Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/Ultimaker/Cura.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJack Ha <j.ha@ultimaker.com>2017-03-09 12:21:25 +0300
committerJack Ha <j.ha@ultimaker.com>2017-03-09 12:21:25 +0300
commit9d6dd1580b94cc27d2937cd0ee94c550ad607a0f (patch)
tree583c59fd27aa1164036ea7f49762d19fb1b9cf3d /cura/Arrange.py
parent3be6a0966bf3fdfcf55b1df61f7d27fd2c5d64ad (diff)
WIP Added first arranger functions. CURA-3239
Diffstat (limited to 'cura/Arrange.py')
-rwxr-xr-xcura/Arrange.py154
1 files changed, 154 insertions, 0 deletions
diff --git a/cura/Arrange.py b/cura/Arrange.py
new file mode 100755
index 0000000000..986f9110c1
--- /dev/null
+++ b/cura/Arrange.py
@@ -0,0 +1,154 @@
+import numpy as np
+
+## Some polygon converted to an array
+class ShapeArray:
+ def __init__(self, arr, offset_x, offset_y, scale = 1):
+ self.arr = arr
+ self.offset_x = offset_x
+ self.offset_y = offset_y
+ self.scale = scale
+
+ @classmethod
+ def from_polygon(cls, vertices, scale = 1):
+ # scale
+ vertices = vertices * scale
+ # offset
+ offset_y = int(np.amin(vertices[:, 0]))
+ offset_x = int(np.amin(vertices[:, 1]))
+ # normalize to 0
+ vertices[:, 0] = np.add(vertices[:, 0], -offset_y)
+ vertices[:, 1] = np.add(vertices[:, 1], -offset_x)
+ shape = [int(np.amax(vertices[:, 0])), int(np.amax(vertices[:, 1]))]
+ arr = cls.array_from_polygon(shape, vertices)
+ return cls(arr, offset_x, offset_y)
+
+ ## Return indices that mark one side of the line, used by array_from_polygon
+ # Uses the line defined by p1 and p2 to check array of
+ # input indices against interpolated value
+
+ # Returns boolean array, with True inside and False outside of shape
+ # Originally from: http://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array
+ @classmethod
+ def _check(cls, p1, p2, base_array):
+ """
+ """
+ if p1[0] == p2[0] and p1[1] == p2[1]:
+ return
+ idxs = np.indices(base_array.shape) # Create 3D array of indices
+
+ p1 = p1.astype(float)
+ p2 = p2.astype(float)
+
+ if p2[0] == p1[0]:
+ sign = np.sign(p2[1] - p1[1])
+ return idxs[1] * sign
+
+ if p2[1] == p1[1]:
+ sign = np.sign(p2[0] - p1[0])
+ return idxs[1] * sign
+
+ # Calculate max column idx for each row idx based on interpolated line between two points
+
+ max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1]
+ sign = np.sign(p2[0] - p1[0])
+ return idxs[1] * sign <= max_col_idx * sign
+
+ @classmethod
+ def array_from_polygon(cls, shape, vertices):
+ """
+ Creates np.array with dimensions defined by shape
+ Fills polygon defined by vertices with ones, all other values zero
+
+ Only works correctly for convex hull vertices
+ """
+ base_array = np.zeros(shape, dtype=float) # Initialize your array of zeros
+
+ fill = np.ones(base_array.shape) * True # Initialize boolean array defining shape fill
+
+ # Create check array for each edge segment, combine into fill array
+ for k in range(vertices.shape[0]):
+ fill = np.all([fill, cls._check(vertices[k - 1], vertices[k], base_array)], axis=0)
+
+ # Set all values inside polygon to one
+ base_array[fill] = 1
+
+ return base_array
+
+
+class Arrange:
+ def __init__(self, x, y, offset_x, offset_y, scale=1):
+ self.shape = (y, x)
+ self._priority = np.zeros((x, y), dtype=np.int32)
+ self._occupied = np.zeros((x, y), dtype=np.int32)
+ self._scale = scale # convert input coordinates to arrange coordinates
+ self._offset_x = offset_x
+ self._offset_y = offset_y
+
+ ## Fill priority, take offset as center. lower is better
+ def centerFirst(self):
+ self._priority = np.fromfunction(
+ lambda i, j: abs(self._offset_x-i)+abs(self._offset_y-j), self.shape)
+
+ ## Return the amount of "penalty points" for polygon, which is the sum of priority
+ # 999999 if occupied
+ def check_shape(self, x, y, shape_arr):
+ x = int(self._scale * x)
+ y = int(self._scale * y)
+ offset_x = x + self._offset_x + shape_arr.offset_x
+ offset_y = y + self._offset_y + shape_arr.offset_y
+ occupied_slice = self._occupied[
+ offset_y:offset_y + shape_arr.arr.shape[0],
+ offset_x:offset_x + shape_arr.arr.shape[1]]
+ if np.any(occupied_slice[np.where(shape_arr.arr == 1)]):
+ return 999999
+ prio_slice = self._priority[
+ offset_y:offset_y + shape_arr.arr.shape[0],
+ offset_x:offset_x + shape_arr.arr.shape[1]]
+ return np.sum(prio_slice[np.where(shape_arr.arr == 1)])
+
+ ## Slower but better (it tries all possible locations)
+ def bestSpot2(self, shape_arr):
+ best_x, best_y, best_points = None, None, None
+ min_y = max(-shape_arr.offset_y, 0) - self._offset_y
+ max_y = self.shape[0] - shape_arr.arr.shape[0] - self._offset_y
+ min_x = max(-shape_arr.offset_x, 0) - self._offset_x
+ max_x = self.shape[1] - shape_arr.arr.shape[1] - self._offset_x
+ for y in range(min_y, max_y):
+ for x in range(min_x, max_x):
+ penalty_points = self.check_shape(x, y, shape_arr)
+ if best_points is None or penalty_points < best_points:
+ best_points = penalty_points
+ best_x, best_y = x, y
+ return best_x, best_y, best_points
+
+ ## Faster
+ def bestSpot(self, shape_arr):
+ min_y = max(-shape_arr.offset_y, 0) - self._offset_y
+ max_y = self.shape[0] - shape_arr.arr.shape[0] - self._offset_y
+ min_x = max(-shape_arr.offset_x, 0) - self._offset_x
+ max_x = self.shape[1] - shape_arr.arr.shape[1] - self._offset_x
+
+ for prio in range(200):
+ tryout_idx = np.where(self._priority == prio)
+ for idx in range(len(tryout_idx[0])):
+ x = tryout_idx[0][idx]
+ y = tryout_idx[1][idx]
+ projected_x = x - self._offset_x
+ projected_y = y - self._offset_y
+ if projected_x < min_x or projected_x > max_x or projected_y < min_y or projected_y > max_y:
+ continue
+ # array to "world" coordinates
+ penalty_points = self.check_shape(projected_x, projected_y, shape_arr)
+ if penalty_points != 999999:
+ return projected_x, projected_y, penalty_points
+ return None, None, None # No suitable location found :-(
+
+ def place(self, x, y, shape_arr):
+ x = int(self._scale * x)
+ y = int(self._scale * y)
+ offset_x = x + self._offset_x + shape_arr.offset_x
+ offset_y = y + self._offset_y + shape_arr.offset_y
+ occupied_slice = self._occupied[
+ offset_y:offset_y + shape_arr.arr.shape[0],
+ offset_x:offset_x + shape_arr.arr.shape[1]]
+ occupied_slice[np.where(shape_arr.arr == 1)] = 1