/* * Copyright (c) 1999 - 2005 NetGroup, Politecnico di Torino (Italy) * Copyright (c) 2005 CACE Technologies, Davis (California) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the Politecnico di Torino, CACE Technologies * nor the names of its contributors may be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #ifndef WIN_NT_DRIVER #include #else #include #endif #include "win_bpf.h" #include "debug.h" #include "valid_insns.h" #define EXTRACT_SHORT(p)\ ((u_short)\ ((u_short)*((u_char *)p+0)<<8|\ (u_short)*((u_char *)p+1)<<0)) #define EXTRACT_LONG(p)\ ((u_int32)*((u_char *)p+0)<<24|\ (u_int32)*((u_char *)p+1)<<16|\ (u_int32)*((u_char *)p+2)<<8|\ (u_int32)*((u_char *)p+3)<<0) u_int bpf_filter(pc, p, wirelen, buflen,mem_ex,tme,time_ref) register struct bpf_insn *pc; register u_char *p; u_int wirelen; register u_int buflen; PMEM_TYPE mem_ex; PTME_CORE tme; struct time_conv *time_ref; { register u_int32 A, X; register int k; //u_int32 j,tmp; //u_short tmp2; int32 mem[BPF_MEMWORDS]; if (pc == 0) /* * No filter means accept all. */ return (u_int)-1; A = 0; X = 0; --pc; while (1) { ++pc; switch (pc->code) { default: return 0; case BPF_RET|BPF_K: return (u_int)pc->k; case BPF_RET|BPF_A: return (u_int)A; case BPF_LD|BPF_W|BPF_ABS: k = pc->k; if (k + sizeof(int32) > buflen) { return 0; } A = EXTRACT_LONG(&p[k]); continue; case BPF_LD|BPF_H|BPF_ABS: k = pc->k; if (k + sizeof(short) > buflen) { return 0; } A = EXTRACT_SHORT(&p[k]); continue; case BPF_LD|BPF_B|BPF_ABS: k = pc->k; if ((int)k >= (int)buflen) { return 0; } A = p[k]; continue; case BPF_LD|BPF_W|BPF_LEN: A = wirelen; continue; case BPF_LDX|BPF_W|BPF_LEN: X = wirelen; continue; case BPF_LD|BPF_W|BPF_IND: k = X + pc->k; if (k + sizeof(int32) > buflen) { return 0; } A = EXTRACT_LONG(&p[k]); continue; case BPF_LD|BPF_H|BPF_IND: k = X + pc->k; if (k + sizeof(short) > buflen) { return 0; } A = EXTRACT_SHORT(&p[k]); continue; case BPF_LD|BPF_B|BPF_IND: k = X + pc->k; if ((int)k >= (int)buflen) { return 0; } A = p[k]; continue; case BPF_LDX|BPF_MSH|BPF_B: k = pc->k; if ((int)k >= (int)buflen) { return 0; } X = (p[pc->k] & 0xf) << 2; continue; case BPF_LD|BPF_IMM: A = pc->k; continue; case BPF_LDX|BPF_IMM: X = pc->k; continue; case BPF_LD|BPF_MEM: A = mem[pc->k]; continue; case BPF_LDX|BPF_MEM: X = mem[pc->k]; continue; #ifdef __NPF_x86__ // // these instructions use the TME extensions, // not supported on x86-64 and IA64 architectures. // /* LD NO PACKET INSTRUCTIONS */ case BPF_LD|BPF_MEM_EX_IMM|BPF_B: A= mem_ex->buffer[pc->k]; continue; case BPF_LDX|BPF_MEM_EX_IMM|BPF_B: X= mem_ex->buffer[pc->k]; continue; case BPF_LD|BPF_MEM_EX_IMM|BPF_H: A = EXTRACT_SHORT(&mem_ex->buffer[pc->k]); continue; case BPF_LDX|BPF_MEM_EX_IMM|BPF_H: X = EXTRACT_SHORT(&mem_ex->buffer[pc->k]); continue; case BPF_LD|BPF_MEM_EX_IMM|BPF_W: A = EXTRACT_LONG(&mem_ex->buffer[pc->k]); continue; case BPF_LDX|BPF_MEM_EX_IMM|BPF_W: X = EXTRACT_LONG(&mem_ex->buffer[pc->k]); continue; case BPF_LD|BPF_MEM_EX_IND|BPF_B: k = X + pc->k; if ((int32)k>= (int32)mem_ex->size) { return 0; } A= mem_ex->buffer[k]; continue; case BPF_LD|BPF_MEM_EX_IND|BPF_H: k = X + pc->k; if ((int32)(k+1)>= (int32)mem_ex->size) { return 0; } A=EXTRACT_SHORT((uint32*)&mem_ex->buffer[k]); continue; case BPF_LD|BPF_MEM_EX_IND|BPF_W: k = X + pc->k; if ((int32)(k+3)>= (int32)mem_ex->size) { return 0; } A=EXTRACT_LONG((uint32*)&mem_ex->buffer[k]); continue; /* END LD NO PACKET INSTRUCTIONS */ #endif //__NPF_x86__ case BPF_ST: mem[pc->k] = A; continue; case BPF_STX: mem[pc->k] = X; continue; #ifdef __NPF_x86__ // // these instructions use the TME extensions, // not supported on x86-64 and IA64 architectures. // /* STORE INSTRUCTIONS */ case BPF_ST|BPF_MEM_EX_IMM|BPF_B: mem_ex->buffer[pc->k]=(uint8)A; continue; case BPF_STX|BPF_MEM_EX_IMM|BPF_B: mem_ex->buffer[pc->k]=(uint8)X; continue; case BPF_ST|BPF_MEM_EX_IMM|BPF_W: tmp=A; *(uint32*)&(mem_ex->buffer[pc->k])=EXTRACT_LONG(&tmp); continue; case BPF_STX|BPF_MEM_EX_IMM|BPF_W: tmp=X; *(uint32*)&(mem_ex->buffer[pc->k])=EXTRACT_LONG(&tmp); continue; case BPF_ST|BPF_MEM_EX_IMM|BPF_H: tmp2=(uint16)A; *(uint16*)&mem_ex->buffer[pc->k]=EXTRACT_SHORT(&tmp2); continue; case BPF_STX|BPF_MEM_EX_IMM|BPF_H: tmp2=(uint16)X; *(uint16*)&mem_ex->buffer[pc->k]=EXTRACT_SHORT(&tmp2); continue; case BPF_ST|BPF_MEM_EX_IND|BPF_B: mem_ex->buffer[pc->k+X]=(uint8)A; case BPF_ST|BPF_MEM_EX_IND|BPF_W: tmp=A; *(uint32*)&mem_ex->buffer[pc->k+X]=EXTRACT_LONG(&tmp); continue; case BPF_ST|BPF_MEM_EX_IND|BPF_H: tmp2=(uint16)A; *(uint16*)&mem_ex->buffer[pc->k+X]=EXTRACT_SHORT(&tmp2); continue; /* END STORE INSTRUCTIONS */ #endif //__NPF_x86__ case BPF_JMP|BPF_JA: pc += pc->k; continue; case BPF_JMP|BPF_JGT|BPF_K: pc += ((int)A > (int)pc->k) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JGE|BPF_K: pc += ((int)A >= (int)pc->k) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JEQ|BPF_K: pc += ((int)A == (int)pc->k) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JSET|BPF_K: pc += (A & pc->k) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JGT|BPF_X: pc += (A > X) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JGE|BPF_X: pc += (A >= X) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JEQ|BPF_X: pc += (A == X) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JSET|BPF_X: pc += (A & X) ? pc->jt : pc->jf; continue; case BPF_ALU|BPF_ADD|BPF_X: A += X; continue; case BPF_ALU|BPF_SUB|BPF_X: A -= X; continue; case BPF_ALU|BPF_MUL|BPF_X: A *= X; continue; case BPF_ALU|BPF_DIV|BPF_X: if (X == 0) return 0; A /= X; continue; case BPF_ALU|BPF_AND|BPF_X: A &= X; continue; case BPF_ALU|BPF_OR|BPF_X: A |= X; continue; case BPF_ALU|BPF_LSH|BPF_X: A <<= X; continue; case BPF_ALU|BPF_RSH|BPF_X: A >>= X; continue; case BPF_ALU|BPF_ADD|BPF_K: A += pc->k; continue; case BPF_ALU|BPF_SUB|BPF_K: A -= pc->k; continue; case BPF_ALU|BPF_MUL|BPF_K: A *= pc->k; continue; case BPF_ALU|BPF_DIV|BPF_K: A /= pc->k; continue; case BPF_ALU|BPF_AND|BPF_K: A &= pc->k; continue; case BPF_ALU|BPF_OR|BPF_K: A |= pc->k; continue; case BPF_ALU|BPF_LSH|BPF_K: A <<= pc->k; continue; case BPF_ALU|BPF_RSH|BPF_K: A >>= pc->k; continue; case BPF_ALU|BPF_NEG: (int)A = -((int)A); continue; case BPF_MISC|BPF_TAX: X = A; continue; case BPF_MISC|BPF_TXA: A = X; continue; #ifdef __NPF_x86__ // // these instructions use the TME extensions, // not supported on x86-64 and IA64 architectures. // /* TME INSTRUCTIONS */ case BPF_MISC|BPF_TME|BPF_LOOKUP: j=lookup_frontend(mem_ex,tme,pc->k,time_ref); if (j==TME_ERROR) return 0; pc += (j == TME_TRUE) ? pc->jt : pc->jf; continue; case BPF_MISC|BPF_TME|BPF_EXECUTE: if (execute_frontend(mem_ex,tme,wirelen,pc->k)==TME_ERROR) return 0; continue; case BPF_MISC|BPF_TME|BPF_SET_ACTIVE: if (set_active_tme_block(tme,pc->k)==TME_ERROR) return 0; continue; case BPF_MISC|BPF_TME|BPF_GET_REGISTER_VALUE: if (get_tme_block_register(&tme->block_data[tme->working],mem_ex,pc->k,&j)==TME_ERROR) return 0; A=j; continue; case BPF_MISC|BPF_TME|BPF_SET_REGISTER_VALUE: if (set_tme_block_register(&tme->block_data[tme->working],mem_ex,pc->k,A,FALSE)==TME_ERROR) return 0; continue; /* END TME INSTRUCTIONS */ #endif //__NPF_x86__ } } } //------------------------------------------------------------------- u_int bpf_filter_with_2_buffers(pc, p, pd, headersize, wirelen, buflen, mem_ex,tme,time_ref) register struct bpf_insn *pc; register u_char *p; register u_char *pd; register int headersize; u_int wirelen; register u_int buflen; PMEM_TYPE mem_ex; PTME_CORE tme; struct time_conv *time_ref; { register u_int32 A, X; register int k; int32 mem[BPF_MEMWORDS]; // u_int32 j,tmp; // u_short tmp2; if (pc == 0) /* * No filter means accept all. */ return (u_int)-1; A = 0; X = 0; --pc; while (1) { ++pc; switch (pc->code) { default: return 0; case BPF_RET|BPF_K: return (u_int)pc->k; case BPF_RET|BPF_A: return (u_int)A; case BPF_LD|BPF_W|BPF_ABS: k = pc->k; if (k + 4 > (int)buflen) { return 0; } if(k + 4 <= headersize) A = EXTRACT_LONG(&p[k]); else if(k + 3 == headersize) { A= (u_int32)*((u_char *)p+k)<<24| (u_int32)*((u_char *)p+k+1)<<16| (u_int32)*((u_char *)p+k+2)<<8| (u_int32)*((u_char *)pd+k-headersize); } else if(k + 2 == headersize) { A= (u_int32)*((u_char *)p+k)<<24| (u_int32)*((u_char *)p+k+1)<<16| (u_int32)*((u_char *)pd+k-headersize)<<8| (u_int32)*((u_char *)pd+k-headersize+1); } else if(k + 1 == headersize){ A= (u_int32)*((u_char *)p+k)<<24| (u_int32)*((u_char *)pd+k-headersize+1)<<16| (u_int32)*((u_char *)pd+k-headersize+2)<<8| (u_int32)*((u_char *)pd+k-headersize+3); } else A = EXTRACT_LONG(&pd[k-headersize]); continue; case BPF_LD|BPF_H|BPF_ABS: k = pc->k; if (k + sizeof(short) > buflen) { return 0; } if(k + 2 <= headersize) A = EXTRACT_SHORT(&p[k]); else if(k + 1 == headersize) { A= (u_short)*((u_char *)p+k)<<8| (u_short)*((u_char *)pd+k-headersize); } else A = EXTRACT_SHORT(&pd[k-headersize]); continue; case BPF_LD|BPF_B|BPF_ABS: k = pc->k; if ((int)k >= (int)buflen) { return 0; } if(k +(int) sizeof(char) <= headersize) A = p[k]; else A = pd[k-headersize]; continue; case BPF_LD|BPF_W|BPF_LEN: A = wirelen; continue; case BPF_LDX|BPF_W|BPF_LEN: X = wirelen; continue; case BPF_LD|BPF_W|BPF_IND: k = X + pc->k; if (k + sizeof(int32) > buflen) { return 0; } if(k + 4 <= headersize) A = EXTRACT_LONG(&p[k]); else if(k + 3 == headersize) { A= (u_int32)*((u_char *)p+k)<<24| (u_int32)*((u_char *)p+k+1)<<16| (u_int32)*((u_char *)p+k+2)<<8| (u_int32)*((u_char *)pd+k-headersize); } else if(k + 2 == headersize) { A= (u_int32)*((u_char *)p+k)<<24| (u_int32)*((u_char *)p+k+1)<<16| (u_int32)*((u_char *)pd+k-headersize)<<8| (u_int32)*((u_char *)pd+k-headersize+1); } else if(k + 1 == headersize) { A= (u_int32)*((u_char *)p+k)<<24| (u_int32)*((u_char *)pd+k-headersize+1)<<16| (u_int32)*((u_char *)pd+k-headersize+2)<<8| (u_int32)*((u_char *)pd+k-headersize+3); } else A = EXTRACT_LONG(&pd[k-headersize]); continue; case BPF_LD|BPF_H|BPF_IND: k = X + pc->k; if (k + 2 > (int)buflen) { return 0; } if(k + 2 <= headersize) A = EXTRACT_SHORT(&p[k]); else if(k +1 == headersize) { A= (u_short)*((u_char *)p+k)<<8| (u_short)*((u_char *)pd+k-headersize); } else A = EXTRACT_SHORT(&pd[k-headersize]); continue; case BPF_LD|BPF_B|BPF_IND: k = X + pc->k; if ((int)k >= (int)buflen) { return 0; } if(k <= headersize) A = p[k]; else A = pd[k-headersize]; continue; case BPF_LDX|BPF_MSH|BPF_B: k = pc->k; if ((int)k >= (int)buflen) { return 0; } if((int)(pc->k) <= headersize) X = (p[pc->k] & 0xf) << 2; else X = (pd[(pc->k)-headersize] & 0xf) << 2; continue; case BPF_LD|BPF_IMM: A = pc->k; continue; case BPF_LDX|BPF_IMM: X = pc->k; continue; case BPF_LD|BPF_MEM: A = mem[pc->k]; continue; case BPF_LDX|BPF_MEM: X = mem[pc->k]; continue; #ifdef __NPF_x86__ // // these instructions use the TME extensions, // not supported on x86-64 and IA64 architectures. // /* LD NO PACKET INSTRUCTIONS */ case BPF_LD|BPF_MEM_EX_IMM|BPF_B: A= mem_ex->buffer[pc->k]; continue; case BPF_LDX|BPF_MEM_EX_IMM|BPF_B: X= mem_ex->buffer[pc->k]; continue; case BPF_LD|BPF_MEM_EX_IMM|BPF_H: A = EXTRACT_SHORT(&mem_ex->buffer[pc->k]); continue; case BPF_LDX|BPF_MEM_EX_IMM|BPF_H: X = EXTRACT_SHORT(&mem_ex->buffer[pc->k]); continue; case BPF_LD|BPF_MEM_EX_IMM|BPF_W: A = EXTRACT_LONG(&mem_ex->buffer[pc->k]); continue; case BPF_LDX|BPF_MEM_EX_IMM|BPF_W: X = EXTRACT_LONG(&mem_ex->buffer[pc->k]); continue; case BPF_LD|BPF_MEM_EX_IND|BPF_B: k = X + pc->k; if ((int32)k>= (int32)mem_ex->size) { return 0; } A= mem_ex->buffer[k]; continue; case BPF_LD|BPF_MEM_EX_IND|BPF_H: k = X + pc->k; if ((int32)(k+1)>= (int32)mem_ex->size) { return 0; } A=EXTRACT_SHORT((uint32*)&mem_ex->buffer[k]); continue; case BPF_LD|BPF_MEM_EX_IND|BPF_W: k = X + pc->k; if ((int32)(k+3)>= (int32)mem_ex->size) { return 0; } A=EXTRACT_LONG((uint32*)&mem_ex->buffer[k]); continue; /* END LD NO PACKET INSTRUCTIONS */ #endif //__NPF_x86__ case BPF_ST: mem[pc->k] = A; continue; case BPF_STX: mem[pc->k] = X; continue; #ifdef __NPF_x86__ // // these instructions use the TME extensions, // not supported on x86-64 and IA64 architectures. // /* STORE INSTRUCTIONS */ case BPF_ST|BPF_MEM_EX_IMM|BPF_B: mem_ex->buffer[pc->k]=(uint8)A; continue; case BPF_STX|BPF_MEM_EX_IMM|BPF_B: mem_ex->buffer[pc->k]=(uint8)X; continue; case BPF_ST|BPF_MEM_EX_IMM|BPF_W: tmp=A; *(uint32*)&(mem_ex->buffer[pc->k])=EXTRACT_LONG(&tmp); continue; case BPF_STX|BPF_MEM_EX_IMM|BPF_W: tmp=X; *(uint32*)&(mem_ex->buffer[pc->k])=EXTRACT_LONG(&tmp); continue; case BPF_ST|BPF_MEM_EX_IMM|BPF_H: tmp2=(uint16)A; *(uint16*)&mem_ex->buffer[pc->k]=EXTRACT_SHORT(&tmp2); continue; case BPF_STX|BPF_MEM_EX_IMM|BPF_H: tmp2=(uint16)X; *(uint16*)&mem_ex->buffer[pc->k]=EXTRACT_SHORT(&tmp2); continue; case BPF_ST|BPF_MEM_EX_IND|BPF_B: mem_ex->buffer[pc->k+X]=(uint8)A; case BPF_ST|BPF_MEM_EX_IND|BPF_W: tmp=A; *(uint32*)&mem_ex->buffer[pc->k+X]=EXTRACT_LONG(&tmp); continue; case BPF_ST|BPF_MEM_EX_IND|BPF_H: tmp2=(uint16)A; *(uint16*)&mem_ex->buffer[pc->k+X]=EXTRACT_SHORT(&tmp2); continue; /* END STORE INSTRUCTIONS */ #endif //__NPF_x86__ case BPF_JMP|BPF_JA: pc += pc->k; continue; case BPF_JMP|BPF_JGT|BPF_K: pc += ((int)A > (int)pc->k) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JGE|BPF_K: pc += ((int)A >= (int)pc->k) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JEQ|BPF_K: pc += ((int)A == (int)pc->k) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JSET|BPF_K: pc += (A & pc->k) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JGT|BPF_X: pc += (A > X) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JGE|BPF_X: pc += (A >= X) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JEQ|BPF_X: pc += (A == X) ? pc->jt : pc->jf; continue; case BPF_JMP|BPF_JSET|BPF_X: pc += (A & X) ? pc->jt : pc->jf; continue; case BPF_ALU|BPF_ADD|BPF_X: A += X; continue; case BPF_ALU|BPF_SUB|BPF_X: A -= X; continue; case BPF_ALU|BPF_MUL|BPF_X: A *= X; continue; case BPF_ALU|BPF_DIV|BPF_X: if (X == 0) return 0; A /= X; continue; case BPF_ALU|BPF_AND|BPF_X: A &= X; continue; case BPF_ALU|BPF_OR|BPF_X: A |= X; continue; case BPF_ALU|BPF_LSH|BPF_X: A <<= X; continue; case BPF_ALU|BPF_RSH|BPF_X: A >>= X; continue; case BPF_ALU|BPF_ADD|BPF_K: A += pc->k; continue; case BPF_ALU|BPF_SUB|BPF_K: A -= pc->k; continue; case BPF_ALU|BPF_MUL|BPF_K: A *= pc->k; continue; case BPF_ALU|BPF_DIV|BPF_K: A /= pc->k; continue; case BPF_ALU|BPF_AND|BPF_K: A &= pc->k; continue; case BPF_ALU|BPF_OR|BPF_K: A |= pc->k; continue; case BPF_ALU|BPF_LSH|BPF_K: A <<= pc->k; continue; case BPF_ALU|BPF_RSH|BPF_K: A >>= pc->k; continue; case BPF_ALU|BPF_NEG: (int)A = -((int)A); continue; case BPF_MISC|BPF_TAX: X = A; continue; case BPF_MISC|BPF_TXA: A = X; continue; #ifdef __NPF_x86__ // // these instructions use the TME extensions, // not supported on x86-64 and IA64 architectures. // /* TME INSTRUCTIONS */ case BPF_MISC|BPF_TME|BPF_LOOKUP: j=lookup_frontend(mem_ex,tme,pc->k,time_ref); if (j==TME_ERROR) return 0; pc += (j == TME_TRUE) ? pc->jt : pc->jf; continue; case BPF_MISC|BPF_TME|BPF_EXECUTE: if (execute_frontend(mem_ex,tme,wirelen,pc->k)==TME_ERROR) return 0; continue; case BPF_MISC|BPF_TME|BPF_SET_ACTIVE: if (set_active_tme_block(tme,pc->k)==TME_ERROR) return 0; continue; case BPF_MISC|BPF_TME|BPF_GET_REGISTER_VALUE: if (get_tme_block_register(&tme->block_data[tme->working],mem_ex,pc->k,&j)==TME_ERROR) return 0; A=j; continue; case BPF_MISC|BPF_TME|BPF_SET_REGISTER_VALUE: if (set_tme_block_register(&tme->block_data[tme->working],mem_ex,pc->k,A,FALSE)==TME_ERROR) return 0; continue; /* END TME INSTRUCTIONS */ #endif //__NPF_x86__ } } } int32 bpf_validate(f, len,mem_ex_size) struct bpf_insn *f; int32 len; uint32 mem_ex_size; { register uint32 i, from; register int32 j; register struct bpf_insn *p; int32 flag; if (len < 1) return 0; for (i = 0; i < (uint32)len; ++i) { p = &f[i]; IF_LOUD(DbgPrint("Validating program");) flag=0; for(j=0;jcode==valid_instructions[j]) flag=1; if (flag==0) return 0; IF_LOUD(DbgPrint("Validating program: no unknown instructions");) switch (BPF_CLASS(p->code)) { /* * Check that memory operations use valid addresses. */ case BPF_LD: case BPF_LDX: switch (BPF_MODE(p->code)) { case BPF_IMM: break; case BPF_ABS: case BPF_IND: case BPF_MSH: break; case BPF_MEM: if (p->k >= BPF_MEMWORDS) return 0; break; case BPF_LEN: break; default: return 0; } IF_LOUD(DbgPrint("Validating program: no wrong LD memory locations");) break; case BPF_ST: case BPF_STX: #ifdef __NPF_x86__ if ((p->code &BPF_MEM_EX_IMM) == BPF_MEM_EX_IMM) { /* * Check if key stores use valid addresses */ switch (BPF_SIZE(p->code)) { case BPF_W: if (p->k+3 >= mem_ex_size) return 0; break; case BPF_H: if (p->k+1 >= mem_ex_size) return 0; break; case BPF_B: if (p->k >= mem_ex_size) return 0; break; } } else #endif //__NPF_x86__ { if ((p->code & BPF_MEM_EX_IND) != BPF_MEM_EX_IND) { if (p->k >= BPF_MEMWORDS) return 0; } } IF_LOUD(DbgPrint("Validating program: no wrong ST memory locations");) break; case BPF_ALU: switch (BPF_OP(p->code)) { case BPF_ADD: case BPF_SUB: case BPF_OR: case BPF_AND: case BPF_LSH: case BPF_RSH: case BPF_NEG: break; case BPF_DIV: /* * Check for constant division by 0. */ if (BPF_RVAL(p->code) == BPF_K && p->k == 0) return 0; default: return 0; } break; case BPF_JMP: /* * Check that jumps are within the code block, * and that unconditional branches don't go * backwards as a result of an overflow. * Unconditional branches have a 32-bit offset, * so they could overflow; we check to make * sure they don't. Conditional branches have * an 8-bit offset, and the from address is <= * BPF_MAXINSNS, and we assume that BPF_MAXINSNS * is sufficiently small that adding 255 to it * won't overflow. * * We know that len is <= BPF_MAXINSNS, and we * assume that BPF_MAXINSNS is < the maximum size * of a u_int, so that i + 1 doesn't overflow. */ from = i + 1; switch (BPF_OP(p->code)) { case BPF_JA: if (from + p->k < from || from + p->k >= (uint32)len) return 0; break; case BPF_JEQ: case BPF_JGT: case BPF_JGE: case BPF_JSET: if (from + p->jt >= (uint32)len || from + p->jf >= (uint32)len) return 0; break; default: return 0; } IF_LOUD(DbgPrint("Validating program: no wrong JUMPS");) break; case BPF_RET: break; case BPF_MISC: break; default: return 0; } } return BPF_CLASS(f[len - 1].code) == BPF_RET; }