain) { bool masked = false; if (is_block) { uint32_t relevant_member_index = patch ? 3 : 4; // FIXME: This won't work properly if the application first access chains into gl_out element, // then access chains into the member. Super weird, but theoretically possible ... if (length > relevant_member_index) { uint32_t mbr_idx = get(ops[relevant_member_index]).scalar(); masked = is_stage_output_block_member_masked(*var, mbr_idx, true); } } else if (var) masked = is_stage_output_variable_masked(*var); if (masked) return false; } AccessChainMeta meta; SmallVector indices; uint32_t next_id = ir.increase_bound_by(1); indices.reserve(length - 3 + 1); uint32_t first_non_array_index = (ptr_is_chain ? 3 : 4) - (patch ? 1 : 0); VariableID stage_var_id; if (patch) stage_var_id = var->storage == StorageClassInput ? patch_stage_in_var_id : patch_stage_out_var_id; else stage_var_id = var->storage == StorageClassInput ? stage_in_ptr_var_id : stage_out_ptr_var_id; VariableID ptr = ptr_is_chain ? VariableID(ops[2]) : stage_var_id; if (!ptr_is_chain && !patch) { // Index into gl_in/gl_out with first array index. indices.push_back(ops[first_non_array_index - 1]); } auto &result_ptr_type = get(ops[0]); uint32_t const_mbr_id = next_id++; uint32_t index = get_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex); // If we have a pointer chain expression, and we are no longer pointing to a composite // object, we are in the clear. There is no longer a need to flatten anything. bool further_access_chain_is_trivial = false; if (ptr_is_chain && flatten_composites) { auto &ptr_type = expression_type(ptr); if (!is_array(ptr_type) && !is_matrix(ptr_type) && ptr_type.basetype != SPIRType::Struct) further_access_chain_is_trivial = true; } if (!further_access_chain_is_trivial && (flatten_composites || is_block)) { uint32_t i = first_non_array_index; auto *type = &get_variable_element_type(*var); if (index == uint32_t(-1) && length >= (first_non_array_index + 1)) { // Maybe this is a struct type in the input class, in which case // we put it as a decoration on the corresponding member. uint32_t mbr_idx = get_constant(ops[first_non_array_index]).scalar(); index = get_extended_member_decoration(var->self, mbr_idx, SPIRVCrossDecorationInterfaceMemberIndex); assert(index != uint32_t(-1)); i++; type = &get(type->member_types[mbr_idx]); } // In this case, we're poking into flattened structures and arrays, so now we have to // combine the following indices. If we encounter a non-constant index, // we're hosed. for (; flatten_composites && i < length; ++i) { if (!is_array(*type) && !is_matrix(*type) && type->basetype != SPIRType::Struct) break; auto *c = maybe_get(ops[i]); if (!c || c->specialization) SPIRV_CROSS_THROW("Trying to dynamically index into an array interface variable in tessellation. " "This is currently unsupported."); // We're in flattened space, so just increment the member index into IO block. // We can only do this once in the current implementation, so either: // Struct, Matrix or 1-dimensional array for a control point. if (type->basetype == SPIRType::Struct && var->storage == StorageClassOutput) { // Need to consider holes, since individual block members might be masked away. uint32_t mbr_idx = c->scalar(); for (uint32_t j = 0; j < mbr_idx; j++) if (!is_stage_output_block_member_masked(*var, j, true)) index++; } else index += c->scalar(); if (type->parent_type) type = &get(type->parent_type); else if (type->basetype == SPIRType::Struct) type = &get(type->member_types[c->scalar()]); } // We're not going to emit the actual member name, we let any further OpLoad take care of that. // Tag the access chain with the member index we're referencing. bool defer_access_chain = flatten_composites && (is_matrix(result_ptr_type) || is_array(result_ptr_type) || result_ptr_type.basetype == SPIRType::Struct); if (!defer_access_chain) { // Access the appropriate member of gl_in/gl_out. set(const_mbr_id, get_uint_type_id(), index, false); indices.push_back(const_mbr_id); // Member index is now irrelevant. index = uint32_t(-1); // Append any straggling access chain indices. if (i < length) indices.insert(indices.end(), ops + i, ops + length); } else { // We must have consumed the entire access chain if we're deferring it. assert(i == length); } if (index != uint32_t(-1)) set_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex, index); else unset_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex); } else { if (index != uint32_t(-1)) { set(const_mbr_id, get_uint_type_id(), index, false); indices.push_back(const_mbr_id); } // Member index is now irrelevant. index = uint32_t(-1); unset_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex); indices.insert(indices.end(), ops + first_non_array_index, ops + length); } // We use the pointer to the base of the input/output array here, // so this is always a pointer chain. string e; if (!ptr_is_chain) { // This is the start of an access chain, use ptr_chain to index into control point array. e = access_chain(ptr, indices.data(), uint32_t(indices.size()), result_ptr_type, &meta, !patch); } else { // If we're accessing a struct, we need to use member indices which are based on the IO block, // not actual struct type, so we have to use a split access chain here where // first path resolves the control point index, i.e. gl_in[index], and second half deals with // looking up flattened member name. // However, it is possible that we partially accessed a struct, // by taking pointer to member inside the control-point array. // For this case, we fall back to a natural access chain since we have already dealt with remapping struct members. // One way to check this here is if we have 2 implied read expressions. // First one is the gl_in/gl_out struct itself, then an index into that array. // If we have traversed further, we use a normal access chain formulation. auto *ptr_expr = maybe_get(ptr); bool split_access_chain_formulation = flatten_composites && ptr_expr && ptr_expr->implied_read_expressions.size() == 2 && !further_access_chain_is_trivial; if (split_access_chain_formulation) { e = join(to_expression(ptr), access_chain_internal(stage_var_id, indices.data(), uint32_t(indices.size()), ACCESS_CHAIN_CHAIN_ONLY_BIT, &meta)); } else { e = access_chain_internal(ptr, indices.data(), uint32_t(indices.size()), 0, &meta); } } // Get the actual type of the object that was accessed. If it's a vector type and we changed it, // then we'll need to add a swizzle. // For this, we can't necessarily rely on the type of the base expression, because it might be // another access chain, and it will therefore already have the "correct" type. auto *expr_type = &get_variable_data_type(*var); if (has_extended_decoration(ops[2], SPIRVCrossDecorationTessIOOriginalInputTypeID)) expr_type = &get(get_extended_decoration(ops[2], SPIRVCrossDecorationTessIOOriginalInputTypeID)); for (uint32_t i = 3; i < length; i++) { if (!is_array(*expr_type) && expr_type->basetype == SPIRType::Struct) expr_type = &get(expr_type->member_types[get(ops[i]).scalar()]); else expr_type = &get(expr_type->parent_type); } if (!is_array(*expr_type) && !is_matrix(*expr_type) && expr_type->basetype != SPIRType::Struct && expr_type->vecsize > result_ptr_type.vecsize) e += vector_swizzle(result_ptr_type.vecsize, 0); auto &expr = set(ops[1], std::move(e), ops[0], should_forward(ops[2])); expr.loaded_from = var->self; expr.need_transpose = meta.need_transpose; expr.access_chain = true; // Mark the result as being packed if necessary. if (meta.storage_is_packed) set_extended_decoration(ops[1], SPIRVCrossDecorationPhysicalTypePacked); if (meta.storage_physical_type != 0) set_extended_decoration(ops[1], SPIRVCrossDecorationPhysicalTypeID, meta.storage_physical_type); if (meta.storage_is_invariant) set_decoration(ops[1], DecorationInvariant); // Save the type we found in case the result is used in another access chain. set_extended_decoration(ops[1], SPIRVCrossDecorationTessIOOriginalInputTypeID, expr_type->self); // If we have some expression dependencies in our access chain, this access chain is technically a forwarded // temporary which could be subject to invalidation. // Need to assume we're forwarded while calling inherit_expression_depdendencies. forwarded_temporaries.insert(ops[1]); // The access chain itself is never forced to a temporary, but its dependencies might. suppressed_usage_tracking.insert(ops[1]); for (uint32_t i = 2; i < length; i++) { inherit_expression_dependencies(ops[1], ops[i]); add_implied_read_expression(expr, ops[i]); } // If we have no dependencies after all, i.e., all indices in the access chain are immutable temporaries, // we're not forwarded after all. if (expr.expression_dependencies.empty()) forwarded_temporaries.erase(ops[1]); return true; } // If this is the inner tessellation level, and we're tessellating triangles, // drop the last index. It isn't an array in this case, so we can't have an // array reference here. We need to make this ID a variable instead of an // expression so we don't try to dereference it as a variable pointer. // Don't do this if the index is a constant 1, though. We need to drop stores // to that one. auto *m = ir.find_meta(var ? var->self : ID(0)); if (get_execution_model() == ExecutionModelTessellationControl && var && m && m->decoration.builtin_type == BuiltInTessLevelInner && get_entry_point().flags.get(ExecutionModeTriangles)) { auto *c = maybe_get(ops[3]); if (c && c->scalar() == 1) return false; auto &dest_var = set(ops[1], *var); dest_var.basetype = ops[0]; ir.meta[ops[1]] = ir.meta[ops[2]]; inherit_expression_dependencies(ops[1], ops[2]); return true; } return false; } bool CompilerMSL::is_out_of_bounds_tessellation_level(uint32_t id_lhs) { if (!get_entry_point().flags.get(ExecutionModeTriangles)) return false; // In SPIR-V, TessLevelInner always has two elements and TessLevelOuter always has // four. This is true even if we are tessellating triangles. This allows clients // to use a single tessellation control shader with multiple tessellation evaluation // shaders. // In Metal, however, only the first element of TessLevelInner and the first three // of TessLevelOuter are accessible. This stems from how in Metal, the tessellation // levels must be stored to a dedicated buffer in a particular format that depends // on the patch type. Therefore, in Triangles mode, any access to the second // inner level or the fourth outer level must be dropped. const auto *e = maybe_get(id_lhs); if (!e || !e->access_chain) return false; BuiltIn builtin = BuiltIn(get_decoration(e->loaded_from, DecorationBuiltIn)); if (builtin != BuiltInTessLevelInner && builtin != BuiltInTessLevelOuter) return false; auto *c = maybe_get(e->implied_read_expressions[1]); if (!c) return false; return (builtin == BuiltInTessLevelInner && c->scalar() == 1) || (builtin == BuiltInTessLevelOuter && c->scalar() == 3); } void CompilerMSL::prepare_access_chain_for_scalar_access(std::string &expr, const SPIRType &type, spv::StorageClass storage, bool &is_packed) { // If there is any risk of writes happening with the access chain in question, // and there is a risk of concurrent write access to other components, // we must cast the access chain to a plain pointer to ensure we only access the exact scalars we expect. // The MSL compiler refuses to allow component-level access for any non-packed vector types. if (!is_packed && (storage == StorageClassStorageBuffer || storage == StorageClassWorkgroup)) { const char *addr_space = storage == StorageClassWorkgroup ? "threadgroup" : "device"; expr = join("((", addr_space, " ", type_to_glsl(type), "*)&", enclose_expression(expr), ")"); // Further indexing should happen with packed rules (array index, not swizzle). is_packed = true; } } bool CompilerMSL::access_chain_needs_stage_io_builtin_translation(uint32_t base) { auto *var = maybe_get_backing_variable(base); if (!var || !is_tessellation_shader()) return true; // We only need to rewrite builtin access chains when accessing flattened builtins like gl_ClipDistance_N. // Avoid overriding it back to just gl_ClipDistance. // This can only happen in scenarios where we cannot flatten/unflatten access chains, so, the only case // where this triggers is evaluation shader inputs. bool redirect_builtin = get_execution_model() == ExecutionModelTessellationEvaluation ? var->storage == StorageClassOutput : false; return redirect_builtin; } // Sets the interface member index for an access chain to a pull-model interpolant. void CompilerMSL::fix_up_interpolant_access_chain(const uint32_t *ops, uint32_t length) { auto *var = maybe_get_backing_variable(ops[2]); if (!var || !pull_model_inputs.count(var->self)) return; // Get the base index. uint32_t interface_index; auto &var_type = get_variable_data_type(*var); auto &result_type = get(ops[0]); auto *type = &var_type; if (has_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex)) { interface_index = get_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex); } else { // Assume an access chain into a struct variable. assert(var_type.basetype == SPIRType::Struct); auto &c = get(ops[3 + var_type.array.size()]); interface_index = get_extended_member_decoration(var->self, c.scalar(), SPIRVCrossDecorationInterfaceMemberIndex); } // Accumulate indices. We'll have to skip over the one for the struct, if present, because we already accounted // for that getting the base index. for (uint32_t i = 3; i < length; ++i) { if (is_vector(*type) && !is_array(*type) && is_scalar(result_type)) { // We don't want to combine the next index. Actually, we need to save it // so we know to apply a swizzle to the result of the interpolation. set_extended_decoration(ops[1], SPIRVCrossDecorationInterpolantComponentExpr, ops[i]); break; } auto *c = maybe_get(ops[i]); if (!c || c->specialization) SPIRV_CROSS_THROW("Trying to dynamically index into an array interface variable using pull-model " "interpolation. This is currently unsupported."); if (type->parent_type) type = &get(type->parent_type); else if (type->basetype == SPIRType::Struct) type = &get(type->member_types[c->scalar()]); if (!has_extended_decoration(ops[2], SPIRVCrossDecorationInterfaceMemberIndex) && i - 3 == var_type.array.size()) continue; interface_index += c->scalar(); } // Save this to the access chain itself so we can recover it later when calling an interpolation function. set_extended_decoration(ops[1], SPIRVCrossDecorationInterfaceMemberIndex, interface_index); } // Override for MSL-specific syntax instructions void CompilerMSL::emit_instruction(const Instruction &instruction) { #define MSL_BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op) #define MSL_BOP_CAST(op, type) \ emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode)) #define MSL_UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op) #define MSL_QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op) #define MSL_TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op) #define MSL_BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op) #define MSL_BFOP_CAST(op, type) \ emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode)) #define MSL_UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op) #define MSL_UNORD_BOP(op) emit_binary_unord_op(ops[0], ops[1], ops[2], ops[3], #op) auto ops = stream(instruction); auto opcode = static_cast(instruction.op); opcode = get_remapped_spirv_op(opcode); // If we need to do implicit bitcasts, make sure we do it with the correct type. uint32_t integer_width = get_integer_width_for_instruction(instruction); auto int_type = to_signed_basetype(integer_width); auto uint_type = to_unsigned_basetype(integer_width); switch (opcode) { case OpLoad: { uint32_t id = ops[1]; uint32_t ptr = ops[2]; if (is_tessellation_shader()) { if (!emit_tessellation_io_load(ops[0], id, ptr)) CompilerGLSL::emit_instruction(instruction); } else { // Sample mask input for Metal is not an array if (BuiltIn(get_decoration(ptr, DecorationBuiltIn)) == BuiltInSampleMask) set_decoration(id, DecorationBuiltIn, BuiltInSampleMask); CompilerGLSL::emit_instruction(instruction); } break; } // Comparisons case OpIEqual: MSL_BOP_CAST(==, int_type); break; case OpLogicalEqual: case OpFOrdEqual: MSL_BOP(==); break; case OpINotEqual: MSL_BOP_CAST(!=, int_type); break; case OpLogicalNotEqual: case OpFOrdNotEqual: // TODO: Should probably negate the == result here. // Typically OrdNotEqual comes from GLSL which itself does not really specify what // happens with NaN. // Consider fixing this if we run into real issues. MSL_BOP(!=); break; case OpUGreaterThan: MSL_BOP_CAST(>, uint_type); break; case OpSGreaterThan: MSL_BOP_CAST(>, int_type); break; case OpFOrdGreaterThan: MSL_BOP(>); break; case OpUGreaterThanEqual: MSL_BOP_CAST(>=, uint_type); break; case OpSGreaterThanEqual: MSL_BOP_CAST(>=, int_type); break; case OpFOrdGreaterThanEqual: MSL_BOP(>=); break; case OpULessThan: MSL_BOP_CAST(<, uint_type); break; case OpSLessThan: MSL_BOP_CAST(<, int_type); break; case OpFOrdLessThan: MSL_BOP(<); break; case OpULessThanEqual: MSL_BOP_CAST(<=, uint_type); break; case OpSLessThanEqual: MSL_BOP_CAST(<=, int_type); break; case OpFOrdLessThanEqual: MSL_BOP(<=); break; case OpFUnordEqual: MSL_UNORD_BOP(==); break; case OpFUnordNotEqual: // not equal in MSL generates une opcodes to begin with. // Since unordered not equal is how it works in C, just inherit that behavior. MSL_BOP(!=); break; case OpFUnordGreaterThan: MSL_UNORD_BOP(>); break; case OpFUnordGreaterThanEqual: MSL_UNORD_BOP(>=); break; case OpFUnordLessThan: MSL_UNORD_BOP(<); break; case OpFUnordLessThanEqual: MSL_UNORD_BOP(<=); break; // Derivatives case OpDPdx: case OpDPdxFine: case OpDPdxCoarse: MSL_UFOP(dfdx); register_control_dependent_expression(ops[1]); break; case OpDPdy: case OpDPdyFine: case OpDPdyCoarse: MSL_UFOP(dfdy); register_control_dependent_expression(ops[1]); break; case OpFwidth: case OpFwidthCoarse: case OpFwidthFine: MSL_UFOP(fwidth); register_control_dependent_expression(ops[1]); break; // Bitfield case OpBitFieldInsert: { emit_bitfield_insert_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], "insert_bits", SPIRType::UInt); break; } case OpBitFieldSExtract: { emit_trinary_func_op_bitextract(ops[0], ops[1], ops[2], ops[3], ops[4], "extract_bits", int_type, int_type, SPIRType::UInt, SPIRType::UInt); break; } case OpBitFieldUExtract: { emit_trinary_func_op_bitextract(ops[0], ops[1], ops[2], ops[3], ops[4], "extract_bits", uint_type, uint_type, SPIRType::UInt, SPIRType::UInt); break; } case OpBitReverse: // BitReverse does not have issues with sign since result type must match input type. MSL_UFOP(reverse_bits); break; case OpBitCount: { auto basetype = expression_type(ops[2]).basetype; emit_unary_func_op_cast(ops[0], ops[1], ops[2], "popcount", basetype, basetype); break; } case OpFRem: MSL_BFOP(fmod); break; case OpFMul: if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction)) MSL_BFOP(spvFMul); else MSL_BOP(*); break; case OpFAdd: if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction)) MSL_BFOP(spvFAdd); else MSL_BOP(+); break; case OpFSub: if (msl_options.invariant_float_math || has_decoration(ops[1], DecorationNoContraction)) MSL_BFOP(spvFSub); else MSL_BOP(-); break; // Atomics case OpAtomicExchange: { uint32_t result_type = ops[0]; uint32_t id = ops[1]; uint32_t ptr = ops[2]; uint32_t mem_sem = ops[4]; uint32_t val = ops[5]; emit_atomic_func_op(result_type, id, "atomic_exchange_explicit", opcode, mem_sem, mem_sem, false, ptr, val); break; } case OpAtomicCompareExchange: { uint32_t result_type = ops[0]; uint32_t id = ops[1]; uint32_t ptr = ops[2]; uint32_t mem_sem_pass = ops[4]; uint32_t mem_sem_fail = ops[5]; uint32_t val = ops[6]; uint32_t comp = ops[7]; emit_atomic_func_op(result_type, id, "atomic_compare_exchange_weak_explicit", opcode, mem_sem_pass, mem_sem_fail, true, ptr, comp, true, false, val); break; } case OpAtomicCompareExchangeWeak: SPIRV_CROSS_THROW("OpAtomicCompareExchangeWeak is only supported in kernel profile."); case OpAtomicLoad: { uint32_t result_type = ops[0]; uint32_t id = ops[1]; uint32_t ptr = ops[2]; uint32_t mem_sem = ops[4]; emit_atomic_func_op(result_type, id, "atomic_load_explicit", opcode, mem_sem, mem_sem, false, ptr, 0); break; } case OpAtomicStore: { uint32_t result_type = expression_type(ops[0]).self; uint32_t id = ops[0]; uint32_t ptr = ops[0]; uint32_t mem_sem = ops[2]; uint32_t val = ops[3]; emit_atomic_func_op(result_type, id, "atomic_store_explicit", opcode, mem_sem, mem_sem, false, ptr, val); break; } #define MSL_AFMO_IMPL(op, valsrc, valconst) \ do \ { \ uint32_t result_type = ops[0]; \ uint32_t id = ops[1]; \ uint32_t ptr = ops[2]; \ uint32_t mem_sem = ops[4]; \ uint32_t val = valsrc; \ emit_atomic_func_op(result_type, id, "atomic_fetch_" #op "_explicit", opcode, \ mem_sem, mem_sem, false, ptr, val, \ false, valconst); \ } while (false) #define MSL_AFMO(op) MSL_AFMO_IMPL(op, ops[5], false) #define MSL_AFMIO(op) MSL_AFMO_IMPL(op, 1, true) case OpAtomicIIncrement: MSL_AFMIO(add); break; case OpAtomicIDecrement: MSL_AFMIO(sub); break; case OpAtomicIAdd: MSL_AFMO(add); break; case OpAtomicISub: MSL_AFMO(sub); break; case OpAtomicSMin: case OpAtomicUMin: MSL_AFMO(min); break; case OpAtomicSMax: case OpAtomicUMax: MSL_AFMO(max); break; case OpAtomicAnd: MSL_AFMO(and); break; case OpAtomicOr: MSL_AFMO(or); break; case OpAtomicXor: MSL_AFMO(xor); break; // Images // Reads == Fetches in Metal case OpImageRead: { // Mark that this shader reads from this image uint32_t img_id = ops[2]; auto &type = expression_type(img_id); if (type.image.dim != DimSubpassData) { auto *p_var = maybe_get_backing_variable(img_id); if (p_var && has_decoration(p_var->self, DecorationNonReadable)) { unset_decoration(p_var->self, DecorationNonReadable); force_recompile(); } } emit_texture_op(instruction, false); break; } // Emulate texture2D atomic operations case OpImageTexelPointer: { // When using the pointer, we need to know which variable it is actually loaded from. auto *var = maybe_get_backing_variable(ops[2]); if (var && atomic_image_vars.count(var->self)) { uint32_t result_type = ops[0]; uint32_t id = ops[1]; std::string coord = to_expression(ops[3]); auto &type = expression_type(ops[2]); if (type.image.dim == Dim2D) { coord = join("spvImage2DAtomicCoord(", coord, ", ", to_expression(ops[2]), ")"); } auto &e = set(id, join(to_expression(ops[2]), "_atomic[", coord, "]"), result_type, true); e.loaded_from = var ? var->self : ID(0); inherit_expression_dependencies(id, ops[3]); } else { uint32_t result_type = ops[0]; uint32_t id = ops[1]; auto &e = set(id, join(to_expression(ops[2]), ", ", to_expression(ops[3])), result_type, true); // When using the pointer, we need to know which variable it is actually loaded from. e.loaded_from = var ? var->self : ID(0); inherit_expression_dependencies(id, ops[3]); } break; } case OpImageWrite: { uint32_t img_id = ops[0]; uint32_t coord_id = ops[1]; uint32_t texel_id = ops[2]; const uint32_t *opt = &ops[3]; uint32_t length = instruction.length - 3; // Bypass pointers because we need the real image struct auto &type = expression_type(img_id); auto &img_type = get(type.self); // Ensure this image has been marked as being written to and force a // recommpile so that the image type output will include write access auto *p_var = maybe_get_backing_variable(img_id); if (p_var && has_decoration(p_var->self, DecorationNonWritable)) { unset_decoration(p_var->self, DecorationNonWritable); force_recompile(); } bool forward = false; uint32_t bias = 0; uint32_t lod = 0; uint32_t flags = 0; if (length) { flags = *opt++; length--; } auto test = [&](uint32_t &v, uint32_t flag) { if (length && (flags & flag)) { v = *opt++; length--; } }; test(bias, ImageOperandsBiasMask); test(lod, ImageOperandsLodMask); auto &texel_type = expression_type(texel_id); auto store_type = texel_type; store_type.vecsize = 4; TextureFunctionArguments args = {}; args.base.img = img_id; args.base.imgtype = &img_type; args.base.is_fetch = true; args.coord = coord_id; args.lod = lod; statement(join(to_expression(img_id), ".write(", remap_swizzle(store_type, texel_type.vecsize, to_expression(texel_id)), ", ", CompilerMSL::to_function_args(args, &forward), ");")); if (p_var && variable_storage_is_aliased(*p_var)) flush_all_aliased_variables(); break; } case OpImageQuerySize: case OpImageQuerySizeLod: { uint32_t rslt_type_id = ops[0]; auto &rslt_type = get(rslt_type_id); uint32_t id = ops[1]; uint32_t img_id = ops[2]; string img_exp = to_expression(img_id); auto &img_type = expression_type(img_id); Dim img_dim = img_type.image.dim; bool img_is_array = img_type.image.arrayed; if (img_type.basetype != SPIRType::Image) SPIRV_CROSS_THROW("Invalid type for OpImageQuerySize."); string lod; if (opcode == OpImageQuerySizeLod) { // LOD index defaults to zero, so don't bother outputing level zero index string decl_lod = to_expression(ops[3]); if (decl_lod != "0") lod = decl_lod; } string expr = type_to_glsl(rslt_type) + "("; expr += img_exp + ".get_width(" + lod + ")"; if (img_dim == Dim2D || img_dim == DimCube || img_dim == Dim3D) expr += ", " + img_exp + ".get_height(" + lod + ")"; if (img_dim == Dim3D) expr += ", " + img_exp + ".get_depth(" + lod + ")"; if (img_is_array) { expr += ", " + img_exp + ".get_array_size()"; if (img_dim == DimCube && msl_options.emulate_cube_array) expr += " / 6"; } expr += ")"; emit_op(rslt_type_id, id, expr, should_forward(img_id)); break; } case OpImageQueryLod: { if (!msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("ImageQueryLod is only supported on MSL 2.2 and up."); uint32_t result_type = ops[0]; uint32_t id = ops[1]; uint32_t image_id = ops[2]; uint32_t coord_id = ops[3]; emit_uninitialized_temporary_expression(result_type, id); auto sampler_expr = to_sampler_expression(image_id); auto *combined = maybe_get(image_id); auto image_expr = combined ? to_expression(combined->image) : to_expression(image_id); // TODO: It is unclear if calculcate_clamped_lod also conditionally rounds // the reported LOD based on the sampler. NEAREST miplevel should // round the LOD, but LINEAR miplevel should not round. // Let's hope this does not become an issue ... statement(to_expression(id), ".x = ", image_expr, ".calculate_clamped_lod(", sampler_expr, ", ", to_expression(coord_id), ");"); statement(to_expression(id), ".y = ", image_expr, ".calculate_unclamped_lod(", sampler_expr, ", ", to_expression(coord_id), ");"); register_control_dependent_expression(id); break; } #define MSL_ImgQry(qrytype) \ do \ { \ uint32_t rslt_type_id = ops[0]; \ auto &rslt_type = get(rslt_type_id); \ uint32_t id = ops[1]; \ uint32_t img_id = ops[2]; \ string img_exp = to_expression(img_id); \ string expr = type_to_glsl(rslt_type) + "(" + img_exp + ".get_num_" #qrytype "())"; \ emit_op(rslt_type_id, id, expr, should_forward(img_id)); \ } while (false) case OpImageQueryLevels: MSL_ImgQry(mip_levels); break; case OpImageQuerySamples: MSL_ImgQry(samples); break; case OpImage: { uint32_t result_type = ops[0]; uint32_t id = ops[1]; auto *combined = maybe_get(ops[2]); if (combined) { auto &e = emit_op(result_type, id, to_expression(combined->image), true, true); auto *var = maybe_get_backing_variable(combined->image); if (var) e.loaded_from = var->self; } else { auto *var = maybe_get_backing_variable(ops[2]); SPIRExpression *e; if (var && has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler)) e = &emit_op(result_type, id, join(to_expression(ops[2]), ".plane0"), true, true); else e = &emit_op(result_type, id, to_expression(ops[2]), true, true); if (var) e->loaded_from = var->self; } break; } // Casting case OpQuantizeToF16: { uint32_t result_type = ops[0]; uint32_t id = ops[1]; uint32_t arg = ops[2]; string exp = join("spvQuantizeToF16(", to_expression(arg), ")"); emit_op(result_type, id, exp, should_forward(arg)); break; } case OpInBoundsAccessChain: case OpAccessChain: case OpPtrAccessChain: if (is_tessellation_shader()) { if (!emit_tessellation_access_chain(ops, instruction.length)) CompilerGLSL::emit_instruction(instruction); } else CompilerGLSL::emit_instruction(instruction); fix_up_interpolant_access_chain(ops, instruction.length); break; case OpStore: if (is_out_of_bounds_tessellation_level(ops[0])) break; if (maybe_emit_array_assignment(ops[0], ops[1])) break; CompilerGLSL::emit_instruction(instruction); break; // Compute barriers case OpMemoryBarrier: emit_barrier(0, ops[0], ops[1]); break; case OpControlBarrier: // In GLSL a memory barrier is often followed by a control barrier. // But in MSL, memory barriers are also control barriers, so don't // emit a simple control barrier if a memory barrier has just been emitted. if (previous_instruction_opcode != OpMemoryBarrier) emit_barrier(ops[0], ops[1], ops[2]); break; case OpOuterProduct: { uint32_t result_type = ops[0]; uint32_t id = ops[1]; uint32_t a = ops[2]; uint32_t b = ops[3]; auto &type = get(result_type); string expr = type_to_glsl_constructor(type); expr += "("; for (uint32_t col = 0; col < type.columns; col++) { expr += to_enclosed_unpacked_expression(a); expr += " * "; expr += to_extract_component_expression(b, col); if (col + 1 < type.columns) expr += ", "; } expr += ")"; emit_op(result_type, id, expr, should_forward(a) && should_forward(b)); inherit_expression_dependencies(id, a); inherit_expression_dependencies(id, b); break; } case OpVectorTimesMatrix: case OpMatrixTimesVector: { if (!msl_options.invariant_float_math && !has_decoration(ops[1], DecorationNoContraction)) { CompilerGLSL::emit_instruction(instruction); break; } // If the matrix needs transpose, just flip the multiply order. auto *e = maybe_get(ops[opcode == OpMatrixTimesVector ? 2 : 3]); if (e && e->need_transpose) { e->need_transpose = false; string expr; if (opcode == OpMatrixTimesVector) { expr = join("spvFMulVectorMatrix(", to_enclosed_unpacked_expression(ops[3]), ", ", to_unpacked_row_major_matrix_expression(ops[2]), ")"); } else { expr = join("spvFMulMatrixVector(", to_unpacked_row_major_matrix_expression(ops[3]), ", ", to_enclosed_unpacked_expression(ops[2]), ")"); } bool forward = should_forward(ops[2]) && should_forward(ops[3]); emit_op(ops[0], ops[1], expr, forward); e->need_transpose = true; inherit_expression_dependencies(ops[1], ops[2]); inherit_expression_dependencies(ops[1], ops[3]); } else { if (opcode == OpMatrixTimesVector) MSL_BFOP(spvFMulMatrixVector); else MSL_BFOP(spvFMulVectorMatrix); } break; } case OpMatrixTimesMatrix: { if (!msl_options.invariant_float_math && !has_decoration(ops[1], DecorationNoContraction)) { CompilerGLSL::emit_instruction(instruction); break; } auto *a = maybe_get(ops[2]); auto *b = maybe_get(ops[3]); // If both matrices need transpose, we can multiply in flipped order and tag the expression as transposed. // a^T * b^T = (b * a)^T. if (a && b && a->need_transpose && b->need_transpose) { a->need_transpose = false; b->need_transpose = false; auto expr = join("spvFMulMatrixMatrix(", enclose_expression(to_unpacked_row_major_matrix_expression(ops[3])), ", ", enclose_expression(to_unpacked_row_major_matrix_expression(ops[2])), ")"); bool forward = should_forward(ops[2]) && should_forward(ops[3]); auto &e = emit_op(ops[0], ops[1], expr, forward); e.need_transpose = true; a->need_transpose = true; b->need_transpose = true; inherit_expression_dependencies(ops[1], ops[2]); inherit_expression_dependencies(ops[1], ops[3]); } else MSL_BFOP(spvFMulMatrixMatrix); break; } case OpIAddCarry: case OpISubBorrow: { uint32_t result_type = ops[0]; uint32_t result_id = ops[1]; uint32_t op0 = ops[2]; uint32_t op1 = ops[3]; auto &type = get(result_type); emit_uninitialized_temporary_expression(result_type, result_id); auto &res_type = get(type.member_types[1]); if (opcode == OpIAddCarry) { statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_unpacked_expression(op0), " + ", to_enclosed_unpacked_expression(op1), ";"); statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type), "(1), ", type_to_glsl(res_type), "(0), ", to_unpacked_expression(result_id), ".", to_member_name(type, 0), " >= max(", to_unpacked_expression(op0), ", ", to_unpacked_expression(op1), "));"); } else { statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_unpacked_expression(op0), " - ", to_enclosed_unpacked_expression(op1), ";"); statement(to_expression(result_id), ".", to_member_name(type, 1), " = select(", type_to_glsl(res_type), "(1), ", type_to_glsl(res_type), "(0), ", to_enclosed_unpacked_expression(op0), " >= ", to_enclosed_unpacked_expression(op1), ");"); } break; } case OpUMulExtended: case OpSMulExtended: { uint32_t result_type = ops[0]; uint32_t result_id = ops[1]; uint32_t op0 = ops[2]; uint32_t op1 = ops[3]; auto &type = get(result_type); emit_uninitialized_temporary_expression(result_type, result_id); statement(to_expression(result_id), ".", to_member_name(type, 0), " = ", to_enclosed_unpacked_expression(op0), " * ", to_enclosed_unpacked_expression(op1), ";"); statement(to_expression(result_id), ".", to_member_name(type, 1), " = mulhi(", to_unpacked_expression(op0), ", ", to_unpacked_expression(op1), ");"); break; } case OpArrayLength: { auto &type = expression_type(ops[2]); uint32_t offset = type_struct_member_offset(type, ops[3]); uint32_t stride = type_struct_member_array_stride(type, ops[3]); auto expr = join("(", to_buffer_size_expression(ops[2]), " - ", offset, ") / ", stride); emit_op(ops[0], ops[1], expr, true); break; } // SPV_INTEL_shader_integer_functions2 case OpUCountLeadingZerosINTEL: MSL_UFOP(clz); break; case OpUCountTrailingZerosINTEL: MSL_UFOP(ctz); break; case OpAbsISubINTEL: case OpAbsUSubINTEL: MSL_BFOP(absdiff); break; case OpIAddSatINTEL: case OpUAddSatINTEL: MSL_BFOP(addsat); break; case OpIAverageINTEL: case OpUAverageINTEL: MSL_BFOP(hadd); break; case OpIAverageRoundedINTEL: case OpUAverageRoundedINTEL: MSL_BFOP(rhadd); break; case OpISubSatINTEL: case OpUSubSatINTEL: MSL_BFOP(subsat); break; case OpIMul32x16INTEL: { uint32_t result_type = ops[0]; uint32_t id = ops[1]; uint32_t a = ops[2], b = ops[3]; bool forward = should_forward(a) && should_forward(b); emit_op(result_type, id, join("int(short(", to_unpacked_expression(a), ")) * int(short(", to_unpacked_expression(b), "))"), forward); inherit_expression_dependencies(id, a); inherit_expression_dependencies(id, b); break; } case OpUMul32x16INTEL: { uint32_t result_type = ops[0]; uint32_t id = ops[1]; uint32_t a = ops[2], b = ops[3]; bool forward = should_forward(a) && should_forward(b); emit_op(result_type, id, join("uint(ushort(", to_unpacked_expression(a), ")) * uint(ushort(", to_unpacked_expression(b), "))"), forward); inherit_expression_dependencies(id, a); inherit_expression_dependencies(id, b); break; } // SPV_EXT_demote_to_helper_invocation case OpDemoteToHelperInvocationEXT: if (!msl_options.supports_msl_version(2, 3)) SPIRV_CROSS_THROW("discard_fragment() does not formally have demote semantics until MSL 2.3."); CompilerGLSL::emit_instruction(instruction); break; case OpIsHelperInvocationEXT: if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3)) SPIRV_CROSS_THROW("simd_is_helper_thread() requires MSL 2.3 on iOS."); else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1)) SPIRV_CROSS_THROW("simd_is_helper_thread() requires MSL 2.1 on macOS."); emit_op(ops[0], ops[1], "simd_is_helper_thread()", false); break; case OpBeginInvocationInterlockEXT: case OpEndInvocationInterlockEXT: if (!msl_options.supports_msl_version(2, 0)) SPIRV_CROSS_THROW("Raster order groups require MSL 2.0."); break; // Nothing to do in the body case OpConvertUToAccelerationStructureKHR: SPIRV_CROSS_THROW("ConvertUToAccelerationStructure is not supported in MSL."); case OpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffsetKHR: SPIRV_CROSS_THROW("BindingTableRecordOffset is not supported in MSL."); case OpRayQueryInitializeKHR: { flush_variable_declaration(ops[0]); statement(to_expression(ops[0]), ".reset(", "ray(", to_expression(ops[4]), ", ", to_expression(ops[6]), ", ", to_expression(ops[5]), ", ", to_expression(ops[7]), "), ", to_expression(ops[1]), ", intersection_params());"); break; } case OpRayQueryProceedKHR: { flush_variable_declaration(ops[0]); emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".next()"), false); break; } #define MSL_RAY_QUERY_IS_CANDIDATE get(ops[3]).scalar_i32() == 0 #define MSL_RAY_QUERY_GET_OP(op, msl_op) \ case OpRayQueryGet##op##KHR: \ flush_variable_declaration(ops[2]); \ emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_" #msl_op "()"), false); \ break #define MSL_RAY_QUERY_OP_INNER2(op, msl_prefix, msl_op) \ case OpRayQueryGet##op##KHR: \ flush_variable_declaration(ops[2]); \ if (MSL_RAY_QUERY_IS_CANDIDATE) \ emit_op(ops[0], ops[1], join(to_expression(ops[2]), #msl_prefix "_candidate_" #msl_op "()"), false); \ else \ emit_op(ops[0], ops[1], join(to_expression(ops[2]), #msl_prefix "_committed_" #msl_op "()"), false); \ break #define MSL_RAY_QUERY_GET_OP2(op, msl_op) MSL_RAY_QUERY_OP_INNER2(op, .get, msl_op) #define MSL_RAY_QUERY_IS_OP2(op, msl_op) MSL_RAY_QUERY_OP_INNER2(op, .is, msl_op) MSL_RAY_QUERY_GET_OP(RayTMin, ray_min_distance); MSL_RAY_QUERY_GET_OP(WorldRayOrigin, world_space_ray_direction); MSL_RAY_QUERY_GET_OP(WorldRayDirection, world_space_ray_origin); MSL_RAY_QUERY_GET_OP2(IntersectionInstanceId, instance_id); MSL_RAY_QUERY_GET_OP2(IntersectionInstanceCustomIndex, user_instance_id); MSL_RAY_QUERY_GET_OP2(IntersectionBarycentrics, triangle_barycentric_coord); MSL_RAY_QUERY_GET_OP2(IntersectionPrimitiveIndex, primitive_id); MSL_RAY_QUERY_GET_OP2(IntersectionGeometryIndex, geometry_id); MSL_RAY_QUERY_GET_OP2(IntersectionObjectRayOrigin, ray_origin); MSL_RAY_QUERY_GET_OP2(IntersectionObjectRayDirection, ray_direction); MSL_RAY_QUERY_GET_OP2(IntersectionObjectToWorld, object_to_world_transform); MSL_RAY_QUERY_GET_OP2(IntersectionWorldToObject, world_to_object_transform); MSL_RAY_QUERY_IS_OP2(IntersectionFrontFace, triangle_front_facing); case OpRayQueryGetIntersectionTypeKHR: flush_variable_declaration(ops[2]); if (MSL_RAY_QUERY_IS_CANDIDATE) emit_op(ops[0], ops[1], join("uint(", to_expression(ops[2]), ".get_candidate_intersection_type()) - 1"), false); else emit_op(ops[0], ops[1], join("uint(", to_expression(ops[2]), ".get_committed_intersection_type())"), false); break; case OpRayQueryGetIntersectionTKHR: flush_variable_declaration(ops[2]); if (MSL_RAY_QUERY_IS_CANDIDATE) emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_candidate_triangle_distance()"), false); else emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".get_committed_distance()"), false); break; case OpRayQueryGetIntersectionCandidateAABBOpaqueKHR: { flush_variable_declaration(ops[0]); emit_op(ops[0], ops[1], join(to_expression(ops[2]), ".is_candidate_non_opaque_bounding_box()"), false); break; } case OpRayQueryConfirmIntersectionKHR: flush_variable_declaration(ops[0]); statement(to_expression(ops[0]), ".commit_triangle_intersection();"); break; case OpRayQueryGenerateIntersectionKHR: flush_variable_declaration(ops[0]); statement(to_expression(ops[0]), ".commit_bounding_box_intersection(", to_expression(ops[1]), ");"); break; case OpRayQueryTerminateKHR: flush_variable_declaration(ops[0]); statement(to_expression(ops[0]), ".abort();"); break; #undef MSL_RAY_QUERY_GET_OP #undef MSL_RAY_QUERY_IS_CANDIDATE #undef MSL_RAY_QUERY_IS_OP2 #undef MSL_RAY_QUERY_GET_OP2 #undef MSL_RAY_QUERY_OP_INNER2 default: CompilerGLSL::emit_instruction(instruction); break; } previous_instruction_opcode = opcode; } void CompilerMSL::emit_texture_op(const Instruction &i, bool sparse) { if (sparse) SPIRV_CROSS_THROW("Sparse feedback not yet supported in MSL."); if (msl_options.use_framebuffer_fetch_subpasses) { auto *ops = stream(i); uint32_t result_type_id = ops[0]; uint32_t id = ops[1]; uint32_t img = ops[2]; auto &type = expression_type(img); auto &imgtype = get(type.self); // Use Metal's native frame-buffer fetch API for subpass inputs. if (imgtype.image.dim == DimSubpassData) { // Subpass inputs cannot be invalidated, // so just forward the expression directly. string expr = to_expression(img); emit_op(result_type_id, id, expr, true); return; } } // Fallback to default implementation CompilerGLSL::emit_texture_op(i, sparse); } void CompilerMSL::emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uint32_t id_mem_sem) { if (get_execution_model() != ExecutionModelGLCompute && get_execution_model() != ExecutionModelTessellationControl) return; uint32_t exe_scope = id_exe_scope ? evaluate_constant_u32(id_exe_scope) : uint32_t(ScopeInvocation); uint32_t mem_scope = id_mem_scope ? evaluate_constant_u32(id_mem_scope) : uint32_t(ScopeInvocation); // Use the wider of the two scopes (smaller value) exe_scope = min(exe_scope, mem_scope); if (msl_options.emulate_subgroups && exe_scope >= ScopeSubgroup && !id_mem_sem) // In this case, we assume a "subgroup" size of 1. The barrier, then, is a noop. return; string bar_stmt; if ((msl_options.is_ios() && msl_options.supports_msl_version(1, 2)) || msl_options.supports_msl_version(2)) bar_stmt = exe_scope < ScopeSubgroup ? "threadgroup_barrier" : "simdgroup_barrier"; else bar_stmt = "threadgroup_barrier"; bar_stmt += "("; uint32_t mem_sem = id_mem_sem ? evaluate_constant_u32(id_mem_sem) : uint32_t(MemorySemanticsMaskNone); // Use the | operator to combine flags if we can. if (msl_options.supports_msl_version(1, 2)) { string mem_flags = ""; // For tesc shaders, this also affects objects in the Output storage class. // Since in Metal, these are placed in a device buffer, we have to sync device memory here. if (get_execution_model() == ExecutionModelTessellationControl || (mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask))) mem_flags += "mem_flags::mem_device"; // Fix tessellation patch function processing if (get_execution_model() == ExecutionModelTessellationControl || (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask))) { if (!mem_flags.empty()) mem_flags += " | "; mem_flags += "mem_flags::mem_threadgroup"; } if (mem_sem & MemorySemanticsImageMemoryMask) { if (!mem_flags.empty()) mem_flags += " | "; mem_flags += "mem_flags::mem_texture"; } if (mem_flags.empty()) mem_flags = "mem_flags::mem_none"; bar_stmt += mem_flags; } else { if ((mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask)) && (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask))) bar_stmt += "mem_flags::mem_device_and_threadgroup"; else if (mem_sem & (MemorySemanticsUniformMemoryMask | MemorySemanticsCrossWorkgroupMemoryMask)) bar_stmt += "mem_flags::mem_device"; else if (mem_sem & (MemorySemanticsSubgroupMemoryMask | MemorySemanticsWorkgroupMemoryMask)) bar_stmt += "mem_flags::mem_threadgroup"; else if (mem_sem & MemorySemanticsImageMemoryMask) bar_stmt += "mem_flags::mem_texture"; else bar_stmt += "mem_flags::mem_none"; } bar_stmt += ");"; statement(bar_stmt); assert(current_emitting_block); flush_control_dependent_expressions(current_emitting_block->self); flush_all_active_variables(); } static bool storage_class_array_is_thread(StorageClass storage) { switch (storage) { case StorageClassInput: case StorageClassOutput: case StorageClassGeneric: case StorageClassFunction: case StorageClassPrivate: return true; default: return false; } } void CompilerMSL::emit_array_copy(const string &lhs, uint32_t lhs_id, uint32_t rhs_id, StorageClass lhs_storage, StorageClass rhs_storage) { // Allow Metal to use the array template to make arrays a value type. // This, however, cannot be used for threadgroup address specifiers, so consider the custom array copy as fallback. bool lhs_is_thread_storage = storage_class_array_is_thread(lhs_storage); bool rhs_is_thread_storage = storage_class_array_is_thread(rhs_storage); bool lhs_is_array_template = lhs_is_thread_storage; bool rhs_is_array_template = rhs_is_thread_storage; // Special considerations for stage IO variables. // If the variable is actually backed by non-user visible device storage, we use array templates for those. // // Another special consideration is given to thread local variables which happen to have Offset decorations // applied to them. Block-like types do not use array templates, so we need to force POD path if we detect // these scenarios. This check isn't perfect since it would be technically possible to mix and match these things, // and for a fully correct solution we might have to track array template state through access chains as well, // but for all reasonable use cases, this should suffice. // This special case should also only apply to Function/Private storage classes. // We should not check backing variable for temporaries. auto *lhs_var = maybe_get_backing_variable(lhs_id); if (lhs_var && lhs_storage == StorageClassStorageBuffer && storage_class_array_is_thread(lhs_var->storage)) lhs_is_array_template = true; else if (lhs_var && (lhs_storage == StorageClassFunction || lhs_storage == StorageClassPrivate) && type_is_block_like(get(lhs_var->basetype))) lhs_is_array_template = false; auto *rhs_var = maybe_get_backing_variable(rhs_id); if (rhs_var && rhs_storage == StorageClassStorageBuffer && storage_class_array_is_thread(rhs_var->storage)) rhs_is_array_template = true; else if (rhs_var && (rhs_storage == StorageClassFunction || rhs_storage == StorageClassPrivate) && type_is_block_like(get(rhs_var->basetype))) rhs_is_array_template = false; // If threadgroup storage qualifiers are *not* used: // Avoid spvCopy* wrapper functions; Otherwise, spvUnsafeArray<> template cannot be used with that storage qualifier. if (lhs_is_array_template && rhs_is_array_template && !using_builtin_array()) { statement(lhs, " = ", to_expression(rhs_id), ";"); } else { // Assignment from an array initializer is fine. auto &type = expression_type(rhs_id); auto *var = maybe_get_backing_variable(rhs_id); // Unfortunately, we cannot template on address space in MSL, // so explicit address space redirection it is ... bool is_constant = false; if (ir.ids[rhs_id].get_type() == TypeConstant) { is_constant = true; } else if (var && var->remapped_variable && var->statically_assigned && ir.ids[var->static_expression].get_type() == TypeConstant) { is_constant = true; } else if (rhs_storage == StorageClassUniform || rhs_storage == StorageClassUniformConstant) { is_constant = true; } // For the case where we have OpLoad triggering an array copy, // we cannot easily detect this case ahead of time since it's // context dependent. We might have to force a recompile here // if this is the only use of array copies in our shader. if (type.array.size() > 1) { if (type.array.size() > kArrayCopyMultidimMax) SPIRV_CROSS_THROW("Cannot support this many dimensions for arrays of arrays."); auto func = static_cast(SPVFuncImplArrayCopyMultidimBase + type.array.size()); add_spv_func_and_recompile(func); } else add_spv_func_and_recompile(SPVFuncImplArrayCopy); const char *tag = nullptr; if (lhs_is_thread_storage && is_constant) tag = "FromConstantToStack"; else if (lhs_storage == StorageClassWorkgroup && is_constant) tag = "FromConstantToThreadGroup"; else if (lhs_is_thread_storage && rhs_is_thread_storage) tag = "FromStackToStack"; else if (lhs_storage == StorageClassWorkgroup && rhs_is_thread_storage) tag = "FromStackToThreadGroup"; else if (lhs_is_thread_storage && rhs_storage == StorageClassWorkgroup) tag = "FromThreadGroupToStack"; else if (lhs_storage == StorageClassWorkgroup && rhs_storage == StorageClassWorkgroup) tag = "FromThreadGroupToThreadGroup"; else if (lhs_storage == StorageClassStorageBuffer && rhs_storage == StorageClassStorageBuffer) tag = "FromDeviceToDevice"; else if (lhs_storage == StorageClassStorageBuffer && is_constant) tag = "FromConstantToDevice"; else if (lhs_storage == StorageClassStorageBuffer && rhs_storage == StorageClassWorkgroup) tag = "FromThreadGroupToDevice"; else if (lhs_storage == StorageClassStorageBuffer && rhs_is_thread_storage) tag = "FromStackToDevice"; else if (lhs_storage == StorageClassWorkgroup && rhs_storage == StorageClassStorageBuffer) tag = "FromDeviceToThreadGroup"; else if (lhs_is_thread_storage && rhs_storage == StorageClassStorageBuffer) tag = "FromDeviceToStack"; else SPIRV_CROSS_THROW("Unknown storage class used for copying arrays."); // Pass internal array of spvUnsafeArray<> into wrapper functions if (lhs_is_array_template && rhs_is_array_template && !msl_options.force_native_arrays) statement("spvArrayCopy", tag, type.array.size(), "(", lhs, ".elements, ", to_expression(rhs_id), ".elements);"); if (lhs_is_array_template && !msl_options.force_native_arrays) statement("spvArrayCopy", tag, type.array.size(), "(", lhs, ".elements, ", to_expression(rhs_id), ");"); else if (rhs_is_array_template && !msl_options.force_native_arrays) statement("spvArrayCopy", tag, type.array.size(), "(", lhs, ", ", to_expression(rhs_id), ".elements);"); else statement("spvArrayCopy", tag, type.array.size(), "(", lhs, ", ", to_expression(rhs_id), ");"); } } uint32_t CompilerMSL::get_physical_tess_level_array_size(spv::BuiltIn builtin) const { if (get_execution_mode_bitset().get(ExecutionModeTriangles)) return builtin == BuiltInTessLevelInner ? 1 : 3; else return builtin == BuiltInTessLevelInner ? 2 : 4; } // Since MSL does not allow arrays to be copied via simple variable assignment, // if the LHS and RHS represent an assignment of an entire array, it must be // implemented by calling an array copy function. // Returns whether the struct assignment was emitted. bool CompilerMSL::maybe_emit_array_assignment(uint32_t id_lhs, uint32_t id_rhs) { // We only care about assignments of an entire array auto &type = expression_type(id_rhs); if (type.array.size() == 0) return false; auto *var = maybe_get(id_lhs); // Is this a remapped, static constant? Don't do anything. if (var && var->remapped_variable && var->statically_assigned) return true; if (ir.ids[id_rhs].get_type() == TypeConstant && var && var->deferred_declaration) { // Special case, if we end up declaring a variable when assigning the constant array, // we can avoid the copy by directly assigning the constant expression. // This is likely necessary to be able to use a variable as a true look-up table, as it is unlikely // the compiler will be able to optimize the spvArrayCopy() into a constant LUT. // After a variable has been declared, we can no longer assign constant arrays in MSL unfortunately. statement(to_expression(id_lhs), " = ", constant_expression(get(id_rhs)), ";"); return true; } if (get_execution_model() == ExecutionModelTessellationControl && has_decoration(id_lhs, DecorationBuiltIn)) { auto builtin = BuiltIn(get_decoration(id_lhs, DecorationBuiltIn)); // Need to manually unroll the array store. if (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter) { uint32_t array_size = get_physical_tess_level_array_size(builtin); if (array_size == 1) statement(to_expression(id_lhs), " = half(", to_expression(id_rhs), "[0]);"); else { for (uint32_t i = 0; i < array_size; i++) statement(to_expression(id_lhs), "[", i, "] = half(", to_expression(id_rhs), "[", i, "]);"); } return true; } } // Ensure the LHS variable has been declared auto *p_v_lhs = maybe_get_backing_variable(id_lhs); if (p_v_lhs) flush_variable_declaration(p_v_lhs->self); auto lhs_storage = get_expression_effective_storage_class(id_lhs); auto rhs_storage = get_expression_effective_storage_class(id_rhs); emit_array_copy(to_expression(id_lhs), id_lhs, id_rhs, lhs_storage, rhs_storage); register_write(id_lhs); return true; } // Emits one of the atomic functions. In MSL, the atomic functions operate on pointers void CompilerMSL::emit_atomic_func_op(uint32_t result_type, uint32_t result_id, const char *op, Op opcode, uint32_t mem_order_1, uint32_t mem_order_2, bool has_mem_order_2, uint32_t obj, uint32_t op1, bool op1_is_pointer, bool op1_is_literal, uint32_t op2) { string exp = string(op) + "("; auto &type = get_pointee_type(expression_type(obj)); auto expected_type = type.basetype; if (opcode == OpAtomicUMax || opcode == OpAtomicUMin) expected_type = to_unsigned_basetype(type.width); else if (opcode == OpAtomicSMax || opcode == OpAtomicSMin) expected_type = to_signed_basetype(type.width); auto remapped_type = type; remapped_type.basetype = expected_type; exp += "("; auto *var = maybe_get_backing_variable(obj); if (!var) SPIRV_CROSS_THROW("No backing variable for atomic operation."); // Emulate texture2D atomic operations const auto &res_type = get(var->basetype); if (res_type.storage == StorageClassUniformConstant && res_type.basetype == SPIRType::Image) { exp += "device"; } else { exp += get_argument_address_space(*var); } exp += " atomic_"; // For signed and unsigned min/max, we can signal this through the pointer type. // There is no other way, since C++ does not have explicit signage for atomics. exp += type_to_glsl(remapped_type); exp += "*)"; exp += "&"; exp += to_enclosed_expression(obj); bool is_atomic_compare_exchange_strong = op1_is_pointer && op1; if (is_atomic_compare_exchange_strong) { assert(strcmp(op, "atomic_compare_exchange_weak_explicit") == 0); assert(op2); assert(has_mem_order_2); exp += ", &"; exp += to_name(result_id); exp += ", "; exp += to_expression(op2); exp += ", "; exp += get_memory_order(mem_order_1); exp += ", "; exp += get_memory_order(mem_order_2); exp += ")"; // MSL only supports the weak atomic compare exchange, so emit a CAS loop here. // The MSL function returns false if the atomic write fails OR the comparison test fails, // so we must validate that it wasn't the comparison test that failed before continuing // the CAS loop, otherwise it will loop infinitely, with the comparison test always failing. // The function updates the comparitor value from the memory value, so the additional // comparison test evaluates the memory value against the expected value. emit_uninitialized_temporary_expression(result_type, result_id); statement("do"); begin_scope(); statement(to_name(result_id), " = ", to_expression(op1), ";"); end_scope_decl(join("while (!", exp, " && ", to_name(result_id), " == ", to_enclosed_expression(op1), ")")); } else { assert(strcmp(op, "atomic_compare_exchange_weak_explicit") != 0); if (op1) { if (op1_is_literal) exp += join(", ", op1); else exp += ", " + bitcast_expression(expected_type, op1); } if (op2) exp += ", " + to_expression(op2); exp += string(", ") + get_memory_order(mem_order_1); if (has_mem_order_2) exp += string(", ") + get_memory_order(mem_order_2); exp += ")"; if (expected_type != type.basetype) exp = bitcast_expression(type, expected_type, exp); if (strcmp(op, "atomic_store_explicit") != 0) emit_op(result_type, result_id, exp, false); else statement(exp, ";"); } flush_all_atomic_capable_variables(); } // Metal only supports relaxed memory order for now const char *CompilerMSL::get_memory_order(uint32_t) { return "memory_order_relaxed"; } // Override for MSL-specific extension syntax instructions. // In some cases, deliberately select either the fast or precise versions of the MSL functions to match Vulkan math precision results. void CompilerMSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t count) { auto op = static_cast(eop); // If we need to do implicit bitcasts, make sure we do it with the correct type. uint32_t integer_width = get_integer_width_for_glsl_instruction(op, args, count); auto int_type = to_signed_basetype(integer_width); auto uint_type = to_unsigned_basetype(integer_width); op = get_remapped_glsl_op(op); switch (op) { case GLSLstd450Sinh: emit_unary_func_op(result_type, id, args[0], "fast::sinh"); break; case GLSLstd450Cosh: emit_unary_func_op(result_type, id, args[0], "fast::cosh"); break; case GLSLstd450Tanh: emit_unary_func_op(result_type, id, args[0], "precise::tanh"); break; case GLSLstd450Atan2: emit_binary_func_op(result_type, id, args[0], args[1], "precise::atan2"); break; case GLSLstd450InverseSqrt: emit_unary_func_op(result_type, id, args[0], "rsqrt"); break; case GLSLstd450RoundEven: emit_unary_func_op(result_type, id, args[0], "rint"); break; case GLSLstd450FindILsb: { // In this template version of findLSB, we return T. auto basetype = expression_type(args[0]).basetype; emit_unary_func_op_cast(result_type, id, args[0], "spvFindLSB", basetype, basetype); break; } case GLSLstd450FindSMsb: emit_unary_func_op_cast(result_type, id, args[0], "spvFindSMSB", int_type, int_type); break; case GLSLstd450FindUMsb: emit_unary_func_op_cast(result_type, id, args[0], "spvFindUMSB", uint_type, uint_type); break; case GLSLstd450PackSnorm4x8: emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm4x8"); break; case GLSLstd450PackUnorm4x8: emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm4x8"); break; case GLSLstd450PackSnorm2x16: emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm2x16"); break; case GLSLstd450PackUnorm2x16: emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm2x16"); break; case GLSLstd450PackHalf2x16: { auto expr = join("as_type(half2(", to_expression(args[0]), "))"); emit_op(result_type, id, expr, should_forward(args[0])); inherit_expression_dependencies(id, args[0]); break; } case GLSLstd450UnpackSnorm4x8: emit_unary_func_op(result_type, id, args[0], "unpack_snorm4x8_to_float"); break; case GLSLstd450UnpackUnorm4x8: emit_unary_func_op(result_type, id, args[0], "unpack_unorm4x8_to_float"); break; case GLSLstd450UnpackSnorm2x16: emit_unary_func_op(result_type, id, args[0], "unpack_snorm2x16_to_float"); break; case GLSLstd450UnpackUnorm2x16: emit_unary_func_op(result_type, id, args[0], "unpack_unorm2x16_to_float"); break; case GLSLstd450UnpackHalf2x16: { auto expr = join("float2(as_type(", to_expression(args[0]), "))"); emit_op(result_type, id, expr, should_forward(args[0])); inherit_expression_dependencies(id, args[0]); break; } case GLSLstd450PackDouble2x32: emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450PackDouble2x32"); // Currently unsupported break; case GLSLstd450UnpackDouble2x32: emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450UnpackDouble2x32"); // Currently unsupported break; case GLSLstd450MatrixInverse: { auto &mat_type = get(result_type); switch (mat_type.columns) { case 2: emit_unary_func_op(result_type, id, args[0], "spvInverse2x2"); break; case 3: emit_unary_func_op(result_type, id, args[0], "spvInverse3x3"); break; case 4: emit_unary_func_op(result_type, id, args[0], "spvInverse4x4"); break; default: break; } break; } case GLSLstd450FMin: // If the result type isn't float, don't bother calling the specific // precise::/fast:: version. Metal doesn't have those for half and // double types. if (get(result_type).basetype != SPIRType::Float) emit_binary_func_op(result_type, id, args[0], args[1], "min"); else emit_binary_func_op(result_type, id, args[0], args[1], "fast::min"); break; case GLSLstd450FMax: if (get(result_type).basetype != SPIRType::Float) emit_binary_func_op(result_type, id, args[0], args[1], "max"); else emit_binary_func_op(result_type, id, args[0], args[1], "fast::max"); break; case GLSLstd450FClamp: // TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call. if (get(result_type).basetype != SPIRType::Float) emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp"); else emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "fast::clamp"); break; case GLSLstd450NMin: if (get(result_type).basetype != SPIRType::Float) emit_binary_func_op(result_type, id, args[0], args[1], "min"); else emit_binary_func_op(result_type, id, args[0], args[1], "precise::min"); break; case GLSLstd450NMax: if (get(result_type).basetype != SPIRType::Float) emit_binary_func_op(result_type, id, args[0], args[1], "max"); else emit_binary_func_op(result_type, id, args[0], args[1], "precise::max"); break; case GLSLstd450NClamp: // TODO: If args[1] is 0 and args[2] is 1, emit a saturate() call. if (get(result_type).basetype != SPIRType::Float) emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "clamp"); else emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "precise::clamp"); break; case GLSLstd450InterpolateAtCentroid: { // We can't just emit the expression normally, because the qualified name contains a call to the default // interpolate method, or refers to a local variable. We saved the interface index we need; use it to construct // the base for the method call. uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex); string component; if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr)) { uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr); auto *c = maybe_get(index_expr); if (!c || c->specialization) component = join("[", to_expression(index_expr), "]"); else component = join(".", index_to_swizzle(c->scalar())); } emit_op(result_type, id, join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index), ".interpolate_at_centroid()", component), should_forward(args[0])); break; } case GLSLstd450InterpolateAtSample: { uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex); string component; if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr)) { uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr); auto *c = maybe_get(index_expr); if (!c || c->specialization) component = join("[", to_expression(index_expr), "]"); else component = join(".", index_to_swizzle(c->scalar())); } emit_op(result_type, id, join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index), ".interpolate_at_sample(", to_expression(args[1]), ")", component), should_forward(args[0]) && should_forward(args[1])); break; } case GLSLstd450InterpolateAtOffset: { uint32_t interface_index = get_extended_decoration(args[0], SPIRVCrossDecorationInterfaceMemberIndex); string component; if (has_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr)) { uint32_t index_expr = get_extended_decoration(args[0], SPIRVCrossDecorationInterpolantComponentExpr); auto *c = maybe_get(index_expr); if (!c || c->specialization) component = join("[", to_expression(index_expr), "]"); else component = join(".", index_to_swizzle(c->scalar())); } // Like Direct3D, Metal puts the (0, 0) at the upper-left corner, not the center as SPIR-V and GLSL do. // Offset the offset by (1/2 - 1/16), or 0.4375, to compensate for this. // It has to be (1/2 - 1/16) and not 1/2, or several CTS tests subtly break on Intel. emit_op(result_type, id, join(to_name(stage_in_var_id), ".", to_member_name(get_stage_in_struct_type(), interface_index), ".interpolate_at_offset(", to_expression(args[1]), " + 0.4375)", component), should_forward(args[0]) && should_forward(args[1])); break; } case GLSLstd450Distance: // MSL does not support scalar versions here. if (expression_type(args[0]).vecsize == 1) { // Equivalent to length(a - b) -> abs(a - b). emit_op(result_type, id, join("abs(", to_enclosed_unpacked_expression(args[0]), " - ", to_enclosed_unpacked_expression(args[1]), ")"), should_forward(args[0]) && should_forward(args[1])); inherit_expression_dependencies(id, args[0]); inherit_expression_dependencies(id, args[1]); } else CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count); break; case GLSLstd450Length: // MSL does not support scalar versions, so use abs(). if (expression_type(args[0]).vecsize == 1) emit_unary_func_op(result_type, id, args[0], "abs"); else CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count); break; case GLSLstd450Normalize: { auto &exp_type = expression_type(args[0]); // MSL does not support scalar versions here. // MSL has no implementation for normalize in the fast:: namespace for half2 and half3 // Returns -1 or 1 for valid input, sign() does the job. if (exp_type.vecsize == 1) emit_unary_func_op(result_type, id, args[0], "sign"); else if (exp_type.vecsize <= 3 && exp_type.basetype == SPIRType::Half) emit_unary_func_op(result_type, id, args[0], "normalize"); else emit_unary_func_op(result_type, id, args[0], "fast::normalize"); break; } case GLSLstd450Reflect: if (get(result_type).vecsize == 1) emit_binary_func_op(result_type, id, args[0], args[1], "spvReflect"); else CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count); break; case GLSLstd450Refract: if (get(result_type).vecsize == 1) emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "spvRefract"); else CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count); break; case GLSLstd450FaceForward: if (get(result_type).vecsize == 1) emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "spvFaceForward"); else CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count); break; case GLSLstd450Modf: case GLSLstd450Frexp: { // Special case. If the variable is a scalar access chain, we cannot use it directly. We have to emit a temporary. // Another special case is if the variable is in a storage class which is not thread. auto *ptr = maybe_get(args[1]); auto &type = expression_type(args[1]); bool is_thread_storage = storage_class_array_is_thread(type.storage); if (type.storage == StorageClassOutput && capture_output_to_buffer) is_thread_storage = false; if (!is_thread_storage || (ptr && ptr->access_chain && is_scalar(expression_type(args[1])))) { register_call_out_argument(args[1]); forced_temporaries.insert(id); // Need to create temporaries and copy over to access chain after. // We cannot directly take the reference of a vector swizzle in MSL, even if it's scalar ... uint32_t &tmp_id = extra_sub_expressions[id]; if (!tmp_id) tmp_id = ir.increase_bound_by(1); uint32_t tmp_type_id = get_pointee_type_id(expression_type_id(args[1])); emit_uninitialized_temporary_expression(tmp_type_id, tmp_id); emit_binary_func_op(result_type, id, args[0], tmp_id, eop == GLSLstd450Modf ? "modf" : "frexp"); statement(to_expression(args[1]), " = ", to_expression(tmp_id), ";"); } else CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count); break; } default: CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count); break; } } void CompilerMSL::emit_spv_amd_shader_trinary_minmax_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t count) { enum AMDShaderTrinaryMinMax { FMin3AMD = 1, UMin3AMD = 2, SMin3AMD = 3, FMax3AMD = 4, UMax3AMD = 5, SMax3AMD = 6, FMid3AMD = 7, UMid3AMD = 8, SMid3AMD = 9 }; if (!msl_options.supports_msl_version(2, 1)) SPIRV_CROSS_THROW("Trinary min/max functions require MSL 2.1."); auto op = static_cast(eop); switch (op) { case FMid3AMD: case UMid3AMD: case SMid3AMD: emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "median3"); break; default: CompilerGLSL::emit_spv_amd_shader_trinary_minmax_op(result_type, id, eop, args, count); break; } } // Emit a structure declaration for the specified interface variable. void CompilerMSL::emit_interface_block(uint32_t ib_var_id) { if (ib_var_id) { auto &ib_var = get(ib_var_id); auto &ib_type = get_variable_data_type(ib_var); //assert(ib_type.basetype == SPIRType::Struct && !ib_type.member_types.empty()); assert(ib_type.basetype == SPIRType::Struct); emit_struct(ib_type); } } // Emits the declaration signature of the specified function. // If this is the entry point function, Metal-specific return value and function arguments are added. void CompilerMSL::emit_function_prototype(SPIRFunction &func, const Bitset &) { if (func.self != ir.default_entry_point) add_function_overload(func); local_variable_names = resource_names; string decl; processing_entry_point = func.self == ir.default_entry_point; // Metal helper functions must be static force-inline otherwise they will cause problems when linked together in a single Metallib. if (!processing_entry_point) statement(force_inline); auto &type = get(func.return_type); if (!type.array.empty() && msl_options.force_native_arrays) { // We cannot return native arrays in MSL, so "return" through an out variable. decl += "void"; } else { decl += func_type_decl(type); } decl += " "; decl += to_name(func.self); decl += "("; if (!type.array.empty() && msl_options.force_native_arrays) { // Fake arrays returns by writing to an out array instead. decl += "thread "; decl += type_to_glsl(type); decl += " (&spvReturnValue)"; decl += type_to_array_glsl(type); if (!func.arguments.empty()) decl += ", "; } if (processing_entry_point) { if (msl_options.argument_buffers) decl += entry_point_args_argument_buffer(!func.arguments.empty()); else decl += entry_point_args_classic(!func.arguments.empty()); // append entry point args to avoid conflicts in local variable names. local_variable_names.insert(resource_names.begin(), resource_names.end()); // If entry point function has variables that require early declaration, // ensure they each have an empty initializer, creating one if needed. // This is done at this late stage because the initialization expression // is cleared after each compilation pass. for (auto var_id : vars_needing_early_declaration) { auto &ed_var = get(var_id); ID &initializer = ed_var.initializer; if (!initializer) initializer = ir.increase_bound_by(1); // Do not override proper initializers. if (ir.ids[initializer].get_type() == TypeNone || ir.ids[initializer].get_type() == TypeExpression) set(ed_var.initializer, "{}", ed_var.basetype, true); } } for (auto &arg : func.arguments) { uint32_t name_id = arg.id; auto *var = maybe_get(arg.id); if (var) { // If we need to modify the name of the variable, make sure we modify the original variable. // Our alias is just a shadow variable. if (arg.alias_global_variable && var->basevariable) name_id = var->basevariable; var->parameter = &arg; // Hold a pointer to the parameter so we can invalidate the readonly field if needed. } add_local_variable_name(name_id); decl += argument_decl(arg); bool is_dynamic_img_sampler = has_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler); auto &arg_type = get(arg.type); if (arg_type.basetype == SPIRType::SampledImage && !is_dynamic_img_sampler) { // Manufacture automatic plane args for multiplanar texture uint32_t planes = 1; if (auto *constexpr_sampler = find_constexpr_sampler(name_id)) if (constexpr_sampler->ycbcr_conversion_enable) planes = constexpr_sampler->planes; for (uint32_t i = 1; i < planes; i++) decl += join(", ", argument_decl(arg), plane_name_suffix, i); // Manufacture automatic sampler arg for SampledImage texture if (arg_type.image.dim != DimBuffer) { if (arg_type.array.empty()) { decl += join(", ", sampler_type(arg_type, arg.id), " ", to_sampler_expression(arg.id)); } else { const char *sampler_address_space = descriptor_address_space(name_id, StorageClassUniformConstant, "thread const"); decl += join(", ", sampler_address_space, " ", sampler_type(arg_type, arg.id), "& ", to_sampler_expression(arg.id)); } } } // Manufacture automatic swizzle arg. if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(arg_type) && !is_dynamic_img_sampler) { bool arg_is_array = !arg_type.array.empty(); decl += join(", constant uint", arg_is_array ? "* " : "& ", to_swizzle_expression(arg.id)); } if (buffers_requiring_array_length.count(name_id)) { bool arg_is_array = !arg_type.array.empty(); decl += join(", constant uint", arg_is_array ? "* " : "& ", to_buffer_size_expression(name_id)); } if (&arg != &func.arguments.back()) decl += ", "; } decl += ")"; statement(decl); } static bool needs_chroma_reconstruction(const MSLConstexprSampler *constexpr_sampler) { // For now, only multiplanar images need explicit reconstruction. GBGR and BGRG images // use implicit reconstruction. return constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && constexpr_sampler->planes > 1; } // Returns the texture sampling function string for the specified image and sampling characteristics. string CompilerMSL::to_function_name(const TextureFunctionNameArguments &args) { VariableID img = args.base.img; const MSLConstexprSampler *constexpr_sampler = nullptr; bool is_dynamic_img_sampler = false; if (auto *var = maybe_get_backing_variable(img)) { constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self)); is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler); } // Special-case gather. We have to alter the component being looked up // in the swizzle case. if (msl_options.swizzle_texture_samples && args.base.is_gather && !is_dynamic_img_sampler && (!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable)) { bool is_compare = comparison_ids.count(img); add_spv_func_and_recompile(is_compare ? SPVFuncImplGatherCompareSwizzle : SPVFuncImplGatherSwizzle); return is_compare ? "spvGatherCompareSwizzle" : "spvGatherSwizzle"; } auto *combined = maybe_get(img); // Texture reference string fname; if (needs_chroma_reconstruction(constexpr_sampler) && !is_dynamic_img_sampler) { if (constexpr_sampler->planes != 2 && constexpr_sampler->planes != 3) SPIRV_CROSS_THROW("Unhandled number of color image planes!"); // 444 images aren't downsampled, so we don't need to do linear filtering. if (constexpr_sampler->resolution == MSL_FORMAT_RESOLUTION_444 || constexpr_sampler->chroma_filter == MSL_SAMPLER_FILTER_NEAREST) { if (constexpr_sampler->planes == 2) add_spv_func_and_recompile(SPVFuncImplChromaReconstructNearest2Plane); else add_spv_func_and_recompile(SPVFuncImplChromaReconstructNearest3Plane); fname = "spvChromaReconstructNearest"; } else // Linear with a downsampled format { fname = "spvChromaReconstructLinear"; switch (constexpr_sampler->resolution) { case MSL_FORMAT_RESOLUTION_444: assert(false); break; // not reached case MSL_FORMAT_RESOLUTION_422: switch (constexpr_sampler->x_chroma_offset) { case MSL_CHROMA_LOCATION_COSITED_EVEN: if (constexpr_sampler->planes == 2) add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422CositedEven2Plane); else add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422CositedEven3Plane); fname += "422CositedEven"; break; case MSL_CHROMA_LOCATION_MIDPOINT: if (constexpr_sampler->planes == 2) add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422Midpoint2Plane); else add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear422Midpoint3Plane); fname += "422Midpoint"; break; default: SPIRV_CROSS_THROW("Invalid chroma location."); } break; case MSL_FORMAT_RESOLUTION_420: fname += "420"; switch (constexpr_sampler->x_chroma_offset) { case MSL_CHROMA_LOCATION_COSITED_EVEN: switch (constexpr_sampler->y_chroma_offset) { case MSL_CHROMA_LOCATION_COSITED_EVEN: if (constexpr_sampler->planes == 2) add_spv_func_and_recompile( SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven2Plane); else add_spv_func_and_recompile( SPVFuncImplChromaReconstructLinear420XCositedEvenYCositedEven3Plane); fname += "XCositedEvenYCositedEven"; break; case MSL_CHROMA_LOCATION_MIDPOINT: if (constexpr_sampler->planes == 2) add_spv_func_and_recompile( SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint2Plane); else add_spv_func_and_recompile( SPVFuncImplChromaReconstructLinear420XCositedEvenYMidpoint3Plane); fname += "XCositedEvenYMidpoint"; break; default: SPIRV_CROSS_THROW("Invalid Y chroma location."); } break; case MSL_CHROMA_LOCATION_MIDPOINT: switch (constexpr_sampler->y_chroma_offset) { case MSL_CHROMA_LOCATION_COSITED_EVEN: if (constexpr_sampler->planes == 2) add_spv_func_and_recompile( SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven2Plane); else add_spv_func_and_recompile( SPVFuncImplChromaReconstructLinear420XMidpointYCositedEven3Plane); fname += "XMidpointYCositedEven"; break; case MSL_CHROMA_LOCATION_MIDPOINT: if (constexpr_sampler->planes == 2) add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint2Plane); else add_spv_func_and_recompile(SPVFuncImplChromaReconstructLinear420XMidpointYMidpoint3Plane); fname += "XMidpointYMidpoint"; break; default: SPIRV_CROSS_THROW("Invalid Y chroma location."); } break; default: SPIRV_CROSS_THROW("Invalid X chroma location."); } break; default: SPIRV_CROSS_THROW("Invalid format resolution."); } } } else { fname = to_expression(combined ? combined->image : img) + "."; // Texture function and sampler if (args.base.is_fetch) fname += "read"; else if (args.base.is_gather) fname += "gather"; else fname += "sample"; if (args.has_dref) fname += "_compare"; } return fname; } string CompilerMSL::convert_to_f32(const string &expr, uint32_t components) { SPIRType t; t.basetype = SPIRType::Float; t.vecsize = components; t.columns = 1; return join(type_to_glsl_constructor(t), "(", expr, ")"); } static inline bool sampling_type_needs_f32_conversion(const SPIRType &type) { // Double is not supported to begin with, but doesn't hurt to check for completion. return type.basetype == SPIRType::Half || type.basetype == SPIRType::Double; } // Returns the function args for a texture sampling function for the specified image and sampling characteristics. string CompilerMSL::to_function_args(const TextureFunctionArguments &args, bool *p_forward) { VariableID img = args.base.img; auto &imgtype = *args.base.imgtype; uint32_t lod = args.lod; uint32_t grad_x = args.grad_x; uint32_t grad_y = args.grad_y; uint32_t bias = args.bias; const MSLConstexprSampler *constexpr_sampler = nullptr; bool is_dynamic_img_sampler = false; if (auto *var = maybe_get_backing_variable(img)) { constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self)); is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler); } string farg_str; bool forward = true; if (!is_dynamic_img_sampler) { // Texture reference (for some cases) if (needs_chroma_reconstruction(constexpr_sampler)) { // Multiplanar images need two or three textures. farg_str += to_expression(img); for (uint32_t i = 1; i < constexpr_sampler->planes; i++) farg_str += join(", ", to_expression(img), plane_name_suffix, i); } else if ((!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable) && msl_options.swizzle_texture_samples && args.base.is_gather) { auto *combined = maybe_get(img); farg_str += to_expression(combined ? combined->image : img); } // Sampler reference if (!args.base.is_fetch) { if (!farg_str.empty()) farg_str += ", "; farg_str += to_sampler_expression(img); } if ((!constexpr_sampler || !constexpr_sampler->ycbcr_conversion_enable) && msl_options.swizzle_texture_samples && args.base.is_gather) { // Add the swizzle constant from the swizzle buffer. farg_str += ", " + to_swizzle_expression(img); used_swizzle_buffer = true; } // Swizzled gather puts the component before the other args, to allow template // deduction to work. if (args.component && msl_options.swizzle_texture_samples) { forward = should_forward(args.component); farg_str += ", " + to_component_argument(args.component); } } // Texture coordinates forward = forward && should_forward(args.coord); auto coord_expr = to_enclosed_expression(args.coord); auto &coord_type = expression_type(args.coord); bool coord_is_fp = type_is_floating_point(coord_type); bool is_cube_fetch = false; string tex_coords = coord_expr; uint32_t alt_coord_component = 0; switch (imgtype.image.dim) { case Dim1D: if (coord_type.vecsize > 1) tex_coords = enclose_expression(tex_coords) + ".x"; if (args.base.is_fetch) tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")"; else if (sampling_type_needs_f32_conversion(coord_type)) tex_coords = convert_to_f32(tex_coords, 1); if (msl_options.texture_1D_as_2D) { if (args.base.is_fetch) tex_coords = "uint2(" + tex_coords + ", 0)"; else tex_coords = "float2(" + tex_coords + ", 0.5)"; } alt_coord_component = 1; break; case DimBuffer: if (coord_type.vecsize > 1) tex_coords = enclose_expression(tex_coords) + ".x"; if (msl_options.texture_buffer_native) { tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")"; } else { // Metal texel buffer textures are 2D, so convert 1D coord to 2D. // Support for Metal 2.1's new texture_buffer type. if (args.base.is_fetch) { if (msl_options.texel_buffer_texture_width > 0) { tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")"; } else { tex_coords = "spvTexelBufferCoord(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ", " + to_expression(img) + ")"; } } } alt_coord_component = 1; break; case DimSubpassData: // If we're using Metal's native frame-buffer fetch API for subpass inputs, // this path will not be hit. tex_coords = "uint2(gl_FragCoord.xy)"; alt_coord_component = 2; break; case Dim2D: if (coord_type.vecsize > 2) tex_coords = enclose_expression(tex_coords) + ".xy"; if (args.base.is_fetch) tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")"; else if (sampling_type_needs_f32_conversion(coord_type)) tex_coords = convert_to_f32(tex_coords, 2); alt_coord_component = 2; break; case Dim3D: if (coord_type.vecsize > 3) tex_coords = enclose_expression(tex_coords) + ".xyz"; if (args.base.is_fetch) tex_coords = "uint3(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")"; else if (sampling_type_needs_f32_conversion(coord_type)) tex_coords = convert_to_f32(tex_coords, 3); alt_coord_component = 3; break; case DimCube: if (args.base.is_fetch) { is_cube_fetch = true; tex_coords += ".xy"; tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")"; } else { if (coord_type.vecsize > 3) tex_coords = enclose_expression(tex_coords) + ".xyz"; } if (sampling_type_needs_f32_conversion(coord_type)) tex_coords = convert_to_f32(tex_coords, 3); alt_coord_component = 3; break; default: break; } if (args.base.is_fetch && (args.offset || args.coffset)) { uint32_t offset_expr = args.offset ? args.offset : args.coffset; // Fetch offsets must be applied directly to the coordinate. forward = forward && should_forward(offset_expr); auto &type = expression_type(offset_expr); if (imgtype.image.dim == Dim1D && msl_options.texture_1D_as_2D) { if (type.basetype != SPIRType::UInt) tex_coords += join(" + uint2(", bitcast_expression(SPIRType::UInt, offset_expr), ", 0)"); else tex_coords += join(" + uint2(", to_enclosed_expression(offset_expr), ", 0)"); } else { if (type.basetype != SPIRType::UInt) tex_coords += " + " + bitcast_expression(SPIRType::UInt, offset_expr); else tex_coords += " + " + to_enclosed_expression(offset_expr); } } // If projection, use alt coord as divisor if (args.base.is_proj) { if (sampling_type_needs_f32_conversion(coord_type)) tex_coords += " / " + convert_to_f32(to_extract_component_expression(args.coord, alt_coord_component), 1); else tex_coords += " / " + to_extract_component_expression(args.coord, alt_coord_component); } if (!farg_str.empty()) farg_str += ", "; if (imgtype.image.dim == DimCube && imgtype.image.arrayed && msl_options.emulate_cube_array) { farg_str += "spvCubemapTo2DArrayFace(" + tex_coords + ").xy"; if (is_cube_fetch) farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ")"; else farg_str += ", uint(spvCubemapTo2DArrayFace(" + tex_coords + ").z) + (uint(" + round_fp_tex_coords(to_extract_component_expression(args.coord, alt_coord_component), coord_is_fp) + ") * 6u)"; add_spv_func_and_recompile(SPVFuncImplCubemapTo2DArrayFace); } else { farg_str += tex_coords; // If fetch from cube, add face explicitly if (is_cube_fetch) { // Special case for cube arrays, face and layer are packed in one dimension. if (imgtype.image.arrayed) farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ") % 6u"; else farg_str += ", uint(" + round_fp_tex_coords(to_extract_component_expression(args.coord, 2), coord_is_fp) + ")"; } // If array, use alt coord if (imgtype.image.arrayed) { // Special case for cube arrays, face and layer are packed in one dimension. if (imgtype.image.dim == DimCube && args.base.is_fetch) { farg_str += ", uint(" + to_extract_component_expression(args.coord, 2) + ") / 6u"; } else { farg_str += ", uint(" + round_fp_tex_coords(to_extract_component_expression(args.coord, alt_coord_component), coord_is_fp) + ")"; if (imgtype.image.dim == DimSubpassData) { if (msl_options.multiview) farg_str += " + gl_ViewIndex"; else if (msl_options.arrayed_subpass_input) farg_str += " + gl_Layer"; } } } else if (imgtype.image.dim == DimSubpassData) { if (msl_options.multiview) farg_str += ", gl_ViewIndex"; else if (msl_options.arrayed_subpass_input) farg_str += ", gl_Layer"; } } // Depth compare reference value if (args.dref) { forward = forward && should_forward(args.dref); farg_str += ", "; auto &dref_type = expression_type(args.dref); string dref_expr; if (args.base.is_proj) dref_expr = join(to_enclosed_expression(args.dref), " / ", to_extract_component_expression(args.coord, alt_coord_component)); else dref_expr = to_expression(args.dref); if (sampling_type_needs_f32_conversion(dref_type)) dref_expr = convert_to_f32(dref_expr, 1); farg_str += dref_expr; if (msl_options.is_macos() && (grad_x || grad_y)) { // For sample compare, MSL does not support gradient2d for all targets (only iOS apparently according to docs). // However, the most common case here is to have a constant gradient of 0, as that is the only way to express // LOD == 0 in GLSL with sampler2DArrayShadow (cascaded shadow mapping). // We will detect a compile-time constant 0 value for gradient and promote that to level(0) on MSL. bool constant_zero_x = !grad_x || expression_is_constant_null(grad_x); bool constant_zero_y = !grad_y || expression_is_constant_null(grad_y); if (constant_zero_x && constant_zero_y) { lod = 0; grad_x = 0; grad_y = 0; farg_str += ", level(0)"; } else if (!msl_options.supports_msl_version(2, 3)) { SPIRV_CROSS_THROW("Using non-constant 0.0 gradient() qualifier for sample_compare. This is not " "supported on macOS prior to MSL 2.3."); } } if (msl_options.is_macos() && bias) { // Bias is not supported either on macOS with sample_compare. // Verify it is compile-time zero, and drop the argument. if (expression_is_constant_null(bias)) { bias = 0; } else if (!msl_options.supports_msl_version(2, 3)) { SPIRV_CROSS_THROW("Using non-constant 0.0 bias() qualifier for sample_compare. This is not supported " "on macOS prior to MSL 2.3."); } } } // LOD Options // Metal does not support LOD for 1D textures. if (bias && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D)) { forward = forward && should_forward(bias); farg_str += ", bias(" + to_expression(bias) + ")"; } // Metal does not support LOD for 1D textures. if (lod && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D)) { forward = forward && should_forward(lod); if (args.base.is_fetch) { farg_str += ", " + to_expression(lod); } else { farg_str += ", level(" + to_expression(lod) + ")"; } } else if (args.base.is_fetch && !lod && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D) && imgtype.image.dim != DimBuffer && !imgtype.image.ms && imgtype.image.sampled != 2) { // Lod argument is optional in OpImageFetch, but we require a LOD value, pick 0 as the default. // Check for sampled type as well, because is_fetch is also used for OpImageRead in MSL. farg_str += ", 0"; } // Metal does not support LOD for 1D textures. if ((grad_x || grad_y) && (imgtype.image.dim != Dim1D || msl_options.texture_1D_as_2D)) { forward = forward && should_forward(grad_x); forward = forward && should_forward(grad_y); string grad_opt; switch (imgtype.image.dim) { case Dim1D: case Dim2D: grad_opt = "2d"; break; case Dim3D: grad_opt = "3d"; break; case DimCube: if (imgtype.image.arrayed && msl_options.emulate_cube_array) grad_opt = "2d"; else grad_opt = "cube"; break; default: grad_opt = "unsupported_gradient_dimension"; break; } farg_str += ", gradient" + grad_opt + "(" + to_expression(grad_x) + ", " + to_expression(grad_y) + ")"; } if (args.min_lod) { if (!msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("min_lod_clamp() is only supported in MSL 2.2+ and up."); forward = forward && should_forward(args.min_lod); farg_str += ", min_lod_clamp(" + to_expression(args.min_lod) + ")"; } // Add offsets string offset_expr; const SPIRType *offset_type = nullptr; if (args.coffset && !args.base.is_fetch) { forward = forward && should_forward(args.coffset); offset_expr = to_expression(args.coffset); offset_type = &expression_type(args.coffset); } else if (args.offset && !args.base.is_fetch) { forward = forward && should_forward(args.offset); offset_expr = to_expression(args.offset); offset_type = &expression_type(args.offset); } if (!offset_expr.empty()) { switch (imgtype.image.dim) { case Dim1D: if (!msl_options.texture_1D_as_2D) break; if (offset_type->vecsize > 1) offset_expr = enclose_expression(offset_expr) + ".x"; farg_str += join(", int2(", offset_expr, ", 0)"); break; case Dim2D: if (offset_type->vecsize > 2) offset_expr = enclose_expression(offset_expr) + ".xy"; farg_str += ", " + offset_expr; break; case Dim3D: if (offset_type->vecsize > 3) offset_expr = enclose_expression(offset_expr) + ".xyz"; farg_str += ", " + offset_expr; break; default: break; } } if (args.component) { // If 2D has gather component, ensure it also has an offset arg if (imgtype.image.dim == Dim2D && offset_expr.empty()) farg_str += ", int2(0)"; if (!msl_options.swizzle_texture_samples || is_dynamic_img_sampler) { forward = forward && should_forward(args.component); uint32_t image_var = 0; if (const auto *combined = maybe_get(img)) { if (const auto *img_var = maybe_get_backing_variable(combined->image)) image_var = img_var->self; } else if (const auto *var = maybe_get_backing_variable(img)) { image_var = var->self; } if (image_var == 0 || !is_depth_image(expression_type(image_var), image_var)) farg_str += ", " + to_component_argument(args.component); } } if (args.sample) { forward = forward && should_forward(args.sample); farg_str += ", "; farg_str += to_expression(args.sample); } *p_forward = forward; return farg_str; } // If the texture coordinates are floating point, invokes MSL round() function to round them. string CompilerMSL::round_fp_tex_coords(string tex_coords, bool coord_is_fp) { return coord_is_fp ? ("round(" + tex_coords + ")") : tex_coords; } // Returns a string to use in an image sampling function argument. // The ID must be a scalar constant. string CompilerMSL::to_component_argument(uint32_t id) { uint32_t component_index = evaluate_constant_u32(id); switch (component_index) { case 0: return "component::x"; case 1: return "component::y"; case 2: return "component::z"; case 3: return "component::w"; default: SPIRV_CROSS_THROW("The value (" + to_string(component_index) + ") of OpConstant ID " + to_string(id) + " is not a valid Component index, which must be one of 0, 1, 2, or 3."); } } // Establish sampled image as expression object and assign the sampler to it. void CompilerMSL::emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id) { set(result_id, result_type, image_id, samp_id); } string CompilerMSL::to_texture_op(const Instruction &i, bool sparse, bool *forward, SmallVector &inherited_expressions) { auto *ops = stream(i); uint32_t result_type_id = ops[0]; uint32_t img = ops[2]; auto &result_type = get(result_type_id); auto op = static_cast(i.op); bool is_gather = (op == OpImageGather || op == OpImageDrefGather); // Bypass pointers because we need the real image struct auto &type = expression_type(img); auto &imgtype = get(type.self); const MSLConstexprSampler *constexpr_sampler = nullptr; bool is_dynamic_img_sampler = false; if (auto *var = maybe_get_backing_variable(img)) { constexpr_sampler = find_constexpr_sampler(var->basevariable ? var->basevariable : VariableID(var->self)); is_dynamic_img_sampler = has_extended_decoration(var->self, SPIRVCrossDecorationDynamicImageSampler); } string expr; if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && !is_dynamic_img_sampler) { // If this needs sampler Y'CbCr conversion, we need to do some additional // processing. switch (constexpr_sampler->ycbcr_model) { case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY: case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY: // Default break; case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709: add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT709); expr += "spvConvertYCbCrBT709("; break; case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601: add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT601); expr += "spvConvertYCbCrBT601("; break; case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020: add_spv_func_and_recompile(SPVFuncImplConvertYCbCrBT2020); expr += "spvConvertYCbCrBT2020("; break; default: SPIRV_CROSS_THROW("Invalid Y'CbCr model conversion."); } if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY) { switch (constexpr_sampler->ycbcr_range) { case MSL_SAMPLER_YCBCR_RANGE_ITU_FULL: add_spv_func_and_recompile(SPVFuncImplExpandITUFullRange); expr += "spvExpandITUFullRange("; break; case MSL_SAMPLER_YCBCR_RANGE_ITU_NARROW: add_spv_func_and_recompile(SPVFuncImplExpandITUNarrowRange); expr += "spvExpandITUNarrowRange("; break; default: SPIRV_CROSS_THROW("Invalid Y'CbCr range."); } } } else if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(imgtype) && !is_dynamic_img_sampler) { add_spv_func_and_recompile(SPVFuncImplTextureSwizzle); expr += "spvTextureSwizzle("; } string inner_expr = CompilerGLSL::to_texture_op(i, sparse, forward, inherited_expressions); if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable && !is_dynamic_img_sampler) { if (!constexpr_sampler->swizzle_is_identity()) { static const char swizzle_names[] = "rgba"; if (!constexpr_sampler->swizzle_has_one_or_zero()) { // If we can, do it inline. expr += inner_expr + "."; for (uint32_t c = 0; c < 4; c++) { switch (constexpr_sampler->swizzle[c]) { case MSL_COMPONENT_SWIZZLE_IDENTITY: expr += swizzle_names[c]; break; case MSL_COMPONENT_SWIZZLE_R: case MSL_COMPONENT_SWIZZLE_G: case MSL_COMPONENT_SWIZZLE_B: case MSL_COMPONENT_SWIZZLE_A: expr += swizzle_names[constexpr_sampler->swizzle[c] - MSL_COMPONENT_SWIZZLE_R]; break; default: SPIRV_CROSS_THROW("Invalid component swizzle."); } } } else { // Otherwise, we need to emit a temporary and swizzle that. uint32_t temp_id = ir.increase_bound_by(1); emit_op(result_type_id, temp_id, inner_expr, false); for (auto &inherit : inherited_expressions) inherit_expression_dependencies(temp_id, inherit); inherited_expressions.clear(); inherited_expressions.push_back(temp_id); switch (op) { case OpImageSampleDrefImplicitLod: case OpImageSampleImplicitLod: case OpImageSampleProjImplicitLod: case OpImageSampleProjDrefImplicitLod: register_control_dependent_expression(temp_id); break; default: break; } expr += type_to_glsl(result_type) + "("; for (uint32_t c = 0; c < 4; c++) { switch (constexpr_sampler->swizzle[c]) { case MSL_COMPONENT_SWIZZLE_IDENTITY: expr += to_expression(temp_id) + "." + swizzle_names[c]; break; case MSL_COMPONENT_SWIZZLE_ZERO: expr += "0"; break; case MSL_COMPONENT_SWIZZLE_ONE: expr += "1"; break; case MSL_COMPONENT_SWIZZLE_R: case MSL_COMPONENT_SWIZZLE_G: case MSL_COMPONENT_SWIZZLE_B: case MSL_COMPONENT_SWIZZLE_A: expr += to_expression(temp_id) + "." + swizzle_names[constexpr_sampler->swizzle[c] - MSL_COMPONENT_SWIZZLE_R]; break; default: SPIRV_CROSS_THROW("Invalid component swizzle."); } if (c < 3) expr += ", "; } expr += ")"; } } else expr += inner_expr; if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY) { expr += join(", ", constexpr_sampler->bpc, ")"); if (constexpr_sampler->ycbcr_model != MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY) expr += ")"; } } else { expr += inner_expr; if (msl_options.swizzle_texture_samples && !is_gather && is_sampled_image_type(imgtype) && !is_dynamic_img_sampler) { // Add the swizzle constant from the swizzle buffer. expr += ", " + to_swizzle_expression(img) + ")"; used_swizzle_buffer = true; } } return expr; } static string create_swizzle(MSLComponentSwizzle swizzle) { switch (swizzle) { case MSL_COMPONENT_SWIZZLE_IDENTITY: return "spvSwizzle::none"; case MSL_COMPONENT_SWIZZLE_ZERO: return "spvSwizzle::zero"; case MSL_COMPONENT_SWIZZLE_ONE: return "spvSwizzle::one"; case MSL_COMPONENT_SWIZZLE_R: return "spvSwizzle::red"; case MSL_COMPONENT_SWIZZLE_G: return "spvSwizzle::green"; case MSL_COMPONENT_SWIZZLE_B: return "spvSwizzle::blue"; case MSL_COMPONENT_SWIZZLE_A: return "spvSwizzle::alpha"; default: SPIRV_CROSS_THROW("Invalid component swizzle."); } } // Returns a string representation of the ID, usable as a function arg. // Manufacture automatic sampler arg for SampledImage texture. string CompilerMSL::to_func_call_arg(const SPIRFunction::Parameter &arg, uint32_t id) { string arg_str; auto &type = expression_type(id); bool is_dynamic_img_sampler = has_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler); // If the argument *itself* is a "dynamic" combined-image sampler, then we can just pass that around. bool arg_is_dynamic_img_sampler = has_extended_decoration(id, SPIRVCrossDecorationDynamicImageSampler); if (is_dynamic_img_sampler && !arg_is_dynamic_img_sampler) arg_str = join("spvDynamicImageSampler<", type_to_glsl(get(type.image.type)), ">("); auto *c = maybe_get(id); if (msl_options.force_native_arrays && c && !get(c->constant_type).array.empty()) { // If we are passing a constant array directly to a function for some reason, // the callee will expect an argument in thread const address space // (since we can only bind to arrays with references in MSL). // To resolve this, we must emit a copy in this address space. // This kind of code gen should be rare enough that performance is not a real concern. // Inline the SPIR-V to avoid this kind of suboptimal codegen. // // We risk calling this inside a continue block (invalid code), // so just create a thread local copy in the current function. arg_str = join("_", id, "_array_copy"); auto &constants = current_function->constant_arrays_needed_on_stack; auto itr = find(begin(constants), end(constants), ID(id)); if (itr == end(constants)) { force_recompile(); constants.push_back(id); } } else arg_str += CompilerGLSL::to_func_call_arg(arg, id); // Need to check the base variable in case we need to apply a qualified alias. uint32_t var_id = 0; auto *var = maybe_get(id); if (var) var_id = var->basevariable; if (!arg_is_dynamic_img_sampler) { auto *constexpr_sampler = find_constexpr_sampler(var_id ? var_id : id); if (type.basetype == SPIRType::SampledImage) { // Manufacture automatic plane args for multiplanar texture uint32_t planes = 1; if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable) { planes = constexpr_sampler->planes; // If this parameter isn't aliasing a global, then we need to use // the special "dynamic image-sampler" class to pass it--and we need // to use it for *every* non-alias parameter, in case a combined // image-sampler with a Y'CbCr conversion is passed. Hopefully, this // pathological case is so rare that it should never be hit in practice. if (!arg.alias_global_variable) add_spv_func_and_recompile(SPVFuncImplDynamicImageSampler); } for (uint32_t i = 1; i < planes; i++) arg_str += join(", ", CompilerGLSL::to_func_call_arg(arg, id), plane_name_suffix, i); // Manufacture automatic sampler arg if the arg is a SampledImage texture. if (type.image.dim != DimBuffer) arg_str += ", " + to_sampler_expression(var_id ? var_id : id); // Add sampler Y'CbCr conversion info if we have it if (is_dynamic_img_sampler && constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable) { SmallVector samp_args; switch (constexpr_sampler->resolution) { case MSL_FORMAT_RESOLUTION_444: // Default break; case MSL_FORMAT_RESOLUTION_422: samp_args.push_back("spvFormatResolution::_422"); break; case MSL_FORMAT_RESOLUTION_420: samp_args.push_back("spvFormatResolution::_420"); break; default: SPIRV_CROSS_THROW("Invalid format resolution."); } if (constexpr_sampler->chroma_filter != MSL_SAMPLER_FILTER_NEAREST) samp_args.push_back("spvChromaFilter::linear"); if (constexpr_sampler->x_chroma_offset != MSL_CHROMA_LOCATION_COSITED_EVEN) samp_args.push_back("spvXChromaLocation::midpoint"); if (constexpr_sampler->y_chroma_offset != MSL_CHROMA_LOCATION_COSITED_EVEN) samp_args.push_back("spvYChromaLocation::midpoint"); switch (constexpr_sampler->ycbcr_model) { case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY: // Default break; case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY: samp_args.push_back("spvYCbCrModelConversion::ycbcr_identity"); break; case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_709: samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_709"); break; case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_601: samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_601"); break; case MSL_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_BT_2020: samp_args.push_back("spvYCbCrModelConversion::ycbcr_bt_2020"); break; default: SPIRV_CROSS_THROW("Invalid Y'CbCr model conversion."); } if (constexpr_sampler->ycbcr_range != MSL_SAMPLER_YCBCR_RANGE_ITU_FULL) samp_args.push_back("spvYCbCrRange::itu_narrow"); samp_args.push_back(join("spvComponentBits(", constexpr_sampler->bpc, ")")); arg_str += join(", spvYCbCrSampler(", merge(samp_args), ")"); } } if (is_dynamic_img_sampler && constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable) arg_str += join(", (uint(", create_swizzle(constexpr_sampler->swizzle[3]), ") << 24) | (uint(", create_swizzle(constexpr_sampler->swizzle[2]), ") << 16) | (uint(", create_swizzle(constexpr_sampler->swizzle[1]), ") << 8) | uint(", create_swizzle(constexpr_sampler->swizzle[0]), ")"); else if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type)) arg_str += ", " + to_swizzle_expression(var_id ? var_id : id); if (buffers_requiring_array_length.count(var_id)) arg_str += ", " + to_buffer_size_expression(var_id ? var_id : id); if (is_dynamic_img_sampler) arg_str += ")"; } // Emulate texture2D atomic operations auto *backing_var = maybe_get_backing_variable(var_id); if (backing_var && atomic_image_vars.count(backing_var->self)) { arg_str += ", " + to_expression(var_id) + "_atomic"; } return arg_str; } // If the ID represents a sampled image that has been assigned a sampler already, // generate an expression for the sampler, otherwise generate a fake sampler name // by appending a suffix to the expression constructed from the ID. string CompilerMSL::to_sampler_expression(uint32_t id) { auto *combined = maybe_get(id); auto expr = to_expression(combined ? combined->image : VariableID(id)); auto index = expr.find_first_of('['); uint32_t samp_id = 0; if (combined) samp_id = combined->sampler; if (index == string::npos) return samp_id ? to_expression(samp_id) : expr + sampler_name_suffix; else { auto image_expr = expr.substr(0, index); auto array_expr = expr.substr(index); return samp_id ? to_expression(samp_id) : (image_expr + sampler_name_suffix + array_expr); } } string CompilerMSL::to_swizzle_expression(uint32_t id) { auto *combined = maybe_get(id); auto expr = to_expression(combined ? combined->image : VariableID(id)); auto index = expr.find_first_of('['); // If an image is part of an argument buffer translate this to a legal identifier. string::size_type period = 0; while ((period = expr.find_first_of('.', period)) != string::npos && period < index) expr[period] = '_'; if (index == string::npos) return expr + swizzle_name_suffix; else { auto image_expr = expr.substr(0, index); auto array_expr = expr.substr(index); return image_expr + swizzle_name_suffix + array_expr; } } string CompilerMSL::to_buffer_size_expression(uint32_t id) { auto expr = to_expression(id); auto index = expr.find_first_of('['); // This is quite crude, but we need to translate the reference name (*spvDescriptorSetN.name) to // the pointer expression spvDescriptorSetN.name to make a reasonable expression here. // This only happens if we have argument buffers and we are using OpArrayLength on a lone SSBO in that set. if (expr.size() >= 3 && expr[0] == '(' && expr[1] == '*') expr = address_of_expression(expr); // If a buffer is part of an argument buffer translate this to a legal identifier. for (auto &c : expr) if (c == '.') c = '_'; if (index == string::npos) return expr + buffer_size_name_suffix; else { auto buffer_expr = expr.substr(0, index); auto array_expr = expr.substr(index); return buffer_expr + buffer_size_name_suffix + array_expr; } } // Checks whether the type is a Block all of whose members have DecorationPatch. bool CompilerMSL::is_patch_block(const SPIRType &type) { if (!has_decoration(type.self, DecorationBlock)) return false; for (uint32_t i = 0; i < type.member_types.size(); i++) { if (!has_member_decoration(type.self, i, DecorationPatch)) return false; } return true; } // Checks whether the ID is a row_major matrix that requires conversion before use bool CompilerMSL::is_non_native_row_major_matrix(uint32_t id) { auto *e = maybe_get(id); if (e) return e->need_transpose; else return has_decoration(id, DecorationRowMajor); } // Checks whether the member is a row_major matrix that requires conversion before use bool CompilerMSL::member_is_non_native_row_major_matrix(const SPIRType &type, uint32_t index) { return has_member_decoration(type.self, index, DecorationRowMajor); } string CompilerMSL::convert_row_major_matrix(string exp_str, const SPIRType &exp_type, uint32_t physical_type_id, bool is_packed) { if (!is_matrix(exp_type)) { return CompilerGLSL::convert_row_major_matrix(std::move(exp_str), exp_type, physical_type_id, is_packed); } else { strip_enclosed_expression(exp_str); if (physical_type_id != 0 || is_packed) exp_str = unpack_expression_type(exp_str, exp_type, physical_type_id, is_packed, true); return join("transpose(", exp_str, ")"); } } // Called automatically at the end of the entry point function void CompilerMSL::emit_fixup() { if (is_vertex_like_shader() && stage_out_var_id && !qual_pos_var_name.empty() && !capture_output_to_buffer) { if (options.vertex.fixup_clipspace) statement(qual_pos_var_name, ".z = (", qual_pos_var_name, ".z + ", qual_pos_var_name, ".w) * 0.5; // Adjust clip-space for Metal"); if (options.vertex.flip_vert_y) statement(qual_pos_var_name, ".y = -(", qual_pos_var_name, ".y);", " // Invert Y-axis for Metal"); } } // Return a string defining a structure member, with padding and packing. string CompilerMSL::to_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index, const string &qualifier) { if (member_is_remapped_physical_type(type, index)) member_type_id = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPhysicalTypeID); auto &physical_type = get(member_type_id); // If this member is packed, mark it as so. string pack_pfx; // Allow Metal to use the array template to make arrays a value type uint32_t orig_id = 0; if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID)) orig_id = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID); bool row_major = false; if (is_matrix(physical_type)) row_major = has_member_decoration(type.self, index, DecorationRowMajor); SPIRType row_major_physical_type; const SPIRType *declared_type = &physical_type; // If a struct is being declared with physical layout, // do not use array wrappers. // This avoids a lot of complicated cases with packed vectors and matrices, // and generally we cannot copy full arrays in and out of buffers into Function // address space. // Array of resources should also be declared as builtin arrays. if (has_member_decoration(type.self, index, DecorationOffset)) is_using_builtin_array = true; else if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary)) is_using_builtin_array = true; if (member_is_packed_physical_type(type, index)) { // If we're packing a matrix, output an appropriate typedef if (physical_type.basetype == SPIRType::Struct) { SPIRV_CROSS_THROW("Cannot emit a packed struct currently."); } else if (is_matrix(physical_type)) { uint32_t rows = physical_type.vecsize; uint32_t cols = physical_type.columns; pack_pfx = "packed_"; if (row_major) { // These are stored transposed. rows = physical_type.columns; cols = physical_type.vecsize; pack_pfx = "packed_rm_"; } string base_type = physical_type.width == 16 ? "half" : "float"; string td_line = "typedef "; td_line += "packed_" + base_type + to_string(rows); td_line += " " + pack_pfx; // Use the actual matrix size here. td_line += base_type + to_string(physical_type.columns) + "x" + to_string(physical_type.vecsize); td_line += "[" + to_string(cols) + "]"; td_line += ";"; add_typedef_line(td_line); } else if (!is_scalar(physical_type)) // scalar type is already packed. pack_pfx = "packed_"; } else if (row_major) { // Need to declare type with flipped vecsize/columns. row_major_physical_type = physical_type; swap(row_major_physical_type.vecsize, row_major_physical_type.columns); declared_type = &row_major_physical_type; } // Very specifically, image load-store in argument buffers are disallowed on MSL on iOS. if (msl_options.is_ios() && physical_type.basetype == SPIRType::Image && physical_type.image.sampled == 2) { if (!has_decoration(orig_id, DecorationNonWritable)) SPIRV_CROSS_THROW("Writable images are not allowed in argument buffers on iOS."); } // Array information is baked into these types. string array_type; if (physical_type.basetype != SPIRType::Image && physical_type.basetype != SPIRType::Sampler && physical_type.basetype != SPIRType::SampledImage) { BuiltIn builtin = BuiltInMax; // Special handling. In [[stage_out]] or [[stage_in]] blocks, // we need flat arrays, but if we're somehow declaring gl_PerVertex for constant array reasons, we want // template array types to be declared. bool is_ib_in_out = ((stage_out_var_id && get_stage_out_struct_type().self == type.self && variable_storage_requires_stage_io(StorageClassOutput)) || (stage_in_var_id && get_stage_in_struct_type().self == type.self && variable_storage_requires_stage_io(StorageClassInput))); if (is_ib_in_out && is_member_builtin(type, index, &builtin)) is_using_builtin_array = true; array_type = type_to_array_glsl(physical_type); } auto result = join(pack_pfx, type_to_glsl(*declared_type, orig_id), " ", qualifier, to_member_name(type, index), member_attribute_qualifier(type, index), array_type, ";"); is_using_builtin_array = false; return result; } // Emit a structure member, padding and packing to maintain the correct memeber alignments. void CompilerMSL::emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index, const string &qualifier, uint32_t) { // If this member requires padding to maintain its declared offset, emit a dummy padding member before it. if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationPaddingTarget)) { uint32_t pad_len = get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPaddingTarget); statement("char _m", index, "_pad", "[", pad_len, "];"); } // Handle HLSL-style 0-based vertex/instance index. builtin_declaration = true; statement(to_struct_member(type, member_type_id, index, qualifier)); builtin_declaration = false; } void CompilerMSL::emit_struct_padding_target(const SPIRType &type) { uint32_t struct_size = get_declared_struct_size_msl(type, true, true); uint32_t target_size = get_extended_decoration(type.self, SPIRVCrossDecorationPaddingTarget); if (target_size < struct_size) SPIRV_CROSS_THROW("Cannot pad with negative bytes."); else if (target_size > struct_size) statement("char _m0_final_padding[", target_size - struct_size, "];"); } // Return a MSL qualifier for the specified function attribute member string CompilerMSL::member_attribute_qualifier(const SPIRType &type, uint32_t index) { auto &execution = get_entry_point(); uint32_t mbr_type_id = type.member_types[index]; auto &mbr_type = get(mbr_type_id); BuiltIn builtin = BuiltInMax; bool is_builtin = is_member_builtin(type, index, &builtin); if (has_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary)) { string quals = join( " [[id(", get_extended_member_decoration(type.self, index, SPIRVCrossDecorationResourceIndexPrimary), ")"); if (interlocked_resources.count( get_extended_member_decoration(type.self, index, SPIRVCrossDecorationInterfaceOrigID))) quals += ", raster_order_group(0)"; quals += "]]"; return quals; } // Vertex function inputs if (execution.model == ExecutionModelVertex && type.storage == StorageClassInput) { if (is_builtin) { switch (builtin) { case BuiltInVertexId: case BuiltInVertexIndex: case BuiltInBaseVertex: case BuiltInInstanceId: case BuiltInInstanceIndex: case BuiltInBaseInstance: if (msl_options.vertex_for_tessellation) return ""; return string(" [[") + builtin_qualifier(builtin) + "]]"; case BuiltInDrawIndex: SPIRV_CROSS_THROW("DrawIndex is not supported in MSL."); default: return ""; } } uint32_t locn; if (is_builtin) locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index); else locn = get_member_location(type.self, index); if (locn != k_unknown_location) return string(" [[attribute(") + convert_to_string(locn) + ")]]"; } // Vertex and tessellation evaluation function outputs if (((execution.model == ExecutionModelVertex && !msl_options.vertex_for_tessellation) || execution.model == ExecutionModelTessellationEvaluation) && type.storage == StorageClassOutput) { if (is_builtin) { switch (builtin) { case BuiltInPointSize: // Only mark the PointSize builtin if really rendering points. // Some shaders may include a PointSize builtin even when used to render // non-point topologies, and Metal will reject this builtin when compiling // the shader into a render pipeline that uses a non-point topology. return msl_options.enable_point_size_builtin ? (string(" [[") + builtin_qualifier(builtin) + "]]") : ""; case BuiltInViewportIndex: if (!msl_options.supports_msl_version(2, 0)) SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0."); /* fallthrough */ case BuiltInPosition: case BuiltInLayer: return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " "); case BuiltInClipDistance: if (has_member_decoration(type.self, index, DecorationIndex)) return join(" [[user(clip", get_member_decoration(type.self, index, DecorationIndex), ")]]"); else return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " "); case BuiltInCullDistance: if (has_member_decoration(type.self, index, DecorationIndex)) return join(" [[user(cull", get_member_decoration(type.self, index, DecorationIndex), ")]]"); else return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " "); default: return ""; } } string loc_qual = member_location_attribute_qualifier(type, index); if (!loc_qual.empty()) return join(" [[", loc_qual, "]]"); } // Tessellation control function inputs if (execution.model == ExecutionModelTessellationControl && type.storage == StorageClassInput) { if (is_builtin) { switch (builtin) { case BuiltInInvocationId: case BuiltInPrimitiveId: if (msl_options.multi_patch_workgroup) return ""; return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " "); case BuiltInSubgroupLocalInvocationId: // FIXME: Should work in any stage case BuiltInSubgroupSize: // FIXME: Should work in any stage if (msl_options.emulate_subgroups) return ""; return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " "); case BuiltInPatchVertices: return ""; // Others come from stage input. default: break; } } if (msl_options.multi_patch_workgroup) return ""; uint32_t locn; if (is_builtin) locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index); else locn = get_member_location(type.self, index); if (locn != k_unknown_location) return string(" [[attribute(") + convert_to_string(locn) + ")]]"; } // Tessellation control function outputs if (execution.model == ExecutionModelTessellationControl && type.storage == StorageClassOutput) { // For this type of shader, we always arrange for it to capture its // output to a buffer. For this reason, qualifiers are irrelevant here. return ""; } // Tessellation evaluation function inputs if (execution.model == ExecutionModelTessellationEvaluation && type.storage == StorageClassInput) { if (is_builtin) { switch (builtin) { case BuiltInPrimitiveId: case BuiltInTessCoord: return string(" [[") + builtin_qualifier(builtin) + "]]"; case BuiltInPatchVertices: return ""; // Others come from stage input. default: break; } } // The special control point array must not be marked with an attribute. if (get_type(type.member_types[index]).basetype == SPIRType::ControlPointArray) return ""; uint32_t locn; if (is_builtin) locn = get_or_allocate_builtin_input_member_location(builtin, type.self, index); else locn = get_member_location(type.self, index); if (locn != k_unknown_location) return string(" [[attribute(") + convert_to_string(locn) + ")]]"; } // Tessellation evaluation function outputs were handled above. // Fragment function inputs if (execution.model == ExecutionModelFragment && type.storage == StorageClassInput) { string quals; if (is_builtin) { switch (builtin) { case BuiltInViewIndex: if (!msl_options.multiview || !msl_options.multiview_layered_rendering) break; /* fallthrough */ case BuiltInFrontFacing: case BuiltInPointCoord: case BuiltInFragCoord: case BuiltInSampleId: case BuiltInSampleMask: case BuiltInLayer: case BuiltInBaryCoordNV: case BuiltInBaryCoordNoPerspNV: quals = builtin_qualifier(builtin); break; case BuiltInClipDistance: return join(" [[user(clip", get_member_decoration(type.self, index, DecorationIndex), ")]]"); case BuiltInCullDistance: return join(" [[user(cull", get_member_decoration(type.self, index, DecorationIndex), ")]]"); default: break; } } else quals = member_location_attribute_qualifier(type, index); if (builtin == BuiltInBaryCoordNV || builtin == BuiltInBaryCoordNoPerspNV) { if (has_member_decoration(type.self, index, DecorationFlat) || has_member_decoration(type.self, index, DecorationCentroid) || has_member_decoration(type.self, index, DecorationSample) || has_member_decoration(type.self, index, DecorationNoPerspective)) { // NoPerspective is baked into the builtin type. SPIRV_CROSS_THROW( "Flat, Centroid, Sample, NoPerspective decorations are not supported for BaryCoord inputs."); } } // Don't bother decorating integers with the 'flat' attribute; it's // the default (in fact, the only option). Also don't bother with the // FragCoord builtin; it's always noperspective on Metal. if (!type_is_integral(mbr_type) && (!is_builtin || builtin != BuiltInFragCoord)) { if (has_member_decoration(type.self, index, DecorationFlat)) { if (!quals.empty()) quals += ", "; quals += "flat"; } else if (has_member_decoration(type.self, index, DecorationCentroid)) { if (!quals.empty()) quals += ", "; if (has_member_decoration(type.self, index, DecorationNoPerspective)) quals += "centroid_no_perspective"; else quals += "centroid_perspective"; } else if (has_member_decoration(type.self, index, DecorationSample)) { if (!quals.empty()) quals += ", "; if (has_member_decoration(type.self, index, DecorationNoPerspective)) quals += "sample_no_perspective"; else quals += "sample_perspective"; } else if (has_member_decoration(type.self, index, DecorationNoPerspective)) { if (!quals.empty()) quals += ", "; quals += "center_no_perspective"; } } if (!quals.empty()) return " [[" + quals + "]]"; } // Fragment function outputs if (execution.model == ExecutionModelFragment && type.storage == StorageClassOutput) { if (is_builtin) { switch (builtin) { case BuiltInFragStencilRefEXT: // Similar to PointSize, only mark FragStencilRef if there's a stencil buffer. // Some shaders may include a FragStencilRef builtin even when used to render // without a stencil attachment, and Metal will reject this builtin // when compiling the shader into a render pipeline that does not set // stencilAttachmentPixelFormat. if (!msl_options.enable_frag_stencil_ref_builtin) return ""; if (!msl_options.supports_msl_version(2, 1)) SPIRV_CROSS_THROW("Stencil export only supported in MSL 2.1 and up."); return string(" [[") + builtin_qualifier(builtin) + "]]"; case BuiltInFragDepth: // Ditto FragDepth. if (!msl_options.enable_frag_depth_builtin) return ""; /* fallthrough */ case BuiltInSampleMask: return string(" [[") + builtin_qualifier(builtin) + "]]"; default: return ""; } } uint32_t locn = get_member_location(type.self, index); // Metal will likely complain about missing color attachments, too. if (locn != k_unknown_location && !(msl_options.enable_frag_output_mask & (1 << locn))) return ""; if (locn != k_unknown_location && has_member_decoration(type.self, index, DecorationIndex)) return join(" [[color(", locn, "), index(", get_member_decoration(type.self, index, DecorationIndex), ")]]"); else if (locn != k_unknown_location) return join(" [[color(", locn, ")]]"); else if (has_member_decoration(type.self, index, DecorationIndex)) return join(" [[index(", get_member_decoration(type.self, index, DecorationIndex), ")]]"); else return ""; } // Compute function inputs if (execution.model == ExecutionModelGLCompute && type.storage == StorageClassInput) { if (is_builtin) { switch (builtin) { case BuiltInNumSubgroups: case BuiltInSubgroupId: case BuiltInSubgroupLocalInvocationId: // FIXME: Should work in any stage case BuiltInSubgroupSize: // FIXME: Should work in any stage if (msl_options.emulate_subgroups) break; /* fallthrough */ case BuiltInGlobalInvocationId: case BuiltInWorkgroupId: case BuiltInNumWorkgroups: case BuiltInLocalInvocationId: case BuiltInLocalInvocationIndex: return string(" [[") + builtin_qualifier(builtin) + "]]"; default: return ""; } } } return ""; } // A user-defined output variable is considered to match an input variable in the subsequent // stage if the two variables are declared with the same Location and Component decoration and // match in type and decoration, except that interpolation decorations are not required to match. // For the purposes of interface matching, variables declared without a Component decoration are // considered to have a Component decoration of zero. string CompilerMSL::member_location_attribute_qualifier(const SPIRType &type, uint32_t index) { string quals; uint32_t comp; uint32_t locn = get_member_location(type.self, index, &comp); if (locn != k_unknown_location) { quals += "user(locn"; quals += convert_to_string(locn); if (comp != k_unknown_component && comp != 0) { quals += "_"; quals += convert_to_string(comp); } quals += ")"; } return quals; } // Returns the location decoration of the member with the specified index in the specified type. // If the location of the member has been explicitly set, that location is used. If not, this // function assumes the members are ordered in their location order, and simply returns the // index as the location. uint32_t CompilerMSL::get_member_location(uint32_t type_id, uint32_t index, uint32_t *comp) const { if (comp) { if (has_member_decoration(type_id, index, DecorationComponent)) *comp = get_member_decoration(type_id, index, DecorationComponent); else *comp = k_unknown_component; } if (has_member_decoration(type_id, index, DecorationLocation)) return get_member_decoration(type_id, index, DecorationLocation); else return k_unknown_location; } uint32_t CompilerMSL::get_or_allocate_builtin_input_member_location(spv::BuiltIn builtin, uint32_t type_id, uint32_t index, uint32_t *comp) { uint32_t loc = get_member_location(type_id, index, comp); if (loc != k_unknown_location) return loc; if (comp) *comp = k_unknown_component; // Late allocation. Find a location which is unused by the application. // This can happen for built-in inputs in tessellation which are mixed and matched with user inputs. auto &mbr_type = get(get(type_id).member_types[index]); uint32_t count = type_to_location_count(mbr_type); loc = 0; const auto location_range_in_use = [this](uint32_t location, uint32_t location_count) -> bool { for (uint32_t i = 0; i < location_count; i++) if (location_inputs_in_use.count(location + i) != 0) return true; return false; }; while (location_range_in_use(loc, count)) loc++; set_member_decoration(type_id, index, DecorationLocation, loc); // Triangle tess level inputs are shared in one packed float4, // mark both builtins as sharing one location. if (get_execution_mode_bitset().get(ExecutionModeTriangles) && (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter)) { builtin_to_automatic_input_location[BuiltInTessLevelInner] = loc; builtin_to_automatic_input_location[BuiltInTessLevelOuter] = loc; } else builtin_to_automatic_input_location[builtin] = loc; mark_location_as_used_by_shader(loc, mbr_type, StorageClassInput, true); return loc; } // Returns the type declaration for a function, including the // entry type if the current function is the entry point function string CompilerMSL::func_type_decl(SPIRType &type) { // The regular function return type. If not processing the entry point function, that's all we need string return_type = type_to_glsl(type) + type_to_array_glsl(type); if (!processing_entry_point) return return_type; // If an outgoing interface block has been defined, and it should be returned, override the entry point return type bool ep_should_return_output = !get_is_rasterization_disabled(); if (stage_out_var_id && ep_should_return_output) return_type = type_to_glsl(get_stage_out_struct_type()) + type_to_array_glsl(type); // Prepend a entry type, based on the execution model string entry_type; auto &execution = get_entry_point(); switch (execution.model) { case ExecutionModelVertex: if (msl_options.vertex_for_tessellation && !msl_options.supports_msl_version(1, 2)) SPIRV_CROSS_THROW("Tessellation requires Metal 1.2."); entry_type = msl_options.vertex_for_tessellation ? "kernel" : "vertex"; break; case ExecutionModelTessellationEvaluation: if (!msl_options.supports_msl_version(1, 2)) SPIRV_CROSS_THROW("Tessellation requires Metal 1.2."); if (execution.flags.get(ExecutionModeIsolines)) SPIRV_CROSS_THROW("Metal does not support isoline tessellation."); if (msl_options.is_ios()) entry_type = join("[[ patch(", execution.flags.get(ExecutionModeTriangles) ? "triangle" : "quad", ") ]] vertex"); else entry_type = join("[[ patch(", execution.flags.get(ExecutionModeTriangles) ? "triangle" : "quad", ", ", execution.output_vertices, ") ]] vertex"); break; case ExecutionModelFragment: entry_type = uses_explicit_early_fragment_test() ? "[[ early_fragment_tests ]] fragment" : "fragment"; break; case ExecutionModelTessellationControl: if (!msl_options.supports_msl_version(1, 2)) SPIRV_CROSS_THROW("Tessellation requires Metal 1.2."); if (execution.flags.get(ExecutionModeIsolines)) SPIRV_CROSS_THROW("Metal does not support isoline tessellation."); /* fallthrough */ case ExecutionModelGLCompute: case ExecutionModelKernel: entry_type = "kernel"; break; default: entry_type = "unknown"; break; } return entry_type + " " + return_type; } bool CompilerMSL::uses_explicit_early_fragment_test() { auto &ep_flags = get_entry_point().flags; return ep_flags.get(ExecutionModeEarlyFragmentTests) || ep_flags.get(ExecutionModePostDepthCoverage); } // In MSL, address space qualifiers are required for all pointer or reference variables string CompilerMSL::get_argument_address_space(const SPIRVariable &argument) { const auto &type = get(argument.basetype); return get_type_address_space(type, argument.self, true); } string CompilerMSL::get_type_address_space(const SPIRType &type, uint32_t id, bool argument) { // This can be called for variable pointer contexts as well, so be very careful about which method we choose. Bitset flags; auto *var = maybe_get(id); if (var && type.basetype == SPIRType::Struct && (has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock))) flags = get_buffer_block_flags(id); else flags = get_decoration_bitset(id); const char *addr_space = nullptr; switch (type.storage) { case StorageClassWorkgroup: addr_space = "threadgroup"; break; case StorageClassStorageBuffer: { // For arguments from variable pointers, we use the write count deduction, so // we should not assume any constness here. Only for global SSBOs. bool readonly = false; if (!var || has_decoration(type.self, DecorationBlock)) readonly = flags.get(DecorationNonWritable); addr_space = readonly ? "const device" : "device"; break; } case StorageClassUniform: case StorageClassUniformConstant: case StorageClassPushConstant: if (type.basetype == SPIRType::Struct) { bool ssbo = has_decoration(type.self, DecorationBufferBlock); if (ssbo) addr_space = flags.get(DecorationNonWritable) ? "const device" : "device"; else addr_space = "constant"; } else if (!argument) { addr_space = "constant"; } else if (type_is_msl_framebuffer_fetch(type)) { // Subpass inputs are passed around by value. addr_space = ""; } break; case StorageClassFunction: case StorageClassGeneric: break; case StorageClassInput: if (get_execution_model() == ExecutionModelTessellationControl && var && var->basevariable == stage_in_ptr_var_id) addr_space = msl_options.multi_patch_workgroup ? "constant" : "threadgroup"; if (get_execution_model() == ExecutionModelFragment && var && var->basevariable == stage_in_var_id) addr_space = "thread"; break; case StorageClassOutput: if (capture_output_to_buffer) { if (var && type.storage == StorageClassOutput) { bool is_masked = is_stage_output_variable_masked(*var); if (is_masked) { if (is_tessellation_shader()) addr_space = "threadgroup"; else addr_space = "thread"; } else if (variable_decl_is_remapped_storage(*var, StorageClassWorkgroup)) addr_space = "threadgroup"; } if (!addr_space) addr_space = "device"; } break; default: break; } if (!addr_space) { // No address space for plain values. addr_space = type.pointer || (argument && type.basetype == SPIRType::ControlPointArray) ? "thread" : ""; } return join(flags.get(DecorationVolatile) || flags.get(DecorationCoherent) ? "volatile " : "", addr_space); } const char *CompilerMSL::to_restrict(uint32_t id, bool space) { // This can be called for variable pointer contexts as well, so be very careful about which method we choose. Bitset flags; if (ir.ids[id].get_type() == TypeVariable) { uint32_t type_id = expression_type_id(id); auto &type = expression_type(id); if (type.basetype == SPIRType::Struct && (has_decoration(type_id, DecorationBlock) || has_decoration(type_id, DecorationBufferBlock))) flags = get_buffer_block_flags(id); else flags = get_decoration_bitset(id); } else flags = get_decoration_bitset(id); return flags.get(DecorationRestrict) ? (space ? "restrict " : "restrict") : ""; } string CompilerMSL::entry_point_arg_stage_in() { string decl; if (get_execution_model() == ExecutionModelTessellationControl && msl_options.multi_patch_workgroup) return decl; // Stage-in structure uint32_t stage_in_id; if (get_execution_model() == ExecutionModelTessellationEvaluation) stage_in_id = patch_stage_in_var_id; else stage_in_id = stage_in_var_id; if (stage_in_id) { auto &var = get(stage_in_id); auto &type = get_variable_data_type(var); add_resource_name(var.self); decl = join(type_to_glsl(type), " ", to_name(var.self), " [[stage_in]]"); } return decl; } // Returns true if this input builtin should be a direct parameter on a shader function parameter list, // and false for builtins that should be passed or calculated some other way. bool CompilerMSL::is_direct_input_builtin(BuiltIn bi_type) { switch (bi_type) { // Vertex function in case BuiltInVertexId: case BuiltInVertexIndex: case BuiltInBaseVertex: case BuiltInInstanceId: case BuiltInInstanceIndex: case BuiltInBaseInstance: return get_execution_model() != ExecutionModelVertex || !msl_options.vertex_for_tessellation; // Tess. control function in case BuiltInPosition: case BuiltInPointSize: case BuiltInClipDistance: case BuiltInCullDistance: case BuiltInPatchVertices: return false; case BuiltInInvocationId: case BuiltInPrimitiveId: return get_execution_model() != ExecutionModelTessellationControl || !msl_options.multi_patch_workgroup; // Tess. evaluation function in case BuiltInTessLevelInner: case BuiltInTessLevelOuter: return false; // Fragment function in case BuiltInSamplePosition: case BuiltInHelperInvocation: case BuiltInBaryCoordNV: case BuiltInBaryCoordNoPerspNV: return false; case BuiltInViewIndex: return get_execution_model() == ExecutionModelFragment && msl_options.multiview && msl_options.multiview_layered_rendering; // Compute function in case BuiltInSubgroupId: case BuiltInNumSubgroups: return !msl_options.emulate_subgroups; // Any stage function in case BuiltInDeviceIndex: case BuiltInSubgroupEqMask: case BuiltInSubgroupGeMask: case BuiltInSubgroupGtMask: case BuiltInSubgroupLeMask: case BuiltInSubgroupLtMask: return false; case BuiltInSubgroupSize: if (msl_options.fixed_subgroup_size != 0) return false; /* fallthrough */ case BuiltInSubgroupLocalInvocationId: return !msl_options.emulate_subgroups; default: return true; } } // Returns true if this is a fragment shader that runs per sample, and false otherwise. bool CompilerMSL::is_sample_rate() const { auto &caps = get_declared_capabilities(); return get_execution_model() == ExecutionModelFragment && (msl_options.force_sample_rate_shading || std::find(caps.begin(), caps.end(), CapabilitySampleRateShading) != caps.end() || (msl_options.use_framebuffer_fetch_subpasses && need_subpass_input)); } bool CompilerMSL::is_intersection_query() const { auto &caps = get_declared_capabilities(); return std::find(caps.begin(), caps.end(), CapabilityRayQueryKHR) != caps.end(); } void CompilerMSL::entry_point_args_builtin(string &ep_args) { // Builtin variables SmallVector, 8> active_builtins; ir.for_each_typed_id([&](uint32_t var_id, SPIRVariable &var) { if (var.storage != StorageClassInput) return; auto bi_type = BuiltIn(get_decoration(var_id, DecorationBuiltIn)); // Don't emit SamplePosition as a separate parameter. In the entry // point, we get that by calling get_sample_position() on the sample ID. if (is_builtin_variable(var) && get_variable_data_type(var).basetype != SPIRType::Struct && get_variable_data_type(var).basetype != SPIRType::ControlPointArray) { // If the builtin is not part of the active input builtin set, don't emit it. // Relevant for multiple entry-point modules which might declare unused builtins. if (!active_input_builtins.get(bi_type) || !interface_variable_exists_in_entry_point(var_id)) return; // Remember this variable. We may need to correct its type. active_builtins.push_back(make_pair(&var, bi_type)); if (is_direct_input_builtin(bi_type)) { if (!ep_args.empty()) ep_args += ", "; // Handle HLSL-style 0-based vertex/instance index. builtin_declaration = true; // Handle different MSL gl_TessCoord types. (float2, float3) if (bi_type == BuiltInTessCoord && get_entry_point().flags.get(ExecutionModeQuads)) ep_args += "float2 " + to_expression(var_id) + "In"; else ep_args += builtin_type_decl(bi_type, var_id) + " " + to_expression(var_id); ep_args += " [[" + builtin_qualifier(bi_type); if (bi_type == BuiltInSampleMask && get_entry_point().flags.get(ExecutionModePostDepthCoverage)) { if (!msl_options.supports_msl_version(2)) SPIRV_CROSS_THROW("Post-depth coverage requires MSL 2.0."); if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3)) SPIRV_CROSS_THROW("Post-depth coverage on Mac requires MSL 2.3."); ep_args += ", post_depth_coverage"; } ep_args += "]]"; builtin_declaration = false; } } if (has_extended_decoration(var_id, SPIRVCrossDecorationBuiltInDispatchBase)) { // This is a special implicit builtin, not corresponding to any SPIR-V builtin, // which holds the base that was passed to vkCmdDispatchBase() or vkCmdDrawIndexed(). If it's present, // assume we emitted it for a good reason. assert(msl_options.supports_msl_version(1, 2)); if (!ep_args.empty()) ep_args += ", "; ep_args += type_to_glsl(get_variable_data_type(var)) + " " + to_expression(var_id) + " [[grid_origin]]"; } if (has_extended_decoration(var_id, SPIRVCrossDecorationBuiltInStageInputSize)) { // This is another special implicit builtin, not corresponding to any SPIR-V builtin, // which holds the number of vertices and instances to draw. If it's present, // assume we emitted it for a good reason. assert(msl_options.supports_msl_version(1, 2)); if (!ep_args.empty()) ep_args += ", "; ep_args += type_to_glsl(get_variable_data_type(var)) + " " + to_expression(var_id) + " [[grid_size]]"; } }); // Correct the types of all encountered active builtins. We couldn't do this before // because ensure_correct_builtin_type() may increase the bound, which isn't allowed // while iterating over IDs. for (auto &var : active_builtins) var.first->basetype = ensure_correct_builtin_type(var.first->basetype, var.second); // Handle HLSL-style 0-based vertex/instance index. if (needs_base_vertex_arg == TriState::Yes) ep_args += built_in_func_arg(BuiltInBaseVertex, !ep_args.empty()); if (needs_base_instance_arg == TriState::Yes) ep_args += built_in_func_arg(BuiltInBaseInstance, !ep_args.empty()); if (capture_output_to_buffer) { // Add parameters to hold the indirect draw parameters and the shader output. This has to be handled // specially because it needs to be a pointer, not a reference. if (stage_out_var_id) { if (!ep_args.empty()) ep_args += ", "; ep_args += join("device ", type_to_glsl(get_stage_out_struct_type()), "* ", output_buffer_var_name, " [[buffer(", msl_options.shader_output_buffer_index, ")]]"); } if (get_execution_model() == ExecutionModelTessellationControl) { if (!ep_args.empty()) ep_args += ", "; ep_args += join("constant uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]"); } else if (stage_out_var_id && !(get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation)) { if (!ep_args.empty()) ep_args += ", "; ep_args += join("device uint* spvIndirectParams [[buffer(", msl_options.indirect_params_buffer_index, ")]]"); } if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation && (active_input_builtins.get(BuiltInVertexIndex) || active_input_builtins.get(BuiltInVertexId)) && msl_options.vertex_index_type != Options::IndexType::None) { // Add the index buffer so we can set gl_VertexIndex correctly. if (!ep_args.empty()) ep_args += ", "; switch (msl_options.vertex_index_type) { case Options::IndexType::None: break; case Options::IndexType::UInt16: ep_args += join("const device ushort* ", index_buffer_var_name, " [[buffer(", msl_options.shader_index_buffer_index, ")]]"); break; case Options::IndexType::UInt32: ep_args += join("const device uint* ", index_buffer_var_name, " [[buffer(", msl_options.shader_index_buffer_index, ")]]"); break; } } // Tessellation control shaders get three additional parameters: // a buffer to hold the per-patch data, a buffer to hold the per-patch // tessellation levels, and a block of workgroup memory to hold the // input control point data. if (get_execution_model() == ExecutionModelTessellationControl) { if (patch_stage_out_var_id) { if (!ep_args.empty()) ep_args += ", "; ep_args += join("device ", type_to_glsl(get_patch_stage_out_struct_type()), "* ", patch_output_buffer_var_name, " [[buffer(", convert_to_string(msl_options.shader_patch_output_buffer_index), ")]]"); } if (!ep_args.empty()) ep_args += ", "; ep_args += join("device ", get_tess_factor_struct_name(), "* ", tess_factor_buffer_var_name, " [[buffer(", convert_to_string(msl_options.shader_tess_factor_buffer_index), ")]]"); // Initializer for tess factors must be handled specially since it's never declared as a normal variable. uint32_t outer_factor_initializer_id = 0; uint32_t inner_factor_initializer_id = 0; ir.for_each_typed_id([&](uint32_t, SPIRVariable &var) { if (!has_decoration(var.self, DecorationBuiltIn) || var.storage != StorageClassOutput || !var.initializer) return; BuiltIn builtin = BuiltIn(get_decoration(var.self, DecorationBuiltIn)); if (builtin == BuiltInTessLevelInner) inner_factor_initializer_id = var.initializer; else if (builtin == BuiltInTessLevelOuter) outer_factor_initializer_id = var.initializer; }); const SPIRConstant *c = nullptr; if (outer_factor_initializer_id && (c = maybe_get(outer_factor_initializer_id))) { auto &entry_func = get(ir.default_entry_point); entry_func.fixup_hooks_in.push_back([=]() { uint32_t components = get_execution_mode_bitset().get(ExecutionModeTriangles) ? 3 : 4; for (uint32_t i = 0; i < components; i++) { statement(builtin_to_glsl(BuiltInTessLevelOuter, StorageClassOutput), "[", i, "] = ", "half(", to_expression(c->subconstants[i]), ");"); } }); } if (inner_factor_initializer_id && (c = maybe_get(inner_factor_initializer_id))) { auto &entry_func = get(ir.default_entry_point); if (get_execution_mode_bitset().get(ExecutionModeTriangles)) { entry_func.fixup_hooks_in.push_back([=]() { statement(builtin_to_glsl(BuiltInTessLevelInner, StorageClassOutput), " = ", "half(", to_expression(c->subconstants[0]), ");"); }); } else { entry_func.fixup_hooks_in.push_back([=]() { for (uint32_t i = 0; i < 2; i++) { statement(builtin_to_glsl(BuiltInTessLevelInner, StorageClassOutput), "[", i, "] = ", "half(", to_expression(c->subconstants[i]), ");"); } }); } } if (stage_in_var_id) { if (!ep_args.empty()) ep_args += ", "; if (msl_options.multi_patch_workgroup) { ep_args += join("device ", type_to_glsl(get_stage_in_struct_type()), "* ", input_buffer_var_name, " [[buffer(", convert_to_string(msl_options.shader_input_buffer_index), ")]]"); } else { ep_args += join("threadgroup ", type_to_glsl(get_stage_in_struct_type()), "* ", input_wg_var_name, " [[threadgroup(", convert_to_string(msl_options.shader_input_wg_index), ")]]"); } } } } } string CompilerMSL::entry_point_args_argument_buffer(bool append_comma) { string ep_args = entry_point_arg_stage_in(); Bitset claimed_bindings; for (uint32_t i = 0; i < kMaxArgumentBuffers; i++) { uint32_t id = argument_buffer_ids[i]; if (id == 0) continue; add_resource_name(id); auto &var = get(id); auto &type = get_variable_data_type(var); if (!ep_args.empty()) ep_args += ", "; // Check if the argument buffer binding itself has been remapped. uint32_t buffer_binding; auto itr = resource_bindings.find({ get_entry_point().model, i, kArgumentBufferBinding }); if (itr != end(resource_bindings)) { buffer_binding = itr->second.first.msl_buffer; itr->second.second = true; } else { // As a fallback, directly map desc set <-> binding. // If that was taken, take the next buffer binding. if (claimed_bindings.get(i)) buffer_binding = next_metal_resource_index_buffer; else buffer_binding = i; } claimed_bindings.set(buffer_binding); ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "& " + to_restrict(id) + to_name(id); ep_args += " [[buffer(" + convert_to_string(buffer_binding) + ")]]"; next_metal_resource_index_buffer = max(next_metal_resource_index_buffer, buffer_binding + 1); } entry_point_args_discrete_descriptors(ep_args); entry_point_args_builtin(ep_args); if (!ep_args.empty() && append_comma) ep_args += ", "; return ep_args; } const MSLConstexprSampler *CompilerMSL::find_constexpr_sampler(uint32_t id) const { // Try by ID. { auto itr = constexpr_samplers_by_id.find(id); if (itr != end(constexpr_samplers_by_id)) return &itr->second; } // Try by binding. { uint32_t desc_set = get_decoration(id, DecorationDescriptorSet); uint32_t binding = get_decoration(id, DecorationBinding); auto itr = constexpr_samplers_by_binding.find({ desc_set, binding }); if (itr != end(constexpr_samplers_by_binding)) return &itr->second; } return nullptr; } void CompilerMSL::entry_point_args_discrete_descriptors(string &ep_args) { // Output resources, sorted by resource index & type // We need to sort to work around a bug on macOS 10.13 with NVidia drivers where switching between shaders // with different order of buffers can result in issues with buffer assignments inside the driver. struct Resource { SPIRVariable *var; string name; SPIRType::BaseType basetype; uint32_t index; uint32_t plane; uint32_t secondary_index; }; SmallVector resources; ir.for_each_typed_id([&](uint32_t var_id, SPIRVariable &var) { if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant || var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer) && !is_hidden_variable(var)) { auto &type = get_variable_data_type(var); if (is_supported_argument_buffer_type(type) && var.storage != StorageClassPushConstant) { uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet); if (descriptor_set_is_argument_buffer(desc_set)) return; } const MSLConstexprSampler *constexpr_sampler = nullptr; if (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Sampler) { constexpr_sampler = find_constexpr_sampler(var_id); if (constexpr_sampler) { // Mark this ID as a constexpr sampler for later in case it came from set/bindings. constexpr_samplers_by_id[var_id] = *constexpr_sampler; } } // Emulate texture2D atomic operations uint32_t secondary_index = 0; if (atomic_image_vars.count(var.self)) { secondary_index = get_metal_resource_index(var, SPIRType::AtomicCounter, 0); } if (type.basetype == SPIRType::SampledImage) { add_resource_name(var_id); uint32_t plane_count = 1; if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable) plane_count = constexpr_sampler->planes; for (uint32_t i = 0; i < plane_count; i++) resources.push_back({ &var, to_name(var_id), SPIRType::Image, get_metal_resource_index(var, SPIRType::Image, i), i, secondary_index }); if (type.image.dim != DimBuffer && !constexpr_sampler) { resources.push_back({ &var, to_sampler_expression(var_id), SPIRType::Sampler, get_metal_resource_index(var, SPIRType::Sampler), 0, 0 }); } } else if (!constexpr_sampler) { // constexpr samplers are not declared as resources. add_resource_name(var_id); resources.push_back({ &var, to_name(var_id), type.basetype, get_metal_resource_index(var, type.basetype), 0, secondary_index }); } } }); sort(resources.begin(), resources.end(), [](const Resource &lhs, const Resource &rhs) { return tie(lhs.basetype, lhs.index) < tie(rhs.basetype, rhs.index); }); for (auto &r : resources) { auto &var = *r.var; auto &type = get_variable_data_type(var); uint32_t var_id = var.self; switch (r.basetype) { case SPIRType::Struct: { auto &m = ir.meta[type.self]; if (m.members.size() == 0) break; if (!type.array.empty()) { if (type.array.size() > 1) SPIRV_CROSS_THROW("Arrays of arrays of buffers are not supported."); // Metal doesn't directly support this, so we must expand the // array. We'll declare a local array to hold these elements // later. uint32_t array_size = to_array_size_literal(type); if (array_size == 0) SPIRV_CROSS_THROW("Unsized arrays of buffers are not supported in MSL."); // Allow Metal to use the array template to make arrays a value type is_using_builtin_array = true; buffer_arrays.push_back(var_id); for (uint32_t i = 0; i < array_size; ++i) { if (!ep_args.empty()) ep_args += ", "; ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "* " + to_restrict(var_id) + r.name + "_" + convert_to_string(i); ep_args += " [[buffer(" + convert_to_string(r.index + i) + ")"; if (interlocked_resources.count(var_id)) ep_args += ", raster_order_group(0)"; ep_args += "]]"; } is_using_builtin_array = false; } else { if (!ep_args.empty()) ep_args += ", "; ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "& " + to_restrict(var_id) + r.name; ep_args += " [[buffer(" + convert_to_string(r.index) + ")"; if (interlocked_resources.count(var_id)) ep_args += ", raster_order_group(0)"; ep_args += "]]"; } break; } case SPIRType::Sampler: if (!ep_args.empty()) ep_args += ", "; ep_args += sampler_type(type, var_id) + " " + r.name; ep_args += " [[sampler(" + convert_to_string(r.index) + ")]]"; break; case SPIRType::Image: { if (!ep_args.empty()) ep_args += ", "; // Use Metal's native frame-buffer fetch API for subpass inputs. const auto &basetype = get(var.basetype); if (!type_is_msl_framebuffer_fetch(basetype)) { ep_args += image_type_glsl(type, var_id) + " " + r.name; if (r.plane > 0) ep_args += join(plane_name_suffix, r.plane); ep_args += " [[texture(" + convert_to_string(r.index) + ")"; if (interlocked_resources.count(var_id)) ep_args += ", raster_order_group(0)"; ep_args += "]]"; } else { if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 3)) SPIRV_CROSS_THROW("Framebuffer fetch on Mac is not supported before MSL 2.3."); ep_args += image_type_glsl(type, var_id) + " " + r.name; ep_args += " [[color(" + convert_to_string(r.index) + ")]]"; } // Emulate texture2D atomic operations if (atomic_image_vars.count(var.self)) { ep_args += ", device atomic_" + type_to_glsl(get(basetype.image.type), 0); ep_args += "* " + r.name + "_atomic"; ep_args += " [[buffer(" + convert_to_string(r.secondary_index) + ")"; if (interlocked_resources.count(var_id)) ep_args += ", raster_order_group(0)"; ep_args += "]]"; } break; } case SPIRType::AccelerationStructure: ep_args += ", " + type_to_glsl(type, var_id) + " " + r.name; ep_args += " [[buffer(" + convert_to_string(r.index) + ")]]"; break; default: if (!ep_args.empty()) ep_args += ", "; if (!type.pointer) ep_args += get_type_address_space(get(var.basetype), var_id) + " " + type_to_glsl(type, var_id) + "& " + r.name; else ep_args += type_to_glsl(type, var_id) + " " + r.name; ep_args += " [[buffer(" + convert_to_string(r.index) + ")"; if (interlocked_resources.count(var_id)) ep_args += ", raster_order_group(0)"; ep_args += "]]"; break; } } } // Returns a string containing a comma-delimited list of args for the entry point function // This is the "classic" method of MSL 1 when we don't have argument buffer support. string CompilerMSL::entry_point_args_classic(bool append_comma) { string ep_args = entry_point_arg_stage_in(); entry_point_args_discrete_descriptors(ep_args); entry_point_args_builtin(ep_args); if (!ep_args.empty() && append_comma) ep_args += ", "; return ep_args; } void CompilerMSL::fix_up_shader_inputs_outputs() { auto &entry_func = this->get(ir.default_entry_point); // Emit a guard to ensure we don't execute beyond the last vertex. // Vertex shaders shouldn't have the problems with barriers in non-uniform control flow that // tessellation control shaders do, so early returns should be OK. We may need to revisit this // if it ever becomes possible to use barriers from a vertex shader. if (get_execution_model() == ExecutionModelVertex && msl_options.vertex_for_tessellation) { entry_func.fixup_hooks_in.push_back([this]() { statement("if (any(", to_expression(builtin_invocation_id_id), " >= ", to_expression(builtin_stage_input_size_id), "))"); statement(" return;"); }); } // Look for sampled images and buffer. Add hooks to set up the swizzle constants or array lengths. ir.for_each_typed_id([&](uint32_t, SPIRVariable &var) { auto &type = get_variable_data_type(var); uint32_t var_id = var.self; bool ssbo = has_decoration(type.self, DecorationBufferBlock); if (var.storage == StorageClassUniformConstant && !is_hidden_variable(var)) { if (msl_options.swizzle_texture_samples && has_sampled_images && is_sampled_image_type(type)) { entry_func.fixup_hooks_in.push_back([this, &type, &var, var_id]() { bool is_array_type = !type.array.empty(); uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet); if (descriptor_set_is_argument_buffer(desc_set)) { statement("constant uint", is_array_type ? "* " : "& ", to_swizzle_expression(var_id), is_array_type ? " = &" : " = ", to_name(argument_buffer_ids[desc_set]), ".spvSwizzleConstants", "[", convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];"); } else { // If we have an array of images, we need to be able to index into it, so take a pointer instead. statement("constant uint", is_array_type ? "* " : "& ", to_swizzle_expression(var_id), is_array_type ? " = &" : " = ", to_name(swizzle_buffer_id), "[", convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];"); } }); } } else if ((var.storage == StorageClassStorageBuffer || (var.storage == StorageClassUniform && ssbo)) && !is_hidden_variable(var)) { if (buffers_requiring_array_length.count(var.self)) { entry_func.fixup_hooks_in.push_back([this, &type, &var, var_id]() { bool is_array_type = !type.array.empty(); uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet); if (descriptor_set_is_argument_buffer(desc_set)) { statement("constant uint", is_array_type ? "* " : "& ", to_buffer_size_expression(var_id), is_array_type ? " = &" : " = ", to_name(argument_buffer_ids[desc_set]), ".spvBufferSizeConstants", "[", convert_to_string(get_metal_resource_index(var, SPIRType::Image)), "];"); } else { // If we have an array of images, we need to be able to index into it, so take a pointer instead. statement("constant uint", is_array_type ? "* " : "& ", to_buffer_size_expression(var_id), is_array_type ? " = &" : " = ", to_name(buffer_size_buffer_id), "[", convert_to_string(get_metal_resource_index(var, type.basetype)), "];"); } }); } } }); // Builtin variables ir.for_each_typed_id([this, &entry_func](uint32_t, SPIRVariable &var) { uint32_t var_id = var.self; BuiltIn bi_type = ir.meta[var_id].decoration.builtin_type; if (var.storage != StorageClassInput && var.storage != StorageClassOutput) return; if (!interface_variable_exists_in_entry_point(var.self)) return; if (var.storage == StorageClassInput && is_builtin_variable(var) && active_input_builtins.get(bi_type)) { switch (bi_type) { case BuiltInSamplePosition: entry_func.fixup_hooks_in.push_back([=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = get_sample_position(", to_expression(builtin_sample_id_id), ");"); }); break; case BuiltInFragCoord: if (is_sample_rate()) { entry_func.fixup_hooks_in.push_back([=]() { statement(to_expression(var_id), ".xy += get_sample_position(", to_expression(builtin_sample_id_id), ") - 0.5;"); }); } break; case BuiltInInvocationId: // This is direct-mapped without multi-patch workgroups. if (get_execution_model() != ExecutionModelTessellationControl || !msl_options.multi_patch_workgroup) break; entry_func.fixup_hooks_in.push_back([=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", to_expression(builtin_invocation_id_id), ".x % ", this->get_entry_point().output_vertices, ";"); }); break; case BuiltInPrimitiveId: // This is natively supported by fragment and tessellation evaluation shaders. // In tessellation control shaders, this is direct-mapped without multi-patch workgroups. if (get_execution_model() != ExecutionModelTessellationControl || !msl_options.multi_patch_workgroup) break; entry_func.fixup_hooks_in.push_back([=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = min(", to_expression(builtin_invocation_id_id), ".x / ", this->get_entry_point().output_vertices, ", spvIndirectParams[1] - 1);"); }); break; case BuiltInPatchVertices: if (get_execution_model() == ExecutionModelTessellationEvaluation) entry_func.fixup_hooks_in.push_back([=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", to_expression(patch_stage_in_var_id), ".gl_in.size();"); }); else entry_func.fixup_hooks_in.push_back([=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = spvIndirectParams[0];"); }); break; case BuiltInTessCoord: if (get_entry_point().flags.get(ExecutionModeQuads)) { // The entry point will only have a float2 TessCoord variable. // Pad to float3. entry_func.fixup_hooks_in.push_back([=]() { auto name = builtin_to_glsl(BuiltInTessCoord, StorageClassInput); statement("float3 " + name + " = float3(" + name + "In.x, " + name + "In.y, 0.0);"); }); } // Emit a fixup to account for the shifted domain. Don't do this for triangles; // MoltenVK will just reverse the winding order instead. if (msl_options.tess_domain_origin_lower_left && !get_entry_point().flags.get(ExecutionModeTriangles)) { string tc = to_expression(var_id); entry_func.fixup_hooks_in.push_back([=]() { statement(tc, ".y = 1.0 - ", tc, ".y;"); }); } break; case BuiltInSubgroupId: if (!msl_options.emulate_subgroups) break; // For subgroup emulation, this is the same as the local invocation index. entry_func.fixup_hooks_in.push_back([=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", to_expression(builtin_local_invocation_index_id), ";"); }); break; case BuiltInNumSubgroups: if (!msl_options.emulate_subgroups) break; // For subgroup emulation, this is the same as the workgroup size. entry_func.fixup_hooks_in.push_back([=]() { auto &type = expression_type(builtin_workgroup_size_id); string size_expr = to_expression(builtin_workgroup_size_id); if (type.vecsize >= 3) size_expr = join(size_expr, ".x * ", size_expr, ".y * ", size_expr, ".z"); else if (type.vecsize == 2) size_expr = join(size_expr, ".x * ", size_expr, ".y"); statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", size_expr, ";"); }); break; case BuiltInSubgroupLocalInvocationId: if (!msl_options.emulate_subgroups) break; // For subgroup emulation, assume subgroups of size 1. entry_func.fixup_hooks_in.push_back( [=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = 0;"); }); break; case BuiltInSubgroupSize: if (msl_options.emulate_subgroups) { // For subgroup emulation, assume subgroups of size 1. entry_func.fixup_hooks_in.push_back( [=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = 1;"); }); } else if (msl_options.fixed_subgroup_size != 0) { entry_func.fixup_hooks_in.push_back([=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", msl_options.fixed_subgroup_size, ";"); }); } break; case BuiltInSubgroupEqMask: if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS."); if (!msl_options.supports_msl_version(2, 1)) SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1."); entry_func.fixup_hooks_in.push_back([=]() { if (msl_options.is_ios()) { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", "uint4(1 << ", to_expression(builtin_subgroup_invocation_id_id), ", uint3(0));"); } else { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", to_expression(builtin_subgroup_invocation_id_id), " >= 32 ? uint4(0, (1 << (", to_expression(builtin_subgroup_invocation_id_id), " - 32)), uint2(0)) : uint4(1 << ", to_expression(builtin_subgroup_invocation_id_id), ", uint3(0));"); } }); break; case BuiltInSubgroupGeMask: if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS."); if (!msl_options.supports_msl_version(2, 1)) SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1."); if (msl_options.fixed_subgroup_size != 0) add_spv_func_and_recompile(SPVFuncImplSubgroupBallot); entry_func.fixup_hooks_in.push_back([=]() { // Case where index < 32, size < 32: // mask0 = bfi(0, 0xFFFFFFFF, index, size - index); // mask1 = bfi(0, 0xFFFFFFFF, 0, 0); // Gives 0 // Case where index < 32 but size >= 32: // mask0 = bfi(0, 0xFFFFFFFF, index, 32 - index); // mask1 = bfi(0, 0xFFFFFFFF, 0, size - 32); // Case where index >= 32: // mask0 = bfi(0, 0xFFFFFFFF, 32, 0); // Gives 0 // mask1 = bfi(0, 0xFFFFFFFF, index - 32, size - index); // This is expressed without branches to avoid divergent // control flow--hence the complicated min/max expressions. // This is further complicated by the fact that if you attempt // to bfi/bfe out-of-bounds on Metal, undefined behavior is the // result. if (msl_options.fixed_subgroup_size > 32) { // Don't use the subgroup size variable with fixed subgroup sizes, // since the variables could be defined in the wrong order. statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = uint4(insert_bits(0u, 0xFFFFFFFF, min(", to_expression(builtin_subgroup_invocation_id_id), ", 32u), (uint)max(32 - (int)", to_expression(builtin_subgroup_invocation_id_id), ", 0)), insert_bits(0u, 0xFFFFFFFF," " (uint)max((int)", to_expression(builtin_subgroup_invocation_id_id), " - 32, 0), ", msl_options.fixed_subgroup_size, " - max(", to_expression(builtin_subgroup_invocation_id_id), ", 32u)), uint2(0));"); } else if (msl_options.fixed_subgroup_size != 0) { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = uint4(insert_bits(0u, 0xFFFFFFFF, ", to_expression(builtin_subgroup_invocation_id_id), ", ", msl_options.fixed_subgroup_size, " - ", to_expression(builtin_subgroup_invocation_id_id), "), uint3(0));"); } else if (msl_options.is_ios()) { // On iOS, the SIMD-group size will currently never exceed 32. statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = uint4(insert_bits(0u, 0xFFFFFFFF, ", to_expression(builtin_subgroup_invocation_id_id), ", ", to_expression(builtin_subgroup_size_id), " - ", to_expression(builtin_subgroup_invocation_id_id), "), uint3(0));"); } else { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = uint4(insert_bits(0u, 0xFFFFFFFF, min(", to_expression(builtin_subgroup_invocation_id_id), ", 32u), (uint)max(min((int)", to_expression(builtin_subgroup_size_id), ", 32) - (int)", to_expression(builtin_subgroup_invocation_id_id), ", 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)", to_expression(builtin_subgroup_invocation_id_id), " - 32, 0), (uint)max((int)", to_expression(builtin_subgroup_size_id), " - (int)max(", to_expression(builtin_subgroup_invocation_id_id), ", 32u), 0)), uint2(0));"); } }); break; case BuiltInSubgroupGtMask: if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS."); if (!msl_options.supports_msl_version(2, 1)) SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1."); add_spv_func_and_recompile(SPVFuncImplSubgroupBallot); entry_func.fixup_hooks_in.push_back([=]() { // The same logic applies here, except now the index is one // more than the subgroup invocation ID. if (msl_options.fixed_subgroup_size > 32) { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = uint4(insert_bits(0u, 0xFFFFFFFF, min(", to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), (uint)max(32 - (int)", to_expression(builtin_subgroup_invocation_id_id), " - 1, 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)", to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0), ", msl_options.fixed_subgroup_size, " - max(", to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u)), uint2(0));"); } else if (msl_options.fixed_subgroup_size != 0) { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = uint4(insert_bits(0u, 0xFFFFFFFF, ", to_expression(builtin_subgroup_invocation_id_id), " + 1, ", msl_options.fixed_subgroup_size, " - ", to_expression(builtin_subgroup_invocation_id_id), " - 1), uint3(0));"); } else if (msl_options.is_ios()) { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = uint4(insert_bits(0u, 0xFFFFFFFF, ", to_expression(builtin_subgroup_invocation_id_id), " + 1, ", to_expression(builtin_subgroup_size_id), " - ", to_expression(builtin_subgroup_invocation_id_id), " - 1), uint3(0));"); } else { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = uint4(insert_bits(0u, 0xFFFFFFFF, min(", to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), (uint)max(min((int)", to_expression(builtin_subgroup_size_id), ", 32) - (int)", to_expression(builtin_subgroup_invocation_id_id), " - 1, 0)), insert_bits(0u, 0xFFFFFFFF, (uint)max((int)", to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0), (uint)max((int)", to_expression(builtin_subgroup_size_id), " - (int)max(", to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u), 0)), uint2(0));"); } }); break; case BuiltInSubgroupLeMask: if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS."); if (!msl_options.supports_msl_version(2, 1)) SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1."); add_spv_func_and_recompile(SPVFuncImplSubgroupBallot); entry_func.fixup_hooks_in.push_back([=]() { if (msl_options.is_ios()) { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = uint4(extract_bits(0xFFFFFFFF, 0, ", to_expression(builtin_subgroup_invocation_id_id), " + 1), uint3(0));"); } else { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = uint4(extract_bits(0xFFFFFFFF, 0, min(", to_expression(builtin_subgroup_invocation_id_id), " + 1, 32u)), extract_bits(0xFFFFFFFF, 0, (uint)max((int)", to_expression(builtin_subgroup_invocation_id_id), " + 1 - 32, 0)), uint2(0));"); } }); break; case BuiltInSubgroupLtMask: if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.2 on iOS."); if (!msl_options.supports_msl_version(2, 1)) SPIRV_CROSS_THROW("Subgroup ballot functionality requires Metal 2.1."); add_spv_func_and_recompile(SPVFuncImplSubgroupBallot); entry_func.fixup_hooks_in.push_back([=]() { if (msl_options.is_ios()) { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = uint4(extract_bits(0xFFFFFFFF, 0, ", to_expression(builtin_subgroup_invocation_id_id), "), uint3(0));"); } else { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = uint4(extract_bits(0xFFFFFFFF, 0, min(", to_expression(builtin_subgroup_invocation_id_id), ", 32u)), extract_bits(0xFFFFFFFF, 0, (uint)max((int)", to_expression(builtin_subgroup_invocation_id_id), " - 32, 0)), uint2(0));"); } }); break; case BuiltInViewIndex: if (!msl_options.multiview) { // According to the Vulkan spec, when not running under a multiview // render pass, ViewIndex is 0. entry_func.fixup_hooks_in.push_back([=]() { statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = 0;"); }); } else if (msl_options.view_index_from_device_index) { // In this case, we take the view index from that of the device we're running on. entry_func.fixup_hooks_in.push_back([=]() { statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", msl_options.device_index, ";"); }); // We actually don't want to set the render_target_array_index here. // Since every physical device is rendering a different view, // there's no need for layered rendering here. } else if (!msl_options.multiview_layered_rendering) { // In this case, the views are rendered one at a time. The view index, then, // is just the first part of the "view mask". entry_func.fixup_hooks_in.push_back([=]() { statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", to_expression(view_mask_buffer_id), "[0];"); }); } else if (get_execution_model() == ExecutionModelFragment) { // Because we adjusted the view index in the vertex shader, we have to // adjust it back here. entry_func.fixup_hooks_in.push_back([=]() { statement(to_expression(var_id), " += ", to_expression(view_mask_buffer_id), "[0];"); }); } else if (get_execution_model() == ExecutionModelVertex) { // Metal provides no special support for multiview, so we smuggle // the view index in the instance index. entry_func.fixup_hooks_in.push_back([=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", to_expression(view_mask_buffer_id), "[0] + (", to_expression(builtin_instance_idx_id), " - ", to_expression(builtin_base_instance_id), ") % ", to_expression(view_mask_buffer_id), "[1];"); statement(to_expression(builtin_instance_idx_id), " = (", to_expression(builtin_instance_idx_id), " - ", to_expression(builtin_base_instance_id), ") / ", to_expression(view_mask_buffer_id), "[1] + ", to_expression(builtin_base_instance_id), ";"); }); // In addition to setting the variable itself, we also need to // set the render_target_array_index with it on output. We have to // offset this by the base view index, because Metal isn't in on // our little game here. entry_func.fixup_hooks_out.push_back([=]() { statement(to_expression(builtin_layer_id), " = ", to_expression(var_id), " - ", to_expression(view_mask_buffer_id), "[0];"); }); } break; case BuiltInDeviceIndex: // Metal pipelines belong to the devices which create them, so we'll // need to create a MTLPipelineState for every MTLDevice in a grouped // VkDevice. We can assume, then, that the device index is constant. entry_func.fixup_hooks_in.push_back([=]() { statement("const ", builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", msl_options.device_index, ";"); }); break; case BuiltInWorkgroupId: if (!msl_options.dispatch_base || !active_input_builtins.get(BuiltInWorkgroupId)) break; // The vkCmdDispatchBase() command lets the client set the base value // of WorkgroupId. Metal has no direct equivalent; we must make this // adjustment ourselves. entry_func.fixup_hooks_in.push_back([=]() { statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id), ";"); }); break; case BuiltInGlobalInvocationId: if (!msl_options.dispatch_base || !active_input_builtins.get(BuiltInGlobalInvocationId)) break; // GlobalInvocationId is defined as LocalInvocationId + WorkgroupId * WorkgroupSize. // This needs to be adjusted too. entry_func.fixup_hooks_in.push_back([=]() { auto &execution = this->get_entry_point(); uint32_t workgroup_size_id = execution.workgroup_size.constant; if (workgroup_size_id) statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id), " * ", to_expression(workgroup_size_id), ";"); else statement(to_expression(var_id), " += ", to_dereferenced_expression(builtin_dispatch_base_id), " * uint3(", execution.workgroup_size.x, ", ", execution.workgroup_size.y, ", ", execution.workgroup_size.z, ");"); }); break; case BuiltInVertexId: case BuiltInVertexIndex: // This is direct-mapped normally. if (!msl_options.vertex_for_tessellation) break; entry_func.fixup_hooks_in.push_back([=]() { builtin_declaration = true; switch (msl_options.vertex_index_type) { case Options::IndexType::None: statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", to_expression(builtin_invocation_id_id), ".x + ", to_expression(builtin_dispatch_base_id), ".x;"); break; case Options::IndexType::UInt16: case Options::IndexType::UInt32: statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", index_buffer_var_name, "[", to_expression(builtin_invocation_id_id), ".x] + ", to_expression(builtin_dispatch_base_id), ".x;"); break; } builtin_declaration = false; }); break; case BuiltInBaseVertex: // This is direct-mapped normally. if (!msl_options.vertex_for_tessellation) break; entry_func.fixup_hooks_in.push_back([=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", to_expression(builtin_dispatch_base_id), ".x;"); }); break; case BuiltInInstanceId: case BuiltInInstanceIndex: // This is direct-mapped normally. if (!msl_options.vertex_for_tessellation) break; entry_func.fixup_hooks_in.push_back([=]() { builtin_declaration = true; statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", to_expression(builtin_invocation_id_id), ".y + ", to_expression(builtin_dispatch_base_id), ".y;"); builtin_declaration = false; }); break; case BuiltInBaseInstance: // This is direct-mapped normally. if (!msl_options.vertex_for_tessellation) break; entry_func.fixup_hooks_in.push_back([=]() { statement(builtin_type_decl(bi_type), " ", to_expression(var_id), " = ", to_expression(builtin_dispatch_base_id), ".y;"); }); break; default: break; } } else if (var.storage == StorageClassOutput && get_execution_model() == ExecutionModelFragment && is_builtin_variable(var) && active_output_builtins.get(bi_type) && bi_type == BuiltInSampleMask && has_additional_fixed_sample_mask()) { // If the additional fixed sample mask was set, we need to adjust the sample_mask // output to reflect that. If the shader outputs the sample_mask itself too, we need // to AND the two masks to get the final one. string op_str = does_shader_write_sample_mask ? " &= " : " = "; entry_func.fixup_hooks_out.push_back([=]() { statement(to_expression(builtin_sample_mask_id), op_str, additional_fixed_sample_mask_str(), ";"); }); } }); } // Returns the Metal index of the resource of the specified type as used by the specified variable. uint32_t CompilerMSL::get_metal_resource_index(SPIRVariable &var, SPIRType::BaseType basetype, uint32_t plane) { auto &execution = get_entry_point(); auto &var_dec = ir.meta[var.self].decoration; auto &var_type = get(var.basetype); uint32_t var_desc_set = (var.storage == StorageClassPushConstant) ? kPushConstDescSet : var_dec.set; uint32_t var_binding = (var.storage == StorageClassPushConstant) ? kPushConstBinding : var_dec.binding; // If a matching binding has been specified, find and use it. auto itr = resource_bindings.find({ execution.model, var_desc_set, var_binding }); // Atomic helper buffers for image atomics need to use secondary bindings as well. bool use_secondary_binding = (var_type.basetype == SPIRType::SampledImage && basetype == SPIRType::Sampler) || basetype == SPIRType::AtomicCounter; auto resource_decoration = use_secondary_binding ? SPIRVCrossDecorationResourceIndexSecondary : SPIRVCrossDecorationResourceIndexPrimary; if (plane == 1) resource_decoration = SPIRVCrossDecorationResourceIndexTertiary; if (plane == 2) resource_decoration = SPIRVCrossDecorationResourceIndexQuaternary; if (itr != end(resource_bindings)) { auto &remap = itr->second; remap.second = true; switch (basetype) { case SPIRType::Image: set_extended_decoration(var.self, resource_decoration, remap.first.msl_texture + plane); return remap.first.msl_texture + plane; case SPIRType::Sampler: set_extended_decoration(var.self, resource_decoration, remap.first.msl_sampler); return remap.first.msl_sampler; default: set_extended_decoration(var.self, resource_decoration, remap.first.msl_buffer); return remap.first.msl_buffer; } } // If we have already allocated an index, keep using it. if (has_extended_decoration(var.self, resource_decoration)) return get_extended_decoration(var.self, resource_decoration); auto &type = get(var.basetype); if (type_is_msl_framebuffer_fetch(type)) { // Frame-buffer fetch gets its fallback resource index from the input attachment index, // which is then treated as color index. return get_decoration(var.self, DecorationInputAttachmentIndex); } else if (msl_options.enable_decoration_binding) { // Allow user to enable decoration binding. // If there is no explicit mapping of bindings to MSL, use the declared binding as a fallback. if (has_decoration(var.self, DecorationBinding)) { var_binding = get_decoration(var.self, DecorationBinding); // Avoid emitting sentinel bindings. if (var_binding < 0x80000000u) return var_binding; } } // If we did not explicitly remap, allocate bindings on demand. // We cannot reliably use Binding decorations since SPIR-V and MSL's binding models are very different. bool allocate_argument_buffer_ids = false; if (var.storage != StorageClassPushConstant) allocate_argument_buffer_ids = descriptor_set_is_argument_buffer(var_desc_set); uint32_t binding_stride = 1; for (uint32_t i = 0; i < uint32_t(type.array.size()); i++) binding_stride *= to_array_size_literal(type, i); assert(binding_stride != 0); // If a binding has not been specified, revert to incrementing resource indices. uint32_t resource_index; if (allocate_argument_buffer_ids) { // Allocate from a flat ID binding space. resource_index = next_metal_resource_ids[var_desc_set]; next_metal_resource_ids[var_desc_set] += binding_stride; } else { // Allocate from plain bindings which are allocated per resource type. switch (basetype) { case SPIRType::Image: resource_index = next_metal_resource_index_texture; next_metal_resource_index_texture += binding_stride; break; case SPIRType::Sampler: resource_index = next_metal_resource_index_sampler; next_metal_resource_index_sampler += binding_stride; break; default: resource_index = next_metal_resource_index_buffer; next_metal_resource_index_buffer += binding_stride; break; } } set_extended_decoration(var.self, resource_decoration, resource_index); return resource_index; } bool CompilerMSL::type_is_msl_framebuffer_fetch(const SPIRType &type) const { return type.basetype == SPIRType::Image && type.image.dim == DimSubpassData && msl_options.use_framebuffer_fetch_subpasses; } bool CompilerMSL::type_is_pointer(const SPIRType &type) const { if (!type.pointer) return false; auto &parent_type = get(type.parent_type); // Safeguards when we forget to set pointer_depth (there is an assert for it in type_to_glsl), // but the extra check shouldn't hurt. return (type.pointer_depth > parent_type.pointer_depth) || !parent_type.pointer; } bool CompilerMSL::type_is_pointer_to_pointer(const SPIRType &type) const { if (!type.pointer) return false; auto &parent_type = get(type.parent_type); return type.pointer_depth > parent_type.pointer_depth && type_is_pointer(parent_type); } const char *CompilerMSL::descriptor_address_space(uint32_t id, StorageClass storage, const char *plain_address_space) const { if (msl_options.argument_buffers) { bool storage_class_is_descriptor = storage == StorageClassUniform || storage == StorageClassStorageBuffer || storage == StorageClassUniformConstant; uint32_t desc_set = get_decoration(id, DecorationDescriptorSet); if (storage_class_is_descriptor && descriptor_set_is_argument_buffer(desc_set)) { // An awkward case where we need to emit *more* address space declarations (yay!). // An example is where we pass down an array of buffer pointers to leaf functions. // It's a constant array containing pointers to constants. // The pointer array is always constant however. E.g. // device SSBO * constant (&array)[N]. // const device SSBO * constant (&array)[N]. // constant SSBO * constant (&array)[N]. // However, this only matters for argument buffers, since for MSL 1.0 style codegen, // we emit the buffer array on stack instead, and that seems to work just fine apparently. // If the argument was marked as being in device address space, any pointer to member would // be const device, not constant. if (argument_buffer_device_storage_mask & (1u << desc_set)) return "const device"; else return "constant"; } } return plain_address_space; } string CompilerMSL::argument_decl(const SPIRFunction::Parameter &arg) { auto &var = get(arg.id); auto &type = get_variable_data_type(var); auto &var_type = get(arg.type); StorageClass type_storage = var_type.storage; bool is_pointer = var_type.pointer; // If we need to modify the name of the variable, make sure we use the original variable. // Our alias is just a shadow variable. uint32_t name_id = var.self; if (arg.alias_global_variable && var.basevariable) name_id = var.basevariable; bool constref = !arg.alias_global_variable && is_pointer && arg.write_count == 0; // Framebuffer fetch is plain value, const looks out of place, but it is not wrong. if (type_is_msl_framebuffer_fetch(type)) constref = false; else if (type_storage == StorageClassUniformConstant) constref = true; bool type_is_image = type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Sampler; // For opaque types we handle const later due to descriptor address spaces. const char *cv_qualifier = (constref && !type_is_image) ? "const " : ""; string decl; // If this is a combined image-sampler for a 2D image with floating-point type, // we emitted the 'spvDynamicImageSampler' type, and this is *not* an alias parameter // for a global, then we need to emit a "dynamic" combined image-sampler. // Unfortunately, this is necessary to properly support passing around // combined image-samplers with Y'CbCr conversions on them. bool is_dynamic_img_sampler = !arg.alias_global_variable && type.basetype == SPIRType::SampledImage && type.image.dim == Dim2D && type_is_floating_point(get(type.image.type)) && spv_function_implementations.count(SPVFuncImplDynamicImageSampler); // Allow Metal to use the array template to make arrays a value type string address_space = get_argument_address_space(var); bool builtin = has_decoration(var.self, DecorationBuiltIn); auto builtin_type = BuiltIn(get_decoration(arg.id, DecorationBuiltIn)); if (address_space == "threadgroup") is_using_builtin_array = true; if (var.basevariable && (var.basevariable == stage_in_ptr_var_id || var.basevariable == stage_out_ptr_var_id)) decl = join(cv_qualifier, type_to_glsl(type, arg.id)); else if (builtin) { // Only use templated array for Clip/Cull distance when feasible. // In other scenarios, we need need to override array length for tess levels (if used as outputs), // or we need to emit the expected type for builtins (uint vs int). auto storage = get(var.basetype).storage; if (storage == StorageClassInput && (builtin_type == BuiltInTessLevelInner || builtin_type == BuiltInTessLevelOuter)) { is_using_builtin_array = false; } else if (builtin_type != BuiltInClipDistance && builtin_type != BuiltInCullDistance) { is_using_builtin_array = true; } if (storage == StorageClassOutput && variable_storage_requires_stage_io(storage) && !is_stage_output_builtin_masked(builtin_type)) is_using_builtin_array = true; if (is_using_builtin_array) decl = join(cv_qualifier, builtin_type_decl(builtin_type, arg.id)); else decl = join(cv_qualifier, type_to_glsl(type, arg.id)); } else if ((type_storage == StorageClassUniform || type_storage == StorageClassStorageBuffer) && is_array(type)) { is_using_builtin_array = true; decl += join(cv_qualifier, type_to_glsl(type, arg.id), "*"); } else if (is_dynamic_img_sampler) { decl = join(cv_qualifier, "spvDynamicImageSampler<", type_to_glsl(get(type.image.type)), ">"); // Mark the variable so that we can handle passing it to another function. set_extended_decoration(arg.id, SPIRVCrossDecorationDynamicImageSampler); } else { // The type is a pointer type we need to emit cv_qualifier late. if (type_is_pointer(type)) { decl = type_to_glsl(type, arg.id); if (*cv_qualifier != '\0') decl += join(" ", cv_qualifier); } else decl = join(cv_qualifier, type_to_glsl(type, arg.id)); } if (!builtin && !is_pointer && (type_storage == StorageClassFunction || type_storage == StorageClassGeneric)) { // If the argument is a pure value and not an opaque type, we will pass by value. if (msl_options.force_native_arrays && is_array(type)) { // We are receiving an array by value. This is problematic. // We cannot be sure of the target address space since we are supposed to receive a copy, // but this is not possible with MSL without some extra work. // We will have to assume we're getting a reference in thread address space. // If we happen to get a reference in constant address space, the caller must emit a copy and pass that. // Thread const therefore becomes the only logical choice, since we cannot "create" a constant array from // non-constant arrays, but we can create thread const from constant. decl = string("thread const ") + decl; decl += " (&"; const char *restrict_kw = to_restrict(name_id); if (*restrict_kw) { decl += " "; decl += restrict_kw; } decl += to_expression(name_id); decl += ")"; decl += type_to_array_glsl(type); } else { if (!address_space.empty()) decl = join(address_space, " ", decl); decl += " "; decl += to_expression(name_id); } } else if (is_array(type) && !type_is_image) { // Arrays of opaque types are special cased. if (!address_space.empty()) decl = join(address_space, " ", decl); const char *argument_buffer_space = descriptor_address_space(name_id, type_storage, nullptr); if (argument_buffer_space) { decl += " "; decl += argument_buffer_space; } // Special case, need to override the array size here if we're using tess level as an argument. if (get_execution_model() == ExecutionModelTessellationControl && builtin && (builtin_type == BuiltInTessLevelInner || builtin_type == BuiltInTessLevelOuter)) { uint32_t array_size = get_physical_tess_level_array_size(builtin_type); if (array_size == 1) { decl += " &"; decl += to_expression(name_id); } else { decl += " (&"; decl += to_expression(name_id); decl += ")"; decl += join("[", array_size, "]"); } } else { auto array_size_decl = type_to_array_glsl(type); if (array_size_decl.empty()) decl += "& "; else decl += " (&"; const char *restrict_kw = to_restrict(name_id); if (*restrict_kw) { decl += " "; decl += restrict_kw; } decl += to_expression(name_id); if (!array_size_decl.empty()) { decl += ")"; decl += array_size_decl; } } } else if (!type_is_image && (!pull_model_inputs.count(var.basevariable) || type.basetype == SPIRType::Struct)) { // If this is going to be a reference to a variable pointer, the address space // for the reference has to go before the '&', but after the '*'. if (!address_space.empty()) { if (type_is_pointer(type)) { if (*cv_qualifier == '\0') decl += ' '; decl += join(address_space, " "); } else decl = join(address_space, " ", decl); } decl += "&"; decl += " "; decl += to_restrict(name_id); decl += to_expression(name_id); } else if (type_is_image) { if (type.array.empty()) { // For non-arrayed types we can just pass opaque descriptors by value. // This fixes problems if descriptors are passed by value from argument buffers and plain descriptors // in same shader. // There is no address space we can actually use, but value will work. // This will break if applications attempt to pass down descriptor arrays as arguments, but // fortunately that is extremely unlikely ... decl += " "; decl += to_expression(name_id); } else { const char *img_address_space = descriptor_address_space(name_id, type_storage, "thread const"); decl = join(img_address_space, " ", decl); decl += "& "; decl += to_expression(name_id); } } else { if (!address_space.empty()) decl = join(address_space, " ", decl); decl += " "; decl += to_expression(name_id); } // Emulate texture2D atomic operations auto *backing_var = maybe_get_backing_variable(name_id); if (backing_var && atomic_image_vars.count(backing_var->self)) { decl += ", device atomic_" + type_to_glsl(get(var_type.image.type), 0); decl += "* " + to_expression(name_id) + "_atomic"; } is_using_builtin_array = false; return decl; } // If we're currently in the entry point function, and the object // has a qualified name, use it, otherwise use the standard name. string CompilerMSL::to_name(uint32_t id, bool allow_alias) const { if (current_function && (current_function->self == ir.default_entry_point)) { auto *m = ir.find_meta(id); if (m && !m->decoration.qualified_alias.empty()) return m->decoration.qualified_alias; } return Compiler::to_name(id, allow_alias); } // Appends the name of the member to the variable qualifier string, except for Builtins. string CompilerMSL::append_member_name(const string &qualifier, const SPIRType &type, uint32_t index) { // Don't qualify Builtin names because they are unique and are treated as such when building expressions BuiltIn builtin = BuiltInMax; if (is_member_builtin(type, index, &builtin)) return builtin_to_glsl(builtin, type.storage); // Strip any underscore prefix from member name string mbr_name = to_member_name(type, index); size_t startPos = mbr_name.find_first_not_of("_"); mbr_name = (startPos != string::npos) ? mbr_name.substr(startPos) : ""; return join(qualifier, "_", mbr_name); } // Ensures that the specified name is permanently usable by prepending a prefix // if the first chars are _ and a digit, which indicate a transient name. string CompilerMSL::ensure_valid_name(string name, string pfx) { return (name.size() >= 2 && name[0] == '_' && isdigit(name[1])) ? (pfx + name) : name; } const std::unordered_set &CompilerMSL::get_reserved_keyword_set() { static const unordered_set keywords = { "kernel", "vertex", "fragment", "compute", "bias", "level", "gradient2d", "gradientcube", "gradient3d", "min_lod_clamp", "assert", "VARIABLE_TRACEPOINT", "STATIC_DATA_TRACEPOINT", "STATIC_DATA_TRACEPOINT_V", "METAL_ALIGN", "METAL_ASM", "METAL_CONST", "METAL_DEPRECATED", "METAL_ENABLE_IF", "METAL_FUNC", "METAL_INTERNAL", "METAL_NON_NULL_RETURN", "METAL_NORETURN", "METAL_NOTHROW", "METAL_PURE", "METAL_UNAVAILABLE", "METAL_IMPLICIT", "METAL_EXPLICIT", "METAL_CONST_ARG", "METAL_ARG_UNIFORM", "METAL_ZERO_ARG", "METAL_VALID_LOD_ARG", "METAL_VALID_LEVEL_ARG", "METAL_VALID_STORE_ORDER", "METAL_VALID_LOAD_ORDER", "METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER", "METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS", "METAL_VALID_RENDER_TARGET", "is_function_constant_defined", "CHAR_BIT", "SCHAR_MAX", "SCHAR_MIN", "UCHAR_MAX", "CHAR_MAX", "CHAR_MIN", "USHRT_MAX", "SHRT_MAX", "SHRT_MIN", "UINT_MAX", "INT_MAX", "INT_MIN", "FLT_DIG", "FLT_MANT_DIG", "FLT_MAX_10_EXP", "FLT_MAX_EXP", "FLT_MIN_10_EXP", "FLT_MIN_EXP", "FLT_RADIX", "FLT_MAX", "FLT_MIN", "FLT_EPSILON", "FP_ILOGB0", "FP_ILOGBNAN", "MAXFLOAT", "HUGE_VALF", "INFINITY", "NAN", "M_E_F", "M_LOG2E_F", "M_LOG10E_F", "M_LN2_F", "M_LN10_F", "M_PI_F", "M_PI_2_F", "M_PI_4_F", "M_1_PI_F", "M_2_PI_F", "M_2_SQRTPI_F", "M_SQRT2_F", "M_SQRT1_2_F", "HALF_DIG", "HALF_MANT_DIG", "HALF_MAX_10_EXP", "HALF_MAX_EXP", "HALF_MIN_10_EXP", "HALF_MIN_EXP", "HALF_RADIX", "HALF_MAX", "HALF_MIN", "HALF_EPSILON", "MAXHALF", "HUGE_VALH", "M_E_H", "M_LOG2E_H", "M_LOG10E_H", "M_LN2_H", "M_LN10_H", "M_PI_H", "M_PI_2_H", "M_PI_4_H", "M_1_PI_H", "M_2_PI_H", "M_2_SQRTPI_H", "M_SQRT2_H", "M_SQRT1_2_H", "DBL_DIG", "DBL_MANT_DIG", "DBL_MAX_10_EXP", "DBL_MAX_EXP", "DBL_MIN_10_EXP", "DBL_MIN_EXP", "DBL_RADIX", "DBL_MAX", "DBL_MIN", "DBL_EPSILON", "HUGE_VAL", "M_E", "M_LOG2E", "M_LOG10E", "M_LN2", "M_LN10", "M_PI", "M_PI_2", "M_PI_4", "M_1_PI", "M_2_PI", "M_2_SQRTPI", "M_SQRT2", "M_SQRT1_2", "quad_broadcast", }; return keywords; } const std::unordered_set &CompilerMSL::get_illegal_func_names() { static const unordered_set illegal_func_names = { "main", "saturate", "assert", "fmin3", "fmax3", "VARIABLE_TRACEPOINT", "STATIC_DATA_TRACEPOINT", "STATIC_DATA_TRACEPOINT_V", "METAL_ALIGN", "METAL_ASM", "METAL_CONST", "METAL_DEPRECATED", "METAL_ENABLE_IF", "METAL_FUNC", "METAL_INTERNAL", "METAL_NON_NULL_RETURN", "METAL_NORETURN", "METAL_NOTHROW", "METAL_PURE", "METAL_UNAVAILABLE", "METAL_IMPLICIT", "METAL_EXPLICIT", "METAL_CONST_ARG", "METAL_ARG_UNIFORM", "METAL_ZERO_ARG", "METAL_VALID_LOD_ARG", "METAL_VALID_LEVEL_ARG", "METAL_VALID_STORE_ORDER", "METAL_VALID_LOAD_ORDER", "METAL_VALID_COMPARE_EXCHANGE_FAILURE_ORDER", "METAL_COMPATIBLE_COMPARE_EXCHANGE_ORDERS", "METAL_VALID_RENDER_TARGET", "is_function_constant_defined", "CHAR_BIT", "SCHAR_MAX", "SCHAR_MIN", "UCHAR_MAX", "CHAR_MAX", "CHAR_MIN", "USHRT_MAX", "SHRT_MAX", "SHRT_MIN", "UINT_MAX", "INT_MAX", "INT_MIN", "FLT_DIG", "FLT_MANT_DIG", "FLT_MAX_10_EXP", "FLT_MAX_EXP", "FLT_MIN_10_EXP", "FLT_MIN_EXP", "FLT_RADIX", "FLT_MAX", "FLT_MIN", "FLT_EPSILON", "FP_ILOGB0", "FP_ILOGBNAN", "MAXFLOAT", "HUGE_VALF", "INFINITY", "NAN", "M_E_F", "M_LOG2E_F", "M_LOG10E_F", "M_LN2_F", "M_LN10_F", "M_PI_F", "M_PI_2_F", "M_PI_4_F", "M_1_PI_F", "M_2_PI_F", "M_2_SQRTPI_F", "M_SQRT2_F", "M_SQRT1_2_F", "HALF_DIG", "HALF_MANT_DIG", "HALF_MAX_10_EXP", "HALF_MAX_EXP", "HALF_MIN_10_EXP", "HALF_MIN_EXP", "HALF_RADIX", "HALF_MAX", "HALF_MIN", "HALF_EPSILON", "MAXHALF", "HUGE_VALH", "M_E_H", "M_LOG2E_H", "M_LOG10E_H", "M_LN2_H", "M_LN10_H", "M_PI_H", "M_PI_2_H", "M_PI_4_H", "M_1_PI_H", "M_2_PI_H", "M_2_SQRTPI_H", "M_SQRT2_H", "M_SQRT1_2_H", "DBL_DIG", "DBL_MANT_DIG", "DBL_MAX_10_EXP", "DBL_MAX_EXP", "DBL_MIN_10_EXP", "DBL_MIN_EXP", "DBL_RADIX", "DBL_MAX", "DBL_MIN", "DBL_EPSILON", "HUGE_VAL", "M_E", "M_LOG2E", "M_LOG10E", "M_LN2", "M_LN10", "M_PI", "M_PI_2", "M_PI_4", "M_1_PI", "M_2_PI", "M_2_SQRTPI", "M_SQRT2", "M_SQRT1_2", }; return illegal_func_names; } // Replace all names that match MSL keywords or Metal Standard Library functions. void CompilerMSL::replace_illegal_names() { // FIXME: MSL and GLSL are doing two different things here. // Agree on convention and remove this override. auto &keywords = get_reserved_keyword_set(); auto &illegal_func_names = get_illegal_func_names(); ir.for_each_typed_id([&](uint32_t self, SPIRVariable &) { auto *meta = ir.find_meta(self); if (!meta) return; auto &dec = meta->decoration; if (keywords.find(dec.alias) != end(keywords)) dec.alias += "0"; }); ir.for_each_typed_id([&](uint32_t self, SPIRFunction &) { auto *meta = ir.find_meta(self); if (!meta) return; auto &dec = meta->decoration; if (illegal_func_names.find(dec.alias) != end(illegal_func_names)) dec.alias += "0"; }); ir.for_each_typed_id([&](uint32_t self, SPIRType &) { auto *meta = ir.find_meta(self); if (!meta) return; for (auto &mbr_dec : meta->members) if (keywords.find(mbr_dec.alias) != end(keywords)) mbr_dec.alias += "0"; }); CompilerGLSL::replace_illegal_names(); } void CompilerMSL::replace_illegal_entry_point_names() { auto &illegal_func_names = get_illegal_func_names(); // It is important to this before we fixup identifiers, // since if ep_name is reserved, we will need to fix that up, // and then copy alias back into entry.name after the fixup. for (auto &entry : ir.entry_points) { // Change both the entry point name and the alias, to keep them synced. string &ep_name = entry.second.name; if (illegal_func_names.find(ep_name) != end(illegal_func_names)) ep_name += "0"; ir.meta[entry.first].decoration.alias = ep_name; } } void CompilerMSL::sync_entry_point_aliases_and_names() { for (auto &entry : ir.entry_points) entry.second.name = ir.meta[entry.first].decoration.alias; } string CompilerMSL::to_member_reference(uint32_t base, const SPIRType &type, uint32_t index, bool ptr_chain) { auto *var = maybe_get(base); // If this is a buffer array, we have to dereference the buffer pointers. // Otherwise, if this is a pointer expression, dereference it. bool declared_as_pointer = false; if (var) { // Only allow -> dereference for block types. This is so we get expressions like // buffer[i]->first_member.second_member, rather than buffer[i]->first->second. bool is_block = has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock); bool is_buffer_variable = is_block && (var->storage == StorageClassUniform || var->storage == StorageClassStorageBuffer); declared_as_pointer = is_buffer_variable && is_array(get(var->basetype)); } if (declared_as_pointer || (!ptr_chain && should_dereference(base))) return join("->", to_member_name(type, index)); else return join(".", to_member_name(type, index)); } string CompilerMSL::to_qualifiers_glsl(uint32_t id) { string quals; auto *var = maybe_get(id); auto &type = expression_type(id); if (type.storage == StorageClassWorkgroup || (var && variable_decl_is_remapped_storage(*var, StorageClassWorkgroup))) quals += "threadgroup "; return quals; } // The optional id parameter indicates the object whose type we are trying // to find the description for. It is optional. Most type descriptions do not // depend on a specific object's use of that type. string CompilerMSL::type_to_glsl(const SPIRType &type, uint32_t id) { string type_name; // Pointer? if (type.pointer) { assert(type.pointer_depth > 0); const char *restrict_kw; auto type_address_space = get_type_address_space(type, id); auto type_decl = type_to_glsl(get(type.parent_type), id); // Work around C pointer qualifier rules. If glsl_type is a pointer type as well // we'll need to emit the address space to the right. // We could always go this route, but it makes the code unnatural. // Prefer emitting thread T *foo over T thread* foo since it's more readable, // but we'll have to emit thread T * thread * T constant bar; for example. if (type_is_pointer_to_pointer(type)) type_name = join(type_decl, " ", type_address_space, " "); else type_name = join(type_address_space, " ", type_decl); switch (type.basetype) { case SPIRType::Image: case SPIRType::SampledImage: case SPIRType::Sampler: // These are handles. break; default: // Anything else can be a raw pointer. type_name += "*"; restrict_kw = to_restrict(id); if (*restrict_kw) { type_name += " "; type_name += restrict_kw; } break; } return type_name; } switch (type.basetype) { case SPIRType::Struct: // Need OpName lookup here to get a "sensible" name for a struct. // Allow Metal to use the array template to make arrays a value type type_name = to_name(type.self); break; case SPIRType::Image: case SPIRType::SampledImage: return image_type_glsl(type, id); case SPIRType::Sampler: return sampler_type(type, id); case SPIRType::Void: return "void"; case SPIRType::AtomicCounter: return "atomic_uint"; case SPIRType::ControlPointArray: return join("patch_control_point<", type_to_glsl(get(type.parent_type), id), ">"); case SPIRType::Interpolant: return join("interpolant<", type_to_glsl(get(type.parent_type), id), ", interpolation::", has_decoration(type.self, DecorationNoPerspective) ? "no_perspective" : "perspective", ">"); // Scalars case SPIRType::Boolean: { auto *var = maybe_get_backing_variable(id); if (var && var->basevariable) var = &get(var->basevariable); // Need to special-case threadgroup booleans. They are supposed to be logical // storage, but MSL compilers will sometimes crash if you use threadgroup bool. // Workaround this by using 16-bit types instead and fixup on load-store to this data. // FIXME: We have no sane way of working around this problem if a struct member is boolean // and that struct is used as a threadgroup variable, but ... sigh. if ((var && var->storage == StorageClassWorkgroup) || type.storage == StorageClassWorkgroup) type_name = "short"; else type_name = "bool"; break; } case SPIRType::Char: case SPIRType::SByte: type_name = "char"; break; case SPIRType::UByte: type_name = "uchar"; break; case SPIRType::Short: type_name = "short"; break; case SPIRType::UShort: type_name = "ushort"; break; case SPIRType::Int: type_name = "int"; break; case SPIRType::UInt: type_name = "uint"; break; case SPIRType::Int64: if (!msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("64-bit integers are only supported in MSL 2.2 and above."); type_name = "long"; break; case SPIRType::UInt64: if (!msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("64-bit integers are only supported in MSL 2.2 and above."); type_name = "ulong"; break; case SPIRType::Half: type_name = "half"; break; case SPIRType::Float: type_name = "float"; break; case SPIRType::Double: type_name = "double"; // Currently unsupported break; case SPIRType::AccelerationStructure: if (msl_options.supports_msl_version(2, 4)) type_name = "acceleration_structure"; else if (msl_options.supports_msl_version(2, 3)) type_name = "instance_acceleration_structure"; else SPIRV_CROSS_THROW("Acceleration Structure Type is supported in MSL 2.3 and above."); break; case SPIRType::RayQuery: return "intersection_query"; default: return "unknown_type"; } // Matrix? if (type.columns > 1) type_name += to_string(type.columns) + "x"; // Vector or Matrix? if (type.vecsize > 1) type_name += to_string(type.vecsize); if (type.array.empty() || using_builtin_array()) { return type_name; } else { // Allow Metal to use the array template to make arrays a value type add_spv_func_and_recompile(SPVFuncImplUnsafeArray); string res; string sizes; for (uint32_t i = 0; i < uint32_t(type.array.size()); i++) { res += "spvUnsafeArray<"; sizes += ", "; sizes += to_array_size(type, i); sizes += ">"; } res += type_name + sizes; return res; } } string CompilerMSL::type_to_array_glsl(const SPIRType &type) { // Allow Metal to use the array template to make arrays a value type switch (type.basetype) { case SPIRType::AtomicCounter: case SPIRType::ControlPointArray: case SPIRType::RayQuery: { return CompilerGLSL::type_to_array_glsl(type); } default: { if (using_builtin_array()) return CompilerGLSL::type_to_array_glsl(type); else return ""; } } } string CompilerMSL::constant_op_expression(const SPIRConstantOp &cop) { switch (cop.opcode) { case OpQuantizeToF16: add_spv_func_and_recompile(SPVFuncImplQuantizeToF16); return join("spvQuantizeToF16(", to_expression(cop.arguments[0]), ")"); default: return CompilerGLSL::constant_op_expression(cop); } } bool CompilerMSL::variable_decl_is_remapped_storage(const SPIRVariable &variable, spv::StorageClass storage) const { if (variable.storage == storage) return true; if (storage == StorageClassWorkgroup) { auto model = get_execution_model(); // Specially masked IO block variable. // Normally, we will never access IO blocks directly here. // The only scenario which that should occur is with a masked IO block. if (model == ExecutionModelTessellationControl && variable.storage == StorageClassOutput && has_decoration(get(variable.basetype).self, DecorationBlock)) { return true; } return variable.storage == StorageClassOutput && model == ExecutionModelTessellationControl && is_stage_output_variable_masked(variable); } else if (storage == StorageClassStorageBuffer) { // We won't be able to catch writes to control point outputs here since variable // refers to a function local pointer. // This is fine, as there cannot be concurrent writers to that memory anyways, // so we just ignore that case. return (variable.storage == StorageClassOutput || variable.storage == StorageClassInput) && !variable_storage_requires_stage_io(variable.storage) && (variable.storage != StorageClassOutput || !is_stage_output_variable_masked(variable)); } else { return false; } } std::string CompilerMSL::variable_decl(const SPIRVariable &variable) { bool old_is_using_builtin_array = is_using_builtin_array; // Threadgroup arrays can't have a wrapper type. if (variable_decl_is_remapped_storage(variable, StorageClassWorkgroup)) is_using_builtin_array = true; auto expr = CompilerGLSL::variable_decl(variable); is_using_builtin_array = old_is_using_builtin_array; return expr; } // GCC workaround of lambdas calling protected funcs std::string CompilerMSL::variable_decl(const SPIRType &type, const std::string &name, uint32_t id) { return CompilerGLSL::variable_decl(type, name, id); } std::string CompilerMSL::sampler_type(const SPIRType &type, uint32_t id) { auto *var = maybe_get(id); if (var && var->basevariable) { // Check against the base variable, and not a fake ID which might have been generated for this variable. id = var->basevariable; } if (!type.array.empty()) { if (!msl_options.supports_msl_version(2)) SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of samplers."); if (type.array.size() > 1) SPIRV_CROSS_THROW("Arrays of arrays of samplers are not supported in MSL."); // Arrays of samplers in MSL must be declared with a special array syntax ala C++11 std::array. // If we have a runtime array, it could be a variable-count descriptor set binding. uint32_t array_size = to_array_size_literal(type); if (array_size == 0) array_size = get_resource_array_size(id); if (array_size == 0) SPIRV_CROSS_THROW("Unsized array of samplers is not supported in MSL."); auto &parent = get(get_pointee_type(type).parent_type); return join("array<", sampler_type(parent, id), ", ", array_size, ">"); } else return "sampler"; } // Returns an MSL string describing the SPIR-V image type string CompilerMSL::image_type_glsl(const SPIRType &type, uint32_t id) { auto *var = maybe_get(id); if (var && var->basevariable) { // For comparison images, check against the base variable, // and not the fake ID which might have been generated for this variable. id = var->basevariable; } if (!type.array.empty()) { uint32_t major = 2, minor = 0; if (msl_options.is_ios()) { major = 1; minor = 2; } if (!msl_options.supports_msl_version(major, minor)) { if (msl_options.is_ios()) SPIRV_CROSS_THROW("MSL 1.2 or greater is required for arrays of textures."); else SPIRV_CROSS_THROW("MSL 2.0 or greater is required for arrays of textures."); } if (type.array.size() > 1) SPIRV_CROSS_THROW("Arrays of arrays of textures are not supported in MSL."); // Arrays of images in MSL must be declared with a special array syntax ala C++11 std::array. // If we have a runtime array, it could be a variable-count descriptor set binding. uint32_t array_size = to_array_size_literal(type); if (array_size == 0) array_size = get_resource_array_size(id); if (array_size == 0) SPIRV_CROSS_THROW("Unsized array of images is not supported in MSL."); auto &parent = get(get_pointee_type(type).parent_type); return join("array<", image_type_glsl(parent, id), ", ", array_size, ">"); } string img_type_name; // Bypass pointers because we need the real image struct auto &img_type = get(type.self).image; if (is_depth_image(type, id)) { switch (img_type.dim) { case Dim1D: case Dim2D: if (img_type.dim == Dim1D && !msl_options.texture_1D_as_2D) { // Use a native Metal 1D texture img_type_name += "depth1d_unsupported_by_metal"; break; } if (img_type.ms && img_type.arrayed) { if (!msl_options.supports_msl_version(2, 1)) SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1."); img_type_name += "depth2d_ms_array"; } else if (img_type.ms) img_type_name += "depth2d_ms"; else if (img_type.arrayed) img_type_name += "depth2d_array"; else img_type_name += "depth2d"; break; case Dim3D: img_type_name += "depth3d_unsupported_by_metal"; break; case DimCube: if (!msl_options.emulate_cube_array) img_type_name += (img_type.arrayed ? "depthcube_array" : "depthcube"); else img_type_name += (img_type.arrayed ? "depth2d_array" : "depthcube"); break; default: img_type_name += "unknown_depth_texture_type"; break; } } else { switch (img_type.dim) { case DimBuffer: if (img_type.ms || img_type.arrayed) SPIRV_CROSS_THROW("Cannot use texel buffers with multisampling or array layers."); if (msl_options.texture_buffer_native) { if (!msl_options.supports_msl_version(2, 1)) SPIRV_CROSS_THROW("Native texture_buffer type is only supported in MSL 2.1."); img_type_name = "texture_buffer"; } else img_type_name += "texture2d"; break; case Dim1D: case Dim2D: case DimSubpassData: { bool subpass_array = img_type.dim == DimSubpassData && (msl_options.multiview || msl_options.arrayed_subpass_input); if (img_type.dim == Dim1D && !msl_options.texture_1D_as_2D) { // Use a native Metal 1D texture img_type_name += (img_type.arrayed ? "texture1d_array" : "texture1d"); break; } // Use Metal's native frame-buffer fetch API for subpass inputs. if (type_is_msl_framebuffer_fetch(type)) { auto img_type_4 = get(img_type.type); img_type_4.vecsize = 4; return type_to_glsl(img_type_4); } if (img_type.ms && (img_type.arrayed || subpass_array)) { if (!msl_options.supports_msl_version(2, 1)) SPIRV_CROSS_THROW("Multisampled array textures are supported from 2.1."); img_type_name += "texture2d_ms_array"; } else if (img_type.ms) img_type_name += "texture2d_ms"; else if (img_type.arrayed || subpass_array) img_type_name += "texture2d_array"; else img_type_name += "texture2d"; break; } case Dim3D: img_type_name += "texture3d"; break; case DimCube: if (!msl_options.emulate_cube_array) img_type_name += (img_type.arrayed ? "texturecube_array" : "texturecube"); else img_type_name += (img_type.arrayed ? "texture2d_array" : "texturecube"); break; default: img_type_name += "unknown_texture_type"; break; } } // Append the pixel type img_type_name += "<"; img_type_name += type_to_glsl(get(img_type.type)); // For unsampled images, append the sample/read/write access qualifier. // For kernel images, the access qualifier my be supplied directly by SPIR-V. // Otherwise it may be set based on whether the image is read from or written to within the shader. if (type.basetype == SPIRType::Image && type.image.sampled == 2 && type.image.dim != DimSubpassData) { switch (img_type.access) { case AccessQualifierReadOnly: img_type_name += ", access::read"; break; case AccessQualifierWriteOnly: img_type_name += ", access::write"; break; case AccessQualifierReadWrite: img_type_name += ", access::read_write"; break; default: { auto *p_var = maybe_get_backing_variable(id); if (p_var && p_var->basevariable) p_var = maybe_get(p_var->basevariable); if (p_var && !has_decoration(p_var->self, DecorationNonWritable)) { img_type_name += ", access::"; if (!has_decoration(p_var->self, DecorationNonReadable)) img_type_name += "read_"; img_type_name += "write"; } break; } } } img_type_name += ">"; return img_type_name; } void CompilerMSL::emit_subgroup_op(const Instruction &i) { const uint32_t *ops = stream(i); auto op = static_cast(i.op); if (msl_options.emulate_subgroups) { // In this mode, only the GroupNonUniform cap is supported. The only op // we need to handle, then, is OpGroupNonUniformElect. if (op != OpGroupNonUniformElect) SPIRV_CROSS_THROW("Subgroup emulation does not support operations other than Elect."); // In this mode, the subgroup size is assumed to be one, so every invocation // is elected. emit_op(ops[0], ops[1], "true", true); return; } // Metal 2.0 is required. iOS only supports quad ops on 11.0 (2.0), with // full support in 13.0 (2.2). macOS only supports broadcast and shuffle on // 10.13 (2.0), with full support in 10.14 (2.1). // Note that Apple GPUs before A13 make no distinction between a quad-group // and a SIMD-group; all SIMD-groups are quad-groups on those. if (!msl_options.supports_msl_version(2)) SPIRV_CROSS_THROW("Subgroups are only supported in Metal 2.0 and up."); // If we need to do implicit bitcasts, make sure we do it with the correct type. uint32_t integer_width = get_integer_width_for_instruction(i); auto int_type = to_signed_basetype(integer_width); auto uint_type = to_unsigned_basetype(integer_width); if (msl_options.is_ios() && (!msl_options.supports_msl_version(2, 3) || !msl_options.ios_use_simdgroup_functions)) { switch (op) { default: SPIRV_CROSS_THROW("Subgroup ops beyond broadcast, ballot, and shuffle on iOS require Metal 2.3 and up."); case OpGroupNonUniformBroadcastFirst: if (!msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("BroadcastFirst on iOS requires Metal 2.2 and up."); break; case OpGroupNonUniformElect: if (!msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("Elect on iOS requires Metal 2.2 and up."); break; case OpGroupNonUniformAny: case OpGroupNonUniformAll: case OpGroupNonUniformAllEqual: case OpGroupNonUniformBallot: case OpGroupNonUniformInverseBallot: case OpGroupNonUniformBallotBitExtract: case OpGroupNonUniformBallotFindLSB: case OpGroupNonUniformBallotFindMSB: case OpGroupNonUniformBallotBitCount: if (!msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("Ballot ops on iOS requires Metal 2.2 and up."); break; case OpGroupNonUniformBroadcast: case OpGroupNonUniformShuffle: case OpGroupNonUniformShuffleXor: case OpGroupNonUniformShuffleUp: case OpGroupNonUniformShuffleDown: case OpGroupNonUniformQuadSwap: case OpGroupNonUniformQuadBroadcast: break; } } if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1)) { switch (op) { default: SPIRV_CROSS_THROW("Subgroup ops beyond broadcast and shuffle on macOS require Metal 2.1 and up."); case OpGroupNonUniformBroadcast: case OpGroupNonUniformShuffle: case OpGroupNonUniformShuffleXor: case OpGroupNonUniformShuffleUp: case OpGroupNonUniformShuffleDown: break; } } uint32_t result_type = ops[0]; uint32_t id = ops[1]; auto scope = static_cast(evaluate_constant_u32(ops[2])); if (scope != ScopeSubgroup) SPIRV_CROSS_THROW("Only subgroup scope is supported."); switch (op) { case OpGroupNonUniformElect: if (msl_options.use_quadgroup_operation()) emit_op(result_type, id, "quad_is_first()", false); else emit_op(result_type, id, "simd_is_first()", false); break; case OpGroupNonUniformBroadcast: emit_binary_func_op(result_type, id, ops[3], ops[4], "spvSubgroupBroadcast"); break; case OpGroupNonUniformBroadcastFirst: emit_unary_func_op(result_type, id, ops[3], "spvSubgroupBroadcastFirst"); break; case OpGroupNonUniformBallot: emit_unary_func_op(result_type, id, ops[3], "spvSubgroupBallot"); break; case OpGroupNonUniformInverseBallot: emit_binary_func_op(result_type, id, ops[3], builtin_subgroup_invocation_id_id, "spvSubgroupBallotBitExtract"); break; case OpGroupNonUniformBallotBitExtract: emit_binary_func_op(result_type, id, ops[3], ops[4], "spvSubgroupBallotBitExtract"); break; case OpGroupNonUniformBallotFindLSB: emit_binary_func_op(result_type, id, ops[3], builtin_subgroup_size_id, "spvSubgroupBallotFindLSB"); break; case OpGroupNonUniformBallotFindMSB: emit_binary_func_op(result_type, id, ops[3], builtin_subgroup_size_id, "spvSubgroupBallotFindMSB"); break; case OpGroupNonUniformBallotBitCount: { auto operation = static_cast(ops[3]); switch (operation) { case GroupOperationReduce: emit_binary_func_op(result_type, id, ops[4], builtin_subgroup_size_id, "spvSubgroupBallotBitCount"); break; case GroupOperationInclusiveScan: emit_binary_func_op(result_type, id, ops[4], builtin_subgroup_invocation_id_id, "spvSubgroupBallotInclusiveBitCount"); break; case GroupOperationExclusiveScan: emit_binary_func_op(result_type, id, ops[4], builtin_subgroup_invocation_id_id, "spvSubgroupBallotExclusiveBitCount"); break; default: SPIRV_CROSS_THROW("Invalid BitCount operation."); } break; } case OpGroupNonUniformShuffle: emit_binary_func_op(result_type, id, ops[3], ops[4], "spvSubgroupShuffle"); break; case OpGroupNonUniformShuffleXor: emit_binary_func_op(result_type, id, ops[3], ops[4], "spvSubgroupShuffleXor"); break; case OpGroupNonUniformShuffleUp: emit_binary_func_op(result_type, id, ops[3], ops[4], "spvSubgroupShuffleUp"); break; case OpGroupNonUniformShuffleDown: emit_binary_func_op(result_type, id, ops[3], ops[4], "spvSubgroupShuffleDown"); break; case OpGroupNonUniformAll: if (msl_options.use_quadgroup_operation()) emit_unary_func_op(result_type, id, ops[3], "quad_all"); else emit_unary_func_op(result_type, id, ops[3], "simd_all"); break; case OpGroupNonUniformAny: if (msl_options.use_quadgroup_operation()) emit_unary_func_op(result_type, id, ops[3], "quad_any"); else emit_unary_func_op(result_type, id, ops[3], "simd_any"); break; case OpGroupNonUniformAllEqual: emit_unary_func_op(result_type, id, ops[3], "spvSubgroupAllEqual"); break; // clang-format off #define MSL_GROUP_OP(op, msl_op) \ case OpGroupNonUniform##op: \ { \ auto operation = static_cast(ops[3]); \ if (operation == GroupOperationReduce) \ emit_unary_func_op(result_type, id, ops[4], "simd_" #msl_op); \ else if (operation == GroupOperationInclusiveScan) \ emit_unary_func_op(result_type, id, ops[4], "simd_prefix_inclusive_" #msl_op); \ else if (operation == GroupOperationExclusiveScan) \ emit_unary_func_op(result_type, id, ops[4], "simd_prefix_exclusive_" #msl_op); \ else if (operation == GroupOperationClusteredReduce) \ { \ /* Only cluster sizes of 4 are supported. */ \ uint32_t cluster_size = evaluate_constant_u32(ops[5]); \ if (cluster_size != 4) \ SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \ emit_unary_func_op(result_type, id, ops[4], "quad_" #msl_op); \ } \ else \ SPIRV_CROSS_THROW("Invalid group operation."); \ break; \ } MSL_GROUP_OP(FAdd, sum) MSL_GROUP_OP(FMul, product) MSL_GROUP_OP(IAdd, sum) MSL_GROUP_OP(IMul, product) #undef MSL_GROUP_OP // The others, unfortunately, don't support InclusiveScan or ExclusiveScan. #define MSL_GROUP_OP(op, msl_op) \ case OpGroupNonUniform##op: \ { \ auto operation = static_cast(ops[3]); \ if (operation == GroupOperationReduce) \ emit_unary_func_op(result_type, id, ops[4], "simd_" #msl_op); \ else if (operation == GroupOperationInclusiveScan) \ SPIRV_CROSS_THROW("Metal doesn't support InclusiveScan for OpGroupNonUniform" #op "."); \ else if (operation == GroupOperationExclusiveScan) \ SPIRV_CROSS_THROW("Metal doesn't support ExclusiveScan for OpGroupNonUniform" #op "."); \ else if (operation == GroupOperationClusteredReduce) \ { \ /* Only cluster sizes of 4 are supported. */ \ uint32_t cluster_size = evaluate_constant_u32(ops[5]); \ if (cluster_size != 4) \ SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \ emit_unary_func_op(result_type, id, ops[4], "quad_" #msl_op); \ } \ else \ SPIRV_CROSS_THROW("Invalid group operation."); \ break; \ } #define MSL_GROUP_OP_CAST(op, msl_op, type) \ case OpGroupNonUniform##op: \ { \ auto operation = static_cast(ops[3]); \ if (operation == GroupOperationReduce) \ emit_unary_func_op_cast(result_type, id, ops[4], "simd_" #msl_op, type, type); \ else if (operation == GroupOperationInclusiveScan) \ SPIRV_CROSS_THROW("Metal doesn't support InclusiveScan for OpGroupNonUniform" #op "."); \ else if (operation == GroupOperationExclusiveScan) \ SPIRV_CROSS_THROW("Metal doesn't support ExclusiveScan for OpGroupNonUniform" #op "."); \ else if (operation == GroupOperationClusteredReduce) \ { \ /* Only cluster sizes of 4 are supported. */ \ uint32_t cluster_size = evaluate_constant_u32(ops[5]); \ if (cluster_size != 4) \ SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \ emit_unary_func_op_cast(result_type, id, ops[4], "quad_" #msl_op, type, type); \ } \ else \ SPIRV_CROSS_THROW("Invalid group operation."); \ break; \ } MSL_GROUP_OP(FMin, min) MSL_GROUP_OP(FMax, max) MSL_GROUP_OP_CAST(SMin, min, int_type) MSL_GROUP_OP_CAST(SMax, max, int_type) MSL_GROUP_OP_CAST(UMin, min, uint_type) MSL_GROUP_OP_CAST(UMax, max, uint_type) MSL_GROUP_OP(BitwiseAnd, and) MSL_GROUP_OP(BitwiseOr, or) MSL_GROUP_OP(BitwiseXor, xor) MSL_GROUP_OP(LogicalAnd, and) MSL_GROUP_OP(LogicalOr, or) MSL_GROUP_OP(LogicalXor, xor) // clang-format on #undef MSL_GROUP_OP #undef MSL_GROUP_OP_CAST case OpGroupNonUniformQuadSwap: emit_binary_func_op(result_type, id, ops[3], ops[4], "spvQuadSwap"); break; case OpGroupNonUniformQuadBroadcast: emit_binary_func_op(result_type, id, ops[3], ops[4], "spvQuadBroadcast"); break; default: SPIRV_CROSS_THROW("Invalid opcode for subgroup."); } register_control_dependent_expression(id); } string CompilerMSL::bitcast_glsl_op(const SPIRType &out_type, const SPIRType &in_type) { if (out_type.basetype == in_type.basetype) return ""; assert(out_type.basetype != SPIRType::Boolean); assert(in_type.basetype != SPIRType::Boolean); bool integral_cast = type_is_integral(out_type) && type_is_integral(in_type) && (out_type.vecsize == in_type.vecsize); bool same_size_cast = (out_type.width * out_type.vecsize) == (in_type.width * in_type.vecsize); // Bitcasting can only be used between types of the same overall size. // And always formally cast between integers, because it's trivial, and also // because Metal can internally cast the results of some integer ops to a larger // size (eg. short shift right becomes int), which means chaining integer ops // together may introduce size variations that SPIR-V doesn't know about. if (same_size_cast && !integral_cast) { return "as_type<" + type_to_glsl(out_type) + ">"; } else { return type_to_glsl(out_type); } } bool CompilerMSL::emit_complex_bitcast(uint32_t, uint32_t, uint32_t) { return false; } // Returns an MSL string identifying the name of a SPIR-V builtin. // Output builtins are qualified with the name of the stage out structure. string CompilerMSL::builtin_to_glsl(BuiltIn builtin, StorageClass storage) { switch (builtin) { // Handle HLSL-style 0-based vertex/instance index. // Override GLSL compiler strictness case BuiltInVertexId: ensure_builtin(StorageClassInput, BuiltInVertexId); if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) && (msl_options.ios_support_base_vertex_instance || msl_options.is_macos())) { if (builtin_declaration) { if (needs_base_vertex_arg != TriState::No) needs_base_vertex_arg = TriState::Yes; return "gl_VertexID"; } else { ensure_builtin(StorageClassInput, BuiltInBaseVertex); return "(gl_VertexID - gl_BaseVertex)"; } } else { return "gl_VertexID"; } case BuiltInInstanceId: ensure_builtin(StorageClassInput, BuiltInInstanceId); if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) && (msl_options.ios_support_base_vertex_instance || msl_options.is_macos())) { if (builtin_declaration) { if (needs_base_instance_arg != TriState::No) needs_base_instance_arg = TriState::Yes; return "gl_InstanceID"; } else { ensure_builtin(StorageClassInput, BuiltInBaseInstance); return "(gl_InstanceID - gl_BaseInstance)"; } } else { return "gl_InstanceID"; } case BuiltInVertexIndex: ensure_builtin(StorageClassInput, BuiltInVertexIndex); if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) && (msl_options.ios_support_base_vertex_instance || msl_options.is_macos())) { if (builtin_declaration) { if (needs_base_vertex_arg != TriState::No) needs_base_vertex_arg = TriState::Yes; return "gl_VertexIndex"; } else { ensure_builtin(StorageClassInput, BuiltInBaseVertex); return "(gl_VertexIndex - gl_BaseVertex)"; } } else { return "gl_VertexIndex"; } case BuiltInInstanceIndex: ensure_builtin(StorageClassInput, BuiltInInstanceIndex); if (msl_options.enable_base_index_zero && msl_options.supports_msl_version(1, 1) && (msl_options.ios_support_base_vertex_instance || msl_options.is_macos())) { if (builtin_declaration) { if (needs_base_instance_arg != TriState::No) needs_base_instance_arg = TriState::Yes; return "gl_InstanceIndex"; } else { ensure_builtin(StorageClassInput, BuiltInBaseInstance); return "(gl_InstanceIndex - gl_BaseInstance)"; } } else { return "gl_InstanceIndex"; } case BuiltInBaseVertex: if (msl_options.supports_msl_version(1, 1) && (msl_options.ios_support_base_vertex_instance || msl_options.is_macos())) { needs_base_vertex_arg = TriState::No; return "gl_BaseVertex"; } else { SPIRV_CROSS_THROW("BaseVertex requires Metal 1.1 and Mac or Apple A9+ hardware."); } case BuiltInBaseInstance: if (msl_options.supports_msl_version(1, 1) && (msl_options.ios_support_base_vertex_instance || msl_options.is_macos())) { needs_base_instance_arg = TriState::No; return "gl_BaseInstance"; } else { SPIRV_CROSS_THROW("BaseInstance requires Metal 1.1 and Mac or Apple A9+ hardware."); } case BuiltInDrawIndex: SPIRV_CROSS_THROW("DrawIndex is not supported in MSL."); // When used in the entry function, output builtins are qualified with output struct name. // Test storage class as NOT Input, as output builtins might be part of generic type. // Also don't do this for tessellation control shaders. case BuiltInViewportIndex: if (!msl_options.supports_msl_version(2, 0)) SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0."); /* fallthrough */ case BuiltInFragDepth: case BuiltInFragStencilRefEXT: if ((builtin == BuiltInFragDepth && !msl_options.enable_frag_depth_builtin) || (builtin == BuiltInFragStencilRefEXT && !msl_options.enable_frag_stencil_ref_builtin)) break; /* fallthrough */ case BuiltInPosition: case BuiltInPointSize: case BuiltInClipDistance: case BuiltInCullDistance: case BuiltInLayer: if (get_execution_model() == ExecutionModelTessellationControl) break; if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point) && !is_stage_output_builtin_masked(builtin)) return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage); break; case BuiltInSampleMask: if (storage == StorageClassInput && current_function && (current_function->self == ir.default_entry_point) && (has_additional_fixed_sample_mask() || needs_sample_id)) { string samp_mask_in; samp_mask_in += "(" + CompilerGLSL::builtin_to_glsl(builtin, storage); if (has_additional_fixed_sample_mask()) samp_mask_in += " & " + additional_fixed_sample_mask_str(); if (needs_sample_id) samp_mask_in += " & (1 << gl_SampleID)"; samp_mask_in += ")"; return samp_mask_in; } if (storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point) && !is_stage_output_builtin_masked(builtin)) return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage); break; case BuiltInBaryCoordNV: case BuiltInBaryCoordNoPerspNV: if (storage == StorageClassInput && current_function && (current_function->self == ir.default_entry_point)) return stage_in_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage); break; case BuiltInTessLevelOuter: if (get_execution_model() == ExecutionModelTessellationControl && storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point)) { return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id), "].edgeTessellationFactor"); } break; case BuiltInTessLevelInner: if (get_execution_model() == ExecutionModelTessellationControl && storage != StorageClassInput && current_function && (current_function->self == ir.default_entry_point)) { return join(tess_factor_buffer_var_name, "[", to_expression(builtin_primitive_id_id), "].insideTessellationFactor"); } break; case BuiltInHelperInvocation: if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3)) SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.3 on iOS."); else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 1)) SPIRV_CROSS_THROW("simd_is_helper_thread() requires version 2.1 on macOS."); // In SPIR-V 1.6 with Volatile HelperInvocation, we cannot emit a fixup early. return "simd_is_helper_thread()"; default: break; } return CompilerGLSL::builtin_to_glsl(builtin, storage); } // Returns an MSL string attribute qualifer for a SPIR-V builtin string CompilerMSL::builtin_qualifier(BuiltIn builtin) { auto &execution = get_entry_point(); switch (builtin) { // Vertex function in case BuiltInVertexId: return "vertex_id"; case BuiltInVertexIndex: return "vertex_id"; case BuiltInBaseVertex: return "base_vertex"; case BuiltInInstanceId: return "instance_id"; case BuiltInInstanceIndex: return "instance_id"; case BuiltInBaseInstance: return "base_instance"; case BuiltInDrawIndex: SPIRV_CROSS_THROW("DrawIndex is not supported in MSL."); // Vertex function out case BuiltInClipDistance: return "clip_distance"; case BuiltInPointSize: return "point_size"; case BuiltInPosition: if (position_invariant) { if (!msl_options.supports_msl_version(2, 1)) SPIRV_CROSS_THROW("Invariant position is only supported on MSL 2.1 and up."); return "position, invariant"; } else return "position"; case BuiltInLayer: return "render_target_array_index"; case BuiltInViewportIndex: if (!msl_options.supports_msl_version(2, 0)) SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0."); return "viewport_array_index"; // Tess. control function in case BuiltInInvocationId: if (msl_options.multi_patch_workgroup) { // Shouldn't be reached. SPIRV_CROSS_THROW("InvocationId is computed manually with multi-patch workgroups in MSL."); } return "thread_index_in_threadgroup"; case BuiltInPatchVertices: // Shouldn't be reached. SPIRV_CROSS_THROW("PatchVertices is derived from the auxiliary buffer in MSL."); case BuiltInPrimitiveId: switch (execution.model) { case ExecutionModelTessellationControl: if (msl_options.multi_patch_workgroup) { // Shouldn't be reached. SPIRV_CROSS_THROW("PrimitiveId is computed manually with multi-patch workgroups in MSL."); } return "threadgroup_position_in_grid"; case ExecutionModelTessellationEvaluation: return "patch_id"; case ExecutionModelFragment: if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3)) SPIRV_CROSS_THROW("PrimitiveId on iOS requires MSL 2.3."); else if (msl_options.is_macos() && !msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("PrimitiveId on macOS requires MSL 2.2."); return "primitive_id"; default: SPIRV_CROSS_THROW("PrimitiveId is not supported in this execution model."); } // Tess. control function out case BuiltInTessLevelOuter: case BuiltInTessLevelInner: // Shouldn't be reached. SPIRV_CROSS_THROW("Tessellation levels are handled specially in MSL."); // Tess. evaluation function in case BuiltInTessCoord: return "position_in_patch"; // Fragment function in case BuiltInFrontFacing: return "front_facing"; case BuiltInPointCoord: return "point_coord"; case BuiltInFragCoord: return "position"; case BuiltInSampleId: return "sample_id"; case BuiltInSampleMask: return "sample_mask"; case BuiltInSamplePosition: // Shouldn't be reached. SPIRV_CROSS_THROW("Sample position is retrieved by a function in MSL."); case BuiltInViewIndex: if (execution.model != ExecutionModelFragment) SPIRV_CROSS_THROW("ViewIndex is handled specially outside fragment shaders."); // The ViewIndex was implicitly used in the prior stages to set the render_target_array_index, // so we can get it from there. return "render_target_array_index"; // Fragment function out case BuiltInFragDepth: if (execution.flags.get(ExecutionModeDepthGreater)) return "depth(greater)"; else if (execution.flags.get(ExecutionModeDepthLess)) return "depth(less)"; else return "depth(any)"; case BuiltInFragStencilRefEXT: return "stencil"; // Compute function in case BuiltInGlobalInvocationId: return "thread_position_in_grid"; case BuiltInWorkgroupId: return "threadgroup_position_in_grid"; case BuiltInNumWorkgroups: return "threadgroups_per_grid"; case BuiltInLocalInvocationId: return "thread_position_in_threadgroup"; case BuiltInLocalInvocationIndex: return "thread_index_in_threadgroup"; case BuiltInSubgroupSize: if (msl_options.emulate_subgroups || msl_options.fixed_subgroup_size != 0) // Shouldn't be reached. SPIRV_CROSS_THROW("Emitting threads_per_simdgroup attribute with fixed subgroup size??"); if (execution.model == ExecutionModelFragment) { if (!msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("threads_per_simdgroup requires Metal 2.2 in fragment shaders."); return "threads_per_simdgroup"; } else { // thread_execution_width is an alias for threads_per_simdgroup, and it's only available since 1.0, // but not in fragment. return "thread_execution_width"; } case BuiltInNumSubgroups: if (msl_options.emulate_subgroups) // Shouldn't be reached. SPIRV_CROSS_THROW("NumSubgroups is handled specially with emulation."); if (!msl_options.supports_msl_version(2)) SPIRV_CROSS_THROW("Subgroup builtins require Metal 2.0."); return msl_options.use_quadgroup_operation() ? "quadgroups_per_threadgroup" : "simdgroups_per_threadgroup"; case BuiltInSubgroupId: if (msl_options.emulate_subgroups) // Shouldn't be reached. SPIRV_CROSS_THROW("SubgroupId is handled specially with emulation."); if (!msl_options.supports_msl_version(2)) SPIRV_CROSS_THROW("Subgroup builtins require Metal 2.0."); return msl_options.use_quadgroup_operation() ? "quadgroup_index_in_threadgroup" : "simdgroup_index_in_threadgroup"; case BuiltInSubgroupLocalInvocationId: if (msl_options.emulate_subgroups) // Shouldn't be reached. SPIRV_CROSS_THROW("SubgroupLocalInvocationId is handled specially with emulation."); if (execution.model == ExecutionModelFragment) { if (!msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("thread_index_in_simdgroup requires Metal 2.2 in fragment shaders."); return "thread_index_in_simdgroup"; } else if (execution.model == ExecutionModelKernel || execution.model == ExecutionModelGLCompute || execution.model == ExecutionModelTessellationControl || (execution.model == ExecutionModelVertex && msl_options.vertex_for_tessellation)) { // We are generating a Metal kernel function. if (!msl_options.supports_msl_version(2)) SPIRV_CROSS_THROW("Subgroup builtins in kernel functions require Metal 2.0."); return msl_options.use_quadgroup_operation() ? "thread_index_in_quadgroup" : "thread_index_in_simdgroup"; } else SPIRV_CROSS_THROW("Subgroup builtins are not available in this type of function."); case BuiltInSubgroupEqMask: case BuiltInSubgroupGeMask: case BuiltInSubgroupGtMask: case BuiltInSubgroupLeMask: case BuiltInSubgroupLtMask: // Shouldn't be reached. SPIRV_CROSS_THROW("Subgroup ballot masks are handled specially in MSL."); case BuiltInBaryCoordNV: // TODO: AMD barycentrics as well? Seem to have different swizzle and 2 components rather than 3. if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3)) SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.3 and above on iOS."); else if (!msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.2 and above on macOS."); return "barycentric_coord, center_perspective"; case BuiltInBaryCoordNoPerspNV: // TODO: AMD barycentrics as well? Seem to have different swizzle and 2 components rather than 3. if (msl_options.is_ios() && !msl_options.supports_msl_version(2, 3)) SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.3 and above on iOS."); else if (!msl_options.supports_msl_version(2, 2)) SPIRV_CROSS_THROW("Barycentrics are only supported in MSL 2.2 and above on macOS."); return "barycentric_coord, center_no_perspective"; default: return "unsupported-built-in"; } } // Returns an MSL string type declaration for a SPIR-V builtin string CompilerMSL::builtin_type_decl(BuiltIn builtin, uint32_t id) { const SPIREntryPoint &execution = get_entry_point(); switch (builtin) { // Vertex function in case BuiltInVertexId: return "uint"; case BuiltInVertexIndex: return "uint"; case BuiltInBaseVertex: return "uint"; case BuiltInInstanceId: return "uint"; case BuiltInInstanceIndex: return "uint"; case BuiltInBaseInstance: return "uint"; case BuiltInDrawIndex: SPIRV_CROSS_THROW("DrawIndex is not supported in MSL."); // Vertex function out case BuiltInClipDistance: case BuiltInCullDistance: return "float"; case BuiltInPointSize: return "float"; case BuiltInPosition: return "float4"; case BuiltInLayer: return "uint"; case BuiltInViewportIndex: if (!msl_options.supports_msl_version(2, 0)) SPIRV_CROSS_THROW("ViewportIndex requires Metal 2.0."); return "uint"; // Tess. control function in case BuiltInInvocationId: return "uint"; case BuiltInPatchVertices: return "uint"; case BuiltInPrimitiveId: return "uint"; // Tess. control function out case BuiltInTessLevelInner: if (execution.model == ExecutionModelTessellationEvaluation) return !execution.flags.get(ExecutionModeTriangles) ? "float2" : "float"; return "half"; case BuiltInTessLevelOuter: if (execution.model == ExecutionModelTessellationEvaluation) return !execution.flags.get(ExecutionModeTriangles) ? "float4" : "float"; return "half"; // Tess. evaluation function in case BuiltInTessCoord: return "float3"; // Fragment function in case BuiltInFrontFacing: return "bool"; case BuiltInPointCoord: return "float2"; case BuiltInFragCoord: return "float4"; case BuiltInSampleId: return "uint"; case BuiltInSampleMask: return "uint"; case BuiltInSamplePosition: return "float2"; case BuiltInViewIndex: return "uint"; case BuiltInHelperInvocation: return "bool"; case BuiltInBaryCoordNV: case BuiltInBaryCoordNoPerspNV: // Use the type as declared, can be 1, 2 or 3 components. return type_to_glsl(get_variable_data_type(get(id))); // Fragment function out case BuiltInFragDepth: return "float"; case BuiltInFragStencilRefEXT: return "uint"; // Compute function in case BuiltInGlobalInvocationId: case BuiltInLocalInvocationId: case BuiltInNumWorkgroups: case BuiltInWorkgroupId: return "uint3"; case BuiltInLocalInvocationIndex: case BuiltInNumSubgroups: case BuiltInSubgroupId: case BuiltInSubgroupSize: case BuiltInSubgroupLocalInvocationId: return "uint"; case BuiltInSubgroupEqMask: case BuiltInSubgroupGeMask: case BuiltInSubgroupGtMask: case BuiltInSubgroupLeMask: case BuiltInSubgroupLtMask: return "uint4"; case BuiltInDeviceIndex: return "int"; default: return "unsupported-built-in-type"; } } // Returns the declaration of a built-in argument to a function string CompilerMSL::built_in_func_arg(BuiltIn builtin, bool prefix_comma) { string bi_arg; if (prefix_comma) bi_arg += ", "; // Handle HLSL-style 0-based vertex/instance index. builtin_declaration = true; bi_arg += builtin_type_decl(builtin); bi_arg += " " + builtin_to_glsl(builtin, StorageClassInput); bi_arg += " [[" + builtin_qualifier(builtin) + "]]"; builtin_declaration = false; return bi_arg; } const SPIRType &CompilerMSL::get_physical_member_type(const SPIRType &type, uint32_t index) const { if (member_is_remapped_physical_type(type, index)) return get(get_extended_member_decoration(type.self, index, SPIRVCrossDecorationPhysicalTypeID)); else return get(type.member_types[index]); } SPIRType CompilerMSL::get_presumed_input_type(const SPIRType &ib_type, uint32_t index) const { SPIRType type = get_physical_member_type(ib_type, index); uint32_t loc = get_member_decoration(ib_type.self, index, DecorationLocation); uint32_t cmp = get_member_decoration(ib_type.self, index, DecorationComponent); auto p_va = inputs_by_location.find({loc, cmp}); if (p_va != end(inputs_by_location) && p_va->second.vecsize > type.vecsize) type.vecsize = p_va->second.vecsize; return type; } uint32_t CompilerMSL::get_declared_type_array_stride_msl(const SPIRType &type, bool is_packed, bool row_major) const { // Array stride in MSL is always size * array_size. sizeof(float3) == 16, // unlike GLSL and HLSL where array stride would be 16 and size 12. // We could use parent type here and recurse, but that makes creating physical type remappings // far more complicated. We'd rather just create the final type, and ignore having to create the entire type // hierarchy in order to compute this value, so make a temporary type on the stack. auto basic_type = type; basic_type.array.clear(); basic_type.array_size_literal.clear(); uint32_t value_size = get_declared_type_size_msl(basic_type, is_packed, row_major); uint32_t dimensions = uint32_t(type.array.size()); assert(dimensions > 0); dimensions--; // Multiply together every dimension, except the last one. for (uint32_t dim = 0; dim < dimensions; dim++) { uint32_t array_size = to_array_size_literal(type, dim); value_size *= max(array_size, 1u); } return value_size; } uint32_t CompilerMSL::get_declared_struct_member_array_stride_msl(const SPIRType &type, uint32_t index) const { return get_declared_type_array_stride_msl(get_physical_member_type(type, index), member_is_packed_physical_type(type, index), has_member_decoration(type.self, index, DecorationRowMajor)); } uint32_t CompilerMSL::get_declared_input_array_stride_msl(const SPIRType &type, uint32_t index) const { return get_declared_type_array_stride_msl(get_presumed_input_type(type, index), false, has_member_decoration(type.self, index, DecorationRowMajor)); } uint32_t CompilerMSL::get_declared_type_matrix_stride_msl(const SPIRType &type, bool packed, bool row_major) const { // For packed matrices, we just use the size of the vector type. // Otherwise, MatrixStride == alignment, which is the size of the underlying vector type. if (packed) return (type.width / 8) * ((row_major && type.columns > 1) ? type.columns : type.vecsize); else return get_declared_type_alignment_msl(type, false, row_major); } uint32_t CompilerMSL::get_declared_struct_member_matrix_stride_msl(const SPIRType &type, uint32_t index) const { return get_declared_type_matrix_stride_msl(get_physical_member_type(type, index), member_is_packed_physical_type(type, index), has_member_decoration(type.self, index, DecorationRowMajor)); } uint32_t CompilerMSL::get_declared_input_matrix_stride_msl(const SPIRType &type, uint32_t index) const { return get_declared_type_matrix_stride_msl(get_presumed_input_type(type, index), false, has_member_decoration(type.self, index, DecorationRowMajor)); } uint32_t CompilerMSL::get_declared_struct_size_msl(const SPIRType &struct_type, bool ignore_alignment, bool ignore_padding) const { // If we have a target size, that is the declared size as well. if (!ignore_padding && has_extended_decoration(struct_type.self, SPIRVCrossDecorationPaddingTarget)) return get_extended_decoration(struct_type.self, SPIRVCrossDecorationPaddingTarget); if (struct_type.member_types.empty()) return 0; uint32_t mbr_cnt = uint32_t(struct_type.member_types.size()); // In MSL, a struct's alignment is equal to the maximum alignment of any of its members. uint32_t alignment = 1; if (!ignore_alignment) { for (uint32_t i = 0; i < mbr_cnt; i++) { uint32_t mbr_alignment = get_declared_struct_member_alignment_msl(struct_type, i); alignment = max(alignment, mbr_alignment); } } // Last member will always be matched to the final Offset decoration, but size of struct in MSL now depends // on physical size in MSL, and the size of the struct itself is then aligned to struct alignment. uint32_t spirv_offset = type_struct_member_offset(struct_type, mbr_cnt - 1); uint32_t msl_size = spirv_offset + get_declared_struct_member_size_msl(struct_type, mbr_cnt - 1); msl_size = (msl_size + alignment - 1) & ~(alignment - 1); return msl_size; } // Returns the byte size of a struct member. uint32_t CompilerMSL::get_declared_type_size_msl(const SPIRType &type, bool is_packed, bool row_major) const { switch (type.basetype) { case SPIRType::Unknown: case SPIRType::Void: case SPIRType::AtomicCounter: case SPIRType::Image: case SPIRType::SampledImage: case SPIRType::Sampler: SPIRV_CROSS_THROW("Querying size of opaque object."); default: { if (!type.array.empty()) { uint32_t array_size = to_array_size_literal(type); return get_declared_type_array_stride_msl(type, is_packed, row_major) * max(array_size, 1u); } if (type.basetype == SPIRType::Struct) return get_declared_struct_size_msl(type); if (is_packed) { return type.vecsize * type.columns * (type.width / 8); } else { // An unpacked 3-element vector or matrix column is the same memory size as a 4-element. uint32_t vecsize = type.vecsize; uint32_t columns = type.columns; if (row_major && columns > 1) swap(vecsize, columns); if (vecsize == 3) vecsize = 4; return vecsize * columns * (type.width / 8); } } } } uint32_t CompilerMSL::get_declared_struct_member_size_msl(const SPIRType &type, uint32_t index) const { return get_declared_type_size_msl(get_physical_member_type(type, index), member_is_packed_physical_type(type, index), has_member_decoration(type.self, index, DecorationRowMajor)); } uint32_t CompilerMSL::get_declared_input_size_msl(const SPIRType &type, uint32_t index) const { return get_declared_type_size_msl(get_presumed_input_type(type, index), false, has_member_decoration(type.self, index, DecorationRowMajor)); } // Returns the byte alignment of a type. uint32_t CompilerMSL::get_declared_type_alignment_msl(const SPIRType &type, bool is_packed, bool row_major) const { switch (type.basetype) { case SPIRType::Unknown: case SPIRType::Void: case SPIRType::AtomicCounter: case SPIRType::Image: case SPIRType::SampledImage: case SPIRType::Sampler: SPIRV_CROSS_THROW("Querying alignment of opaque object."); case SPIRType::Double: SPIRV_CROSS_THROW("double types are not supported in buffers in MSL."); case SPIRType::Struct: { // In MSL, a struct's alignment is equal to the maximum alignment of any of its members. uint32_t alignment = 1; for (uint32_t i = 0; i < type.member_types.size(); i++) alignment = max(alignment, uint32_t(get_declared_struct_member_alignment_msl(type, i))); return alignment; } default: { if (type.basetype == SPIRType::Int64 && !msl_options.supports_msl_version(2, 3)) SPIRV_CROSS_THROW("long types in buffers are only supported in MSL 2.3 and above."); if (type.basetype == SPIRType::UInt64 && !msl_options.supports_msl_version(2, 3)) SPIRV_CROSS_THROW("ulong types in buffers are only supported in MSL 2.3 and above."); // Alignment of packed type is the same as the underlying component or column size. // Alignment of unpacked type is the same as the vector size. // Alignment of 3-elements vector is the same as 4-elements (including packed using column). if (is_packed) { // If we have packed_T and friends, the alignment is always scalar. return type.width / 8; } else { // This is the general rule for MSL. Size == alignment. uint32_t vecsize = (row_major && type.columns > 1) ? type.columns : type.vecsize; return (type.width / 8) * (vecsize == 3 ? 4 : vecsize); } } } } uint32_t CompilerMSL::get_declared_struct_member_alignment_msl(const SPIRType &type, uint32_t index) const { return get_declared_type_alignment_msl(get_physical_member_type(type, index), member_is_packed_physical_type(type, index), has_member_decoration(type.self, index, DecorationRowMajor)); } uint32_t CompilerMSL::get_declared_input_alignment_msl(const SPIRType &type, uint32_t index) const { return get_declared_type_alignment_msl(get_presumed_input_type(type, index), false, has_member_decoration(type.self, index, DecorationRowMajor)); } bool CompilerMSL::skip_argument(uint32_t) const { return false; } void CompilerMSL::analyze_sampled_image_usage() { if (msl_options.swizzle_texture_samples) { SampledImageScanner scanner(*this); traverse_all_reachable_opcodes(get(ir.default_entry_point), scanner); } } bool CompilerMSL::SampledImageScanner::handle(spv::Op opcode, const uint32_t *args, uint32_t length) { switch (opcode) { case OpLoad: case OpImage: case OpSampledImage: { if (length < 3) return false; uint32_t result_type = args[0]; auto &type = compiler.get(result_type); if ((type.basetype != SPIRType::Image && type.basetype != SPIRType::SampledImage) || type.image.sampled != 1) return true; uint32_t id = args[1]; compiler.set(id, "", result_type, true); break; } case OpImageSampleExplicitLod: case OpImageSampleProjExplicitLod: case OpImageSampleDrefExplicitLod: case OpImageSampleProjDrefExplicitLod: case OpImageSampleImplicitLod: case OpImageSampleProjImplicitLod: case OpImageSampleDrefImplicitLod: case OpImageSampleProjDrefImplicitLod: case OpImageFetch: case OpImageGather: case OpImageDrefGather: compiler.has_sampled_images = compiler.has_sampled_images || compiler.is_sampled_image_type(compiler.expression_type(args[2])); compiler.needs_swizzle_buffer_def = compiler.needs_swizzle_buffer_def || compiler.has_sampled_images; break; default: break; } return true; } // If a needed custom function wasn't added before, add it and force a recompile. void CompilerMSL::add_spv_func_and_recompile(SPVFuncImpl spv_func) { if (spv_function_implementations.count(spv_func) == 0) { spv_function_implementations.insert(spv_func); suppress_missing_prototypes = true; force_recompile(); } } bool CompilerMSL::OpCodePreprocessor::handle(Op opcode, const uint32_t *args, uint32_t length) { // Since MSL exists in a single execution scope, function prototype declarations are not // needed, and clutter the output. If secondary functions are output (either as a SPIR-V // function implementation or as indicated by the presence of OpFunctionCall), then set // suppress_missing_prototypes to suppress compiler warnings of missing function prototypes. // Mark if the input requires the implementation of an SPIR-V function that does not exist in Metal. SPVFuncImpl spv_func = get_spv_func_impl(opcode, args); if (spv_func != SPVFuncImplNone) { compiler.spv_function_implementations.insert(spv_func); suppress_missing_prototypes = true; } switch (opcode) { case OpFunctionCall: suppress_missing_prototypes = true; break; // Emulate texture2D atomic operations case OpImageTexelPointer: { auto *var = compiler.maybe_get_backing_variable(args[2]); image_pointers[args[1]] = var ? var->self : ID(0); break; } case OpImageWrite: if (!compiler.msl_options.supports_msl_version(2, 2)) uses_resource_write = true; break; case OpStore: check_resource_write(args[0]); break; // Emulate texture2D atomic operations case OpAtomicExchange: case OpAtomicCompareExchange: case OpAtomicCompareExchangeWeak: case OpAtomicIIncrement: case OpAtomicIDecrement: case OpAtomicIAdd: case OpAtomicISub: case OpAtomicSMin: case OpAtomicUMin: case OpAtomicSMax: case OpAtomicUMax: case OpAtomicAnd: case OpAtomicOr: case OpAtomicXor: { uses_atomics = true; auto it = image_pointers.find(args[2]); if (it != image_pointers.end()) { compiler.atomic_image_vars.insert(it->second); } check_resource_write(args[2]); break; } case OpAtomicStore: { uses_atomics = true; auto it = image_pointers.find(args[0]); if (it != image_pointers.end()) { compiler.atomic_image_vars.insert(it->second); } check_resource_write(args[0]); break; } case OpAtomicLoad: { uses_atomics = true; auto it = image_pointers.find(args[2]); if (it != image_pointers.end()) { compiler.atomic_image_vars.insert(it->second); } break; } case OpGroupNonUniformInverseBallot: needs_subgroup_invocation_id = true; break; case OpGroupNonUniformBallotFindLSB: case OpGroupNonUniformBallotFindMSB: needs_subgroup_size = true; break; case OpGroupNonUniformBallotBitCount: if (args[3] == GroupOperationReduce) needs_subgroup_size = true; else needs_subgroup_invocation_id = true; break; case OpArrayLength: { auto *var = compiler.maybe_get_backing_variable(args[2]); if (var) compiler.buffers_requiring_array_length.insert(var->self); break; } case OpInBoundsAccessChain: case OpAccessChain: case OpPtrAccessChain: { // OpArrayLength might want to know if taking ArrayLength of an array of SSBOs. uint32_t result_type = args[0]; uint32_t id = args[1]; uint32_t ptr = args[2]; compiler.set(id, "", result_type, true); compiler.register_read(id, ptr, true); compiler.ir.ids[id].set_allow_type_rewrite(); break; } case OpExtInst: { uint32_t extension_set = args[2]; if (compiler.get(extension_set).ext == SPIRExtension::GLSL) { auto op_450 = static_cast(args[3]); switch (op_450) { case GLSLstd450InterpolateAtCentroid: case GLSLstd450InterpolateAtSample: case GLSLstd450InterpolateAtOffset: { if (!compiler.msl_options.supports_msl_version(2, 3)) SPIRV_CROSS_THROW("Pull-model interpolation requires MSL 2.3."); // Fragment varyings used with pull-model interpolation need special handling, // due to the way pull-model interpolation works in Metal. auto *var = compiler.maybe_get_backing_variable(args[4]); if (var) { compiler.pull_model_inputs.insert(var->self); auto &var_type = compiler.get_variable_element_type(*var); // In addition, if this variable has a 'Sample' decoration, we need the sample ID // in order to do default interpolation. if (compiler.has_decoration(var->self, DecorationSample)) { needs_sample_id = true; } else if (var_type.basetype == SPIRType::Struct) { // Now we need to check each member and see if it has this decoration. for (uint32_t i = 0; i < var_type.member_types.size(); ++i) { if (compiler.has_member_decoration(var_type.self, i, DecorationSample)) { needs_sample_id = true; break; } } } } break; } default: break; } } break; } default: break; } // If it has one, keep track of the instruction's result type, mapped by ID uint32_t result_type, result_id; if (compiler.instruction_to_result_type(result_type, result_id, opcode, args, length)) result_types[result_id] = result_type; return true; } // If the variable is a Uniform or StorageBuffer, mark that a resource has been written to. void CompilerMSL::OpCodePreprocessor::check_resource_write(uint32_t var_id) { auto *p_var = compiler.maybe_get_backing_variable(var_id); StorageClass sc = p_var ? p_var->storage : StorageClassMax; if (!compiler.msl_options.supports_msl_version(2, 1) && (sc == StorageClassUniform || sc == StorageClassStorageBuffer)) uses_resource_write = true; } // Returns an enumeration of a SPIR-V function that needs to be output for certain Op codes. CompilerMSL::SPVFuncImpl CompilerMSL::OpCodePreprocessor::get_spv_func_impl(Op opcode, const uint32_t *args) { switch (opcode) { case OpFMod: return SPVFuncImplMod; case OpFAdd: case OpFSub: if (compiler.msl_options.invariant_float_math || compiler.has_decoration(args[1], DecorationNoContraction)) { return opcode == OpFAdd ? SPVFuncImplFAdd : SPVFuncImplFSub; } break; case OpFMul: case OpOuterProduct: case OpMatrixTimesVector: case OpVectorTimesMatrix: case OpMatrixTimesMatrix: if (compiler.msl_options.invariant_float_math || compiler.has_decoration(args[1], DecorationNoContraction)) { return SPVFuncImplFMul; } break; case OpQuantizeToF16: return SPVFuncImplQuantizeToF16; case OpTypeArray: { // Allow Metal to use the array template to make arrays a value type return SPVFuncImplUnsafeArray; } // Emulate texture2D atomic operations case OpAtomicExchange: case OpAtomicCompareExchange: case OpAtomicCompareExchangeWeak: case OpAtomicIIncrement: case OpAtomicIDecrement: case OpAtomicIAdd: case OpAtomicISub: case OpAtomicSMin: case OpAtomicUMin: case OpAtomicSMax: case OpAtomicUMax: case OpAtomicAnd: case OpAtomicOr: case OpAtomicXor: case OpAtomicLoad: case OpAtomicStore: { auto it = image_pointers.find(args[opcode == OpAtomicStore ? 0 : 2]); if (it != image_pointers.end()) { uint32_t tid = compiler.get(it->second).basetype; if (tid && compiler.get(tid).image.dim == Dim2D) return SPVFuncImplImage2DAtomicCoords; } break; } case OpImageFetch: case OpImageRead: case OpImageWrite: { // Retrieve the image type, and if it's a Buffer, emit a texel coordinate function uint32_t tid = result_types[args[opcode == OpImageWrite ? 0 : 2]]; if (tid && compiler.get(tid).image.dim == DimBuffer && !compiler.msl_options.texture_buffer_native) return SPVFuncImplTexelBufferCoords; break; } case OpExtInst: { uint32_t extension_set = args[2]; if (compiler.get(extension_set).ext == SPIRExtension::GLSL) { auto op_450 = static_cast(args[3]); switch (op_450) { case GLSLstd450Radians: return SPVFuncImplRadians; case GLSLstd450Degrees: return SPVFuncImplDegrees; case GLSLstd450FindILsb: return SPVFuncImplFindILsb; case GLSLstd450FindSMsb: return SPVFuncImplFindSMsb; case GLSLstd450FindUMsb: return SPVFuncImplFindUMsb; case GLSLstd450SSign: return SPVFuncImplSSign; case GLSLstd450Reflect: { auto &type = compiler.get(args[0]); if (type.vecsize == 1) return SPVFuncImplReflectScalar; break; } case GLSLstd450Refract: { auto &type = compiler.get(args[0]); if (type.vecsize == 1) return SPVFuncImplRefractScalar; break; } case GLSLstd450FaceForward: { auto &type = compiler.get(args[0]); if (type.vecsize == 1) return SPVFuncImplFaceForwardScalar; break; } case GLSLstd450MatrixInverse: { auto &mat_type = compiler.get(args[0]); switch (mat_type.columns) { case 2: return SPVFuncImplInverse2x2; case 3: return SPVFuncImplInverse3x3; case 4: return SPVFuncImplInverse4x4; default: break; } break; } default: break; } } break; } case OpGroupNonUniformBroadcast: return SPVFuncImplSubgroupBroadcast; case OpGroupNonUniformBroadcastFirst: return SPVFuncImplSubgroupBroadcastFirst; case OpGroupNonUniformBallot: return SPVFuncImplSubgroupBallot; case OpGroupNonUniformInverseBallot: case OpGroupNonUniformBallotBitExtract: return SPVFuncImplSubgroupBallotBitExtract; case OpGroupNonUniformBallotFindLSB: return SPVFuncImplSubgroupBallotFindLSB; case OpGroupNonUniformBallotFindMSB: return SPVFuncImplSubgroupBallotFindMSB; case OpGroupNonUniformBallotBitCount: return SPVFuncImplSubgroupBallotBitCount; case OpGroupNonUniformAllEqual: return SPVFuncImplSubgroupAllEqual; case OpGroupNonUniformShuffle: return SPVFuncImplSubgroupShuffle; case OpGroupNonUniformShuffleXor: return SPVFuncImplSubgroupShuffleXor; case OpGroupNonUniformShuffleUp: return SPVFuncImplSubgroupShuffleUp; case OpGroupNonUniformShuffleDown: return SPVFuncImplSubgroupShuffleDown; case OpGroupNonUniformQuadBroadcast: return SPVFuncImplQuadBroadcast; case OpGroupNonUniformQuadSwap: return SPVFuncImplQuadSwap; default: break; } return SPVFuncImplNone; } // Sort both type and meta member content based on builtin status (put builtins at end), // then by the required sorting aspect. void CompilerMSL::MemberSorter::sort() { // Create a temporary array of consecutive member indices and sort it based on how // the members should be reordered, based on builtin and sorting aspect meta info. size_t mbr_cnt = type.member_types.size(); SmallVector mbr_idxs(mbr_cnt); std::iota(mbr_idxs.begin(), mbr_idxs.end(), 0); // Fill with consecutive indices std::stable_sort(mbr_idxs.begin(), mbr_idxs.end(), *this); // Sort member indices based on sorting aspect bool sort_is_identity = true; for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++) { if (mbr_idx != mbr_idxs[mbr_idx]) { sort_is_identity = false; break; } } if (sort_is_identity) return; if (meta.members.size() < type.member_types.size()) { // This should never trigger in normal circumstances, but to be safe. meta.members.resize(type.member_types.size()); } // Move type and meta member info to the order defined by the sorted member indices. // This is done by creating temporary copies of both member types and meta, and then // copying back to the original content at the sorted indices. auto mbr_types_cpy = type.member_types; auto mbr_meta_cpy = meta.members; for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++) { type.member_types[mbr_idx] = mbr_types_cpy[mbr_idxs[mbr_idx]]; meta.members[mbr_idx] = mbr_meta_cpy[mbr_idxs[mbr_idx]]; } // If we're sorting by Offset, this might affect user code which accesses a buffer block. // We will need to redirect member indices from defined index to sorted index using reverse lookup. if (sort_aspect == SortAspect::Offset) { type.member_type_index_redirection.resize(mbr_cnt); for (uint32_t map_idx = 0; map_idx < mbr_cnt; map_idx++) type.member_type_index_redirection[mbr_idxs[map_idx]] = map_idx; } } bool CompilerMSL::MemberSorter::operator()(uint32_t mbr_idx1, uint32_t mbr_idx2) { auto &mbr_meta1 = meta.members[mbr_idx1]; auto &mbr_meta2 = meta.members[mbr_idx2]; if (sort_aspect == LocationThenBuiltInType) { // Sort first by builtin status (put builtins at end), then by the sorting aspect. if (mbr_meta1.builtin != mbr_meta2.builtin) return mbr_meta2.builtin; else if (mbr_meta1.builtin) return mbr_meta1.builtin_type < mbr_meta2.builtin_type; else if (mbr_meta1.location == mbr_meta2.location) return mbr_meta1.component < mbr_meta2.component; else return mbr_meta1.location < mbr_meta2.location; } else return mbr_meta1.offset < mbr_meta2.offset; } CompilerMSL::MemberSorter::MemberSorter(SPIRType &t, Meta &m, SortAspect sa) : type(t) , meta(m) , sort_aspect(sa) { // Ensure enough meta info is available meta.members.resize(max(type.member_types.size(), meta.members.size())); } void CompilerMSL::remap_constexpr_sampler(VariableID id, const MSLConstexprSampler &sampler) { auto &type = get(get(id).basetype); if (type.basetype != SPIRType::SampledImage && type.basetype != SPIRType::Sampler) SPIRV_CROSS_THROW("Can only remap SampledImage and Sampler type."); if (!type.array.empty()) SPIRV_CROSS_THROW("Can not remap array of samplers."); constexpr_samplers_by_id[id] = sampler; } void CompilerMSL::remap_constexpr_sampler_by_binding(uint32_t desc_set, uint32_t binding, const MSLConstexprSampler &sampler) { constexpr_samplers_by_binding[{ desc_set, binding }] = sampler; } void CompilerMSL::cast_from_variable_load(uint32_t source_id, std::string &expr, const SPIRType &expr_type) { auto *var = maybe_get_backing_variable(source_id); if (var) source_id = var->self; // Type fixups for workgroup variables if they are booleans. if (var && var->storage == StorageClassWorkgroup && expr_type.basetype == SPIRType::Boolean) expr = join(type_to_glsl(expr_type), "(", expr, ")"); // Only interested in standalone builtin variables. if (!has_decoration(source_id, DecorationBuiltIn)) return; auto builtin = static_cast(get_decoration(source_id, DecorationBuiltIn)); auto expected_type = expr_type.basetype; auto expected_width = expr_type.width; switch (builtin) { case BuiltInGlobalInvocationId: case BuiltInLocalInvocationId: case BuiltInWorkgroupId: case BuiltInLocalInvocationIndex: case BuiltInWorkgroupSize: case BuiltInNumWorkgroups: case BuiltInLayer: case BuiltInViewportIndex: case BuiltInFragStencilRefEXT: case BuiltInPrimitiveId: case BuiltInSubgroupSize: case BuiltInSubgroupLocalInvocationId: case BuiltInViewIndex: case BuiltInVertexIndex: case BuiltInInstanceIndex: case BuiltInBaseInstance: case BuiltInBaseVertex: expected_type = SPIRType::UInt; expected_width = 32; break; case BuiltInTessLevelInner: case BuiltInTessLevelOuter: if (get_execution_model() == ExecutionModelTessellationControl) { expected_type = SPIRType::Half; expected_width = 16; } break; default: break; } if (expected_type != expr_type.basetype) { if (!expr_type.array.empty() && (builtin == BuiltInTessLevelInner || builtin == BuiltInTessLevelOuter)) { // Triggers when loading TessLevel directly as an array. // Need explicit padding + cast. auto wrap_expr = join(type_to_glsl(expr_type), "({ "); uint32_t array_size = get_physical_tess_level_array_size(builtin); for (uint32_t i = 0; i < array_size; i++) { if (array_size > 1) wrap_expr += join("float(", expr, "[", i, "])"); else wrap_expr += join("float(", expr, ")"); if (i + 1 < array_size) wrap_expr += ", "; } if (get_execution_mode_bitset().get(ExecutionModeTriangles)) wrap_expr += ", 0.0"; wrap_expr += " })"; expr = std::move(wrap_expr); } else { // These are of different widths, so we cannot do a straight bitcast. if (expected_width != expr_type.width) expr = join(type_to_glsl(expr_type), "(", expr, ")"); else expr = bitcast_expression(expr_type, expected_type, expr); } } } void CompilerMSL::cast_to_variable_store(uint32_t target_id, std::string &expr, const SPIRType &expr_type) { auto *var = maybe_get_backing_variable(target_id); if (var) target_id = var->self; // Type fixups for workgroup variables if they are booleans. if (var && var->storage == StorageClassWorkgroup && expr_type.basetype == SPIRType::Boolean) { auto short_type = expr_type; short_type.basetype = SPIRType::Short; expr = join(type_to_glsl(short_type), "(", expr, ")"); } // Only interested in standalone builtin variables. if (!has_decoration(target_id, DecorationBuiltIn)) return; auto builtin = static_cast(get_decoration(target_id, DecorationBuiltIn)); auto expected_type = expr_type.basetype; auto expected_width = expr_type.width; switch (builtin) { case BuiltInLayer: case BuiltInViewportIndex: case BuiltInFragStencilRefEXT: case BuiltInPrimitiveId: case BuiltInViewIndex: expected_type = SPIRType::UInt; expected_width = 32; break; case BuiltInTessLevelInner: case BuiltInTessLevelOuter: expected_type = SPIRType::Half; expected_width = 16; break; default: break; } if (expected_type != expr_type.basetype) { if (expected_width != expr_type.width) { // These are of different widths, so we cannot do a straight bitcast. auto type = expr_type; type.basetype = expected_type; type.width = expected_width; expr = join(type_to_glsl(type), "(", expr, ")"); } else { auto type = expr_type; type.basetype = expected_type; expr = bitcast_expression(type, expr_type.basetype, expr); } } } string CompilerMSL::to_initializer_expression(const SPIRVariable &var) { // We risk getting an array initializer here with MSL. If we have an array. // FIXME: We cannot handle non-constant arrays being initialized. // We will need to inject spvArrayCopy here somehow ... auto &type = get(var.basetype); string expr; if (ir.ids[var.initializer].get_type() == TypeConstant && (!type.array.empty() || type.basetype == SPIRType::Struct)) expr = constant_expression(get(var.initializer)); else expr = CompilerGLSL::to_initializer_expression(var); // If the initializer has more vector components than the variable, add a swizzle. // FIXME: This can't handle arrays or structs. auto &init_type = expression_type(var.initializer); if (type.array.empty() && type.basetype != SPIRType::Struct && init_type.vecsize > type.vecsize) expr = enclose_expression(expr + vector_swizzle(type.vecsize, 0)); return expr; } string CompilerMSL::to_zero_initialized_expression(uint32_t) { return "{}"; } bool CompilerMSL::descriptor_set_is_argument_buffer(uint32_t desc_set) const { if (!msl_options.argument_buffers) return false; if (desc_set >= kMaxArgumentBuffers) return false; return (argument_buffer_discrete_mask & (1u << desc_set)) == 0; } bool CompilerMSL::is_supported_argument_buffer_type(const SPIRType &type) const { // Very specifically, image load-store in argument buffers are disallowed on MSL on iOS. // But we won't know when the argument buffer is encoded whether this image will have // a NonWritable decoration. So just use discrete arguments for all storage images // on iOS. bool is_storage_image = type.basetype == SPIRType::Image && type.image.sampled == 2; bool is_supported_type = !msl_options.is_ios() || !is_storage_image; return !type_is_msl_framebuffer_fetch(type) && is_supported_type; } void CompilerMSL::analyze_argument_buffers() { // Gather all used resources and sort them out into argument buffers. // Each argument buffer corresponds to a descriptor set in SPIR-V. // The [[id(N)]] values used correspond to the resource mapping we have for MSL. // Otherwise, the binding number is used, but this is generally not safe some types like // combined image samplers and arrays of resources. Metal needs different indices here, // while SPIR-V can have one descriptor set binding. To use argument buffers in practice, // you will need to use the remapping from the API. for (auto &id : argument_buffer_ids) id = 0; // Output resources, sorted by resource index & type. struct Resource { SPIRVariable *var; string name; SPIRType::BaseType basetype; uint32_t index; uint32_t plane; }; SmallVector resources_in_set[kMaxArgumentBuffers]; SmallVector inline_block_vars; bool set_needs_swizzle_buffer[kMaxArgumentBuffers] = {}; bool set_needs_buffer_sizes[kMaxArgumentBuffers] = {}; bool needs_buffer_sizes = false; ir.for_each_typed_id([&](uint32_t self, SPIRVariable &var) { if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant || var.storage == StorageClassStorageBuffer) && !is_hidden_variable(var)) { uint32_t desc_set = get_decoration(self, DecorationDescriptorSet); // Ignore if it's part of a push descriptor set. if (!descriptor_set_is_argument_buffer(desc_set)) return; uint32_t var_id = var.self; auto &type = get_variable_data_type(var); if (desc_set >= kMaxArgumentBuffers) SPIRV_CROSS_THROW("Descriptor set index is out of range."); const MSLConstexprSampler *constexpr_sampler = nullptr; if (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Sampler) { constexpr_sampler = find_constexpr_sampler(var_id); if (constexpr_sampler) { // Mark this ID as a constexpr sampler for later in case it came from set/bindings. constexpr_samplers_by_id[var_id] = *constexpr_sampler; } } uint32_t binding = get_decoration(var_id, DecorationBinding); if (type.basetype == SPIRType::SampledImage) { add_resource_name(var_id); uint32_t plane_count = 1; if (constexpr_sampler && constexpr_sampler->ycbcr_conversion_enable) plane_count = constexpr_sampler->planes; for (uint32_t i = 0; i < plane_count; i++) { uint32_t image_resource_index = get_metal_resource_index(var, SPIRType::Image, i); resources_in_set[desc_set].push_back( { &var, to_name(var_id), SPIRType::Image, image_resource_index, i }); } if (type.image.dim != DimBuffer && !constexpr_sampler) { uint32_t sampler_resource_index = get_metal_resource_index(var, SPIRType::Sampler); resources_in_set[desc_set].push_back( { &var, to_sampler_expression(var_id), SPIRType::Sampler, sampler_resource_index, 0 }); } } else if (inline_uniform_blocks.count(SetBindingPair{ desc_set, binding })) { inline_block_vars.push_back(var_id); } else if (!constexpr_sampler && is_supported_argument_buffer_type(type)) { // constexpr samplers are not declared as resources. // Inline uniform blocks are always emitted at the end. add_resource_name(var_id); resources_in_set[desc_set].push_back( { &var, to_name(var_id), type.basetype, get_metal_resource_index(var, type.basetype), 0 }); // Emulate texture2D atomic operations if (atomic_image_vars.count(var.self)) { uint32_t buffer_resource_index = get_metal_resource_index(var, SPIRType::AtomicCounter, 0); resources_in_set[desc_set].push_back( { &var, to_name(var_id) + "_atomic", SPIRType::Struct, buffer_resource_index, 0 }); } } // Check if this descriptor set needs a swizzle buffer. if (needs_swizzle_buffer_def && is_sampled_image_type(type)) set_needs_swizzle_buffer[desc_set] = true; else if (buffers_requiring_array_length.count(var_id) != 0) { set_needs_buffer_sizes[desc_set] = true; needs_buffer_sizes = true; } } }); if (needs_swizzle_buffer_def || needs_buffer_sizes) { uint32_t uint_ptr_type_id = 0; // We might have to add a swizzle buffer resource to the set. for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++) { if (!set_needs_swizzle_buffer[desc_set] && !set_needs_buffer_sizes[desc_set]) continue; if (uint_ptr_type_id == 0) { uint_ptr_type_id = ir.increase_bound_by(1); // Create a buffer to hold extra data, including the swizzle constants. SPIRType uint_type_pointer = get_uint_type(); uint_type_pointer.pointer = true; uint_type_pointer.pointer_depth++; uint_type_pointer.parent_type = get_uint_type_id(); uint_type_pointer.storage = StorageClassUniform; set(uint_ptr_type_id, uint_type_pointer); set_decoration(uint_ptr_type_id, DecorationArrayStride, 4); } if (set_needs_swizzle_buffer[desc_set]) { uint32_t var_id = ir.increase_bound_by(1); auto &var = set(var_id, uint_ptr_type_id, StorageClassUniformConstant); set_name(var_id, "spvSwizzleConstants"); set_decoration(var_id, DecorationDescriptorSet, desc_set); set_decoration(var_id, DecorationBinding, kSwizzleBufferBinding); resources_in_set[desc_set].push_back( { &var, to_name(var_id), SPIRType::UInt, get_metal_resource_index(var, SPIRType::UInt), 0 }); } if (set_needs_buffer_sizes[desc_set]) { uint32_t var_id = ir.increase_bound_by(1); auto &var = set(var_id, uint_ptr_type_id, StorageClassUniformConstant); set_name(var_id, "spvBufferSizeConstants"); set_decoration(var_id, DecorationDescriptorSet, desc_set); set_decoration(var_id, DecorationBinding, kBufferSizeBufferBinding); resources_in_set[desc_set].push_back( { &var, to_name(var_id), SPIRType::UInt, get_metal_resource_index(var, SPIRType::UInt), 0 }); } } } // Now add inline uniform blocks. for (uint32_t var_id : inline_block_vars) { auto &var = get(var_id); uint32_t desc_set = get_decoration(var_id, DecorationDescriptorSet); add_resource_name(var_id); resources_in_set[desc_set].push_back( { &var, to_name(var_id), SPIRType::Struct, get_metal_resource_index(var, SPIRType::Struct), 0 }); } for (uint32_t desc_set = 0; desc_set < kMaxArgumentBuffers; desc_set++) { auto &resources = resources_in_set[desc_set]; if (resources.empty()) continue; assert(descriptor_set_is_argument_buffer(desc_set)); uint32_t next_id = ir.increase_bound_by(3); uint32_t type_id = next_id + 1; uint32_t ptr_type_id = next_id + 2; argument_buffer_ids[desc_set] = next_id; auto &buffer_type = set(type_id); buffer_type.basetype = SPIRType::Struct; if ((argument_buffer_device_storage_mask & (1u << desc_set)) != 0) { buffer_type.storage = StorageClassStorageBuffer; // Make sure the argument buffer gets marked as const device. set_decoration(next_id, DecorationNonWritable); // Need to mark the type as a Block to enable this. set_decoration(type_id, DecorationBlock); } else buffer_type.storage = StorageClassUniform; set_name(type_id, join("spvDescriptorSetBuffer", desc_set)); auto &ptr_type = set(ptr_type_id); ptr_type = buffer_type; ptr_type.pointer = true; ptr_type.pointer_depth++; ptr_type.parent_type = type_id; uint32_t buffer_variable_id = next_id; set(buffer_variable_id, ptr_type_id, StorageClassUniform); set_name(buffer_variable_id, join("spvDescriptorSet", desc_set)); // Ids must be emitted in ID order. sort(begin(resources), end(resources), [&](const Resource &lhs, const Resource &rhs) -> bool { return tie(lhs.index, lhs.basetype) < tie(rhs.index, rhs.basetype); }); uint32_t member_index = 0; uint32_t next_arg_buff_index = 0; for (auto &resource : resources) { auto &var = *resource.var; auto &type = get_variable_data_type(var); // If needed, synthesize and add padding members. // member_index and next_arg_buff_index are incremented when padding members are added. if (msl_options.pad_argument_buffer_resources) { while (resource.index > next_arg_buff_index) { auto &rez_bind = get_argument_buffer_resource(desc_set, next_arg_buff_index); switch (rez_bind.basetype) { case SPIRType::Void: case SPIRType::Boolean: case SPIRType::SByte: case SPIRType::UByte: case SPIRType::Short: case SPIRType::UShort: case SPIRType::Int: case SPIRType::UInt: case SPIRType::Int64: case SPIRType::UInt64: case SPIRType::AtomicCounter: case SPIRType::Half: case SPIRType::Float: case SPIRType::Double: add_argument_buffer_padding_buffer_type(buffer_type, member_index, next_arg_buff_index, rez_bind); break; case SPIRType::Image: add_argument_buffer_padding_image_type(buffer_type, member_index, next_arg_buff_index, rez_bind); break; case SPIRType::Sampler: add_argument_buffer_padding_sampler_type(buffer_type, member_index, next_arg_buff_index, rez_bind); break; case SPIRType::SampledImage: if (next_arg_buff_index == rez_bind.msl_sampler) add_argument_buffer_padding_sampler_type(buffer_type, member_index, next_arg_buff_index, rez_bind); else add_argument_buffer_padding_image_type(buffer_type, member_index, next_arg_buff_index, rez_bind); break; default: break; } } // Adjust the number of slots consumed by current member itself. // If actual member is an array, allow runtime array resolution as well. uint32_t elem_cnt = type.array.empty() ? 1 : to_array_size_literal(type); if (elem_cnt == 0) elem_cnt = get_resource_array_size(var.self); next_arg_buff_index += elem_cnt; } string mbr_name = ensure_valid_name(resource.name, "m"); if (resource.plane > 0) mbr_name += join(plane_name_suffix, resource.plane); set_member_name(buffer_type.self, member_index, mbr_name); if (resource.basetype == SPIRType::Sampler && type.basetype != SPIRType::Sampler) { // Have to synthesize a sampler type here. bool type_is_array = !type.array.empty(); uint32_t sampler_type_id = ir.increase_bound_by(type_is_array ? 2 : 1); auto &new_sampler_type = set(sampler_type_id); new_sampler_type.basetype = SPIRType::Sampler; new_sampler_type.storage = StorageClassUniformConstant; if (type_is_array) { uint32_t sampler_type_array_id = sampler_type_id + 1; auto &sampler_type_array = set(sampler_type_array_id); sampler_type_array = new_sampler_type; sampler_type_array.array = type.array; sampler_type_array.array_size_literal = type.array_size_literal; sampler_type_array.parent_type = sampler_type_id; buffer_type.member_types.push_back(sampler_type_array_id); } else buffer_type.member_types.push_back(sampler_type_id); } else { uint32_t binding = get_decoration(var.self, DecorationBinding); SetBindingPair pair = { desc_set, binding }; if (resource.basetype == SPIRType::Image || resource.basetype == SPIRType::Sampler || resource.basetype == SPIRType::SampledImage) { // Drop pointer information when we emit the resources into a struct. buffer_type.member_types.push_back(get_variable_data_type_id(var)); if (resource.plane == 0) set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name)); } else if (buffers_requiring_dynamic_offset.count(pair)) { // Don't set the qualified name here; we'll define a variable holding the corrected buffer address later. buffer_type.member_types.push_back(var.basetype); buffers_requiring_dynamic_offset[pair].second = var.self; } else if (inline_uniform_blocks.count(pair)) { // Put the buffer block itself into the argument buffer. buffer_type.member_types.push_back(get_variable_data_type_id(var)); set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name)); } else if (atomic_image_vars.count(var.self)) { // Emulate texture2D atomic operations. // Don't set the qualified name: it's already set for this variable, // and the code that references the buffer manually appends "_atomic" // to the name. uint32_t offset = ir.increase_bound_by(2); uint32_t atomic_type_id = offset; uint32_t type_ptr_id = offset + 1; SPIRType atomic_type; atomic_type.basetype = SPIRType::AtomicCounter; atomic_type.width = 32; atomic_type.vecsize = 1; set(atomic_type_id, atomic_type); atomic_type.pointer = true; atomic_type.pointer_depth++; atomic_type.parent_type = atomic_type_id; atomic_type.storage = StorageClassStorageBuffer; auto &atomic_ptr_type = set(type_ptr_id, atomic_type); atomic_ptr_type.self = atomic_type_id; buffer_type.member_types.push_back(type_ptr_id); } else { // Resources will be declared as pointers not references, so automatically dereference as appropriate. buffer_type.member_types.push_back(var.basetype); if (type.array.empty()) set_qualified_name(var.self, join("(*", to_name(buffer_variable_id), ".", mbr_name, ")")); else set_qualified_name(var.self, join(to_name(buffer_variable_id), ".", mbr_name)); } } set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationResourceIndexPrimary, resource.index); set_extended_member_decoration(buffer_type.self, member_index, SPIRVCrossDecorationInterfaceOrigID, var.self); member_index++; } } } // Return the resource type of the app-provided resources for the descriptor set, // that matches the resource index of the argument buffer index. // This is a two-step lookup, first lookup the resource binding number from the argument buffer index, // then lookup the resource binding using the binding number. MSLResourceBinding &CompilerMSL::get_argument_buffer_resource(uint32_t desc_set, uint32_t arg_idx) { auto stage = get_entry_point().model; StageSetBinding arg_idx_tuple = { stage, desc_set, arg_idx }; auto arg_itr = resource_arg_buff_idx_to_binding_number.find(arg_idx_tuple); if (arg_itr != end(resource_arg_buff_idx_to_binding_number)) { StageSetBinding bind_tuple = { stage, desc_set, arg_itr->second }; auto bind_itr = resource_bindings.find(bind_tuple); if (bind_itr != end(resource_bindings)) return bind_itr->second.first; } SPIRV_CROSS_THROW("Argument buffer resource base type could not be determined. When padding argument buffer " "elements, all descriptor set resources must be supplied with a base type by the app."); } // Adds an argument buffer padding argument buffer type as one or more members of the struct type at the member index. // Metal does not support arrays of buffers, so these are emitted as multiple struct members. void CompilerMSL::add_argument_buffer_padding_buffer_type(SPIRType &struct_type, uint32_t &mbr_idx, uint32_t &arg_buff_index, MSLResourceBinding &rez_bind) { if (!argument_buffer_padding_buffer_type_id) { uint32_t buff_type_id = ir.increase_bound_by(2); auto &buff_type = set(buff_type_id); buff_type.basetype = rez_bind.basetype; buff_type.storage = StorageClassUniformConstant; uint32_t ptr_type_id = buff_type_id + 1; auto &ptr_type = set(ptr_type_id); ptr_type = buff_type; ptr_type.pointer = true; ptr_type.pointer_depth++; ptr_type.parent_type = buff_type_id; argument_buffer_padding_buffer_type_id = ptr_type_id; } for (uint32_t rez_idx = 0; rez_idx < rez_bind.count; rez_idx++) add_argument_buffer_padding_type(argument_buffer_padding_buffer_type_id, struct_type, mbr_idx, arg_buff_index, 1); } // Adds an argument buffer padding argument image type as a member of the struct type at the member index. void CompilerMSL::add_argument_buffer_padding_image_type(SPIRType &struct_type, uint32_t &mbr_idx, uint32_t &arg_buff_index, MSLResourceBinding &rez_bind) { if (!argument_buffer_padding_image_type_id) { uint32_t base_type_id = ir.increase_bound_by(2); auto &base_type = set(base_type_id); base_type.basetype = SPIRType::Float; base_type.width = 32; uint32_t img_type_id = base_type_id + 1; auto &img_type = set(img_type_id); img_type.basetype = SPIRType::Image; img_type.storage = StorageClassUniformConstant; img_type.image.type = base_type_id; img_type.image.dim = Dim2D; img_type.image.depth = false; img_type.image.arrayed = false; img_type.image.ms = false; img_type.image.sampled = 1; img_type.image.format = ImageFormatUnknown; img_type.image.access = AccessQualifierMax; argument_buffer_padding_image_type_id = img_type_id; } add_argument_buffer_padding_type(argument_buffer_padding_image_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count); } // Adds an argument buffer padding argument sampler type as a member of the struct type at the member index. void CompilerMSL::add_argument_buffer_padding_sampler_type(SPIRType &struct_type, uint32_t &mbr_idx, uint32_t &arg_buff_index, MSLResourceBinding &rez_bind) { if (!argument_buffer_padding_sampler_type_id) { uint32_t samp_type_id = ir.increase_bound_by(1); auto &samp_type = set(samp_type_id); samp_type.basetype = SPIRType::Sampler; samp_type.storage = StorageClassUniformConstant; argument_buffer_padding_sampler_type_id = samp_type_id; } add_argument_buffer_padding_type(argument_buffer_padding_sampler_type_id, struct_type, mbr_idx, arg_buff_index, rez_bind.count); } // Adds the argument buffer padding argument type as a member of the struct type at the member index. // Advances both arg_buff_index and mbr_idx to next argument slots. void CompilerMSL::add_argument_buffer_padding_type(uint32_t mbr_type_id, SPIRType &struct_type, uint32_t &mbr_idx, uint32_t &arg_buff_index, uint32_t count) { uint32_t type_id = mbr_type_id; if (count > 1) { uint32_t ary_type_id = ir.increase_bound_by(1); auto &ary_type = set(ary_type_id); ary_type = get(type_id); ary_type.array.push_back(count); ary_type.array_size_literal.push_back(true); ary_type.parent_type = type_id; type_id = ary_type_id; } set_member_name(struct_type.self, mbr_idx, join("_m", arg_buff_index, "_pad")); set_extended_member_decoration(struct_type.self, mbr_idx, SPIRVCrossDecorationResourceIndexPrimary, arg_buff_index); struct_type.member_types.push_back(type_id); arg_buff_index += count; mbr_idx++; } void CompilerMSL::activate_argument_buffer_resources() { // For ABI compatibility, force-enable all resources which are part of argument buffers. ir.for_each_typed_id([&](uint32_t self, const SPIRVariable &) { if (!has_decoration(self, DecorationDescriptorSet)) return; uint32_t desc_set = get_decoration(self, DecorationDescriptorSet); if (descriptor_set_is_argument_buffer(desc_set)) active_interface_variables.insert(self); }); } bool CompilerMSL::using_builtin_array() const { return msl_options.force_native_arrays || is_using_builtin_array; } void CompilerMSL::set_combined_sampler_suffix(const char *suffix) { sampler_name_suffix = suffix; } const char *CompilerMSL::get_combined_sampler_suffix() const { return sampler_name_suffix.c_str(); } void CompilerMSL::emit_block_hints(const SPIRBlock &) { } string CompilerMSL::additional_fixed_sample_mask_str() const { char print_buffer[32]; sprintf(print_buffer, "0x%x", msl_options.additional_fixed_sample_mask); return print_buffer; }