Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/Ultimaker/Cura.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLipu Fei <lipu.fei815@gmail.com>2018-08-06 18:11:28 +0300
committerLipu Fei <lipu.fei815@gmail.com>2018-08-06 18:23:01 +0300
commit95481b856061f18aac6f4a0c58b90366cb90dd40 (patch)
treec0d774867d21b610c904d5d81e6e13fcac58119b /cura/OneAtATimeIterator.py
parent85f80f85b8f448ce90ff453046150cd6389ffbbb (diff)
Fix print order for one-at-a-time mode
Diffstat (limited to 'cura/OneAtATimeIterator.py')
-rw-r--r--cura/OneAtATimeIterator.py189
1 files changed, 92 insertions, 97 deletions
diff --git a/cura/OneAtATimeIterator.py b/cura/OneAtATimeIterator.py
index 84d65bae8e..cb063bfde5 100644
--- a/cura/OneAtATimeIterator.py
+++ b/cura/OneAtATimeIterator.py
@@ -1,112 +1,107 @@
-# Copyright (c) 2015 Ultimaker B.V.
+# Copyright (c) 2018 Ultimaker B.V.
# Cura is released under the terms of the LGPLv3 or higher.
+import sys
+
from UM.Scene.Iterator import Iterator
from UM.Scene.SceneNode import SceneNode
-from functools import cmp_to_key
-from UM.Application import Application
-## Iterator that returns a list of nodes in the order that they need to be printed
-# If there is no solution an empty list is returned.
-# Take note that the list of nodes can have children (that may or may not contain mesh data)
+
+# Iterator that determines the object print order when one-at a time mode is enabled.
+#
+# In one-at-a-time mode, only one extruder can be enabled to print. In order to maximize the number of objects we can
+# print, we need to print from the corner that's closest to the extruder that's being used. Here is an illustration:
+#
+# +--------------------------------+
+# | |
+# | |
+# | | - Rectangle represents the complete print head including fans, etc.
+# | X X | y - X's are the nozzles
+# | (1) (2) | |
+# | | |
+# +--------------------------------+ +--> x
+#
+# In this case, the nozzles are symmetric, nozzle (1) is closer to the bottom left corner while (2) is closer to the
+# bottom right. If we use nozzle (1) to print, then we better off printing from the bottom left corner so the print
+# head will not collide into an object on its top-right side, which is a very large unused area. Following the same
+# logic, if we are printing with nozzle (2), then it's better to print from the bottom-right side.
+#
+# This iterator determines the print order following the rules above.
+#
class OneAtATimeIterator(Iterator.Iterator):
+
def __init__(self, scene_node):
- super().__init__(scene_node) # Call super to make multiple inheritence work.
- self._hit_map = [[]]
+ from cura.CuraApplication import CuraApplication
+ self._global_stack = CuraApplication.getInstance().getGlobalContainerStack()
self._original_node_list = []
-
+ super().__init__(scene_node) # Call super to make multiple inheritance work.
+
+ def getMachineNearestCornerToExtruder(self, global_stack):
+ head_and_fans_coordinates = global_stack.getHeadAndFansCoordinates()
+
+ used_extruder = None
+ for extruder in global_stack.extruders.values():
+ if extruder.isEnabled:
+ used_extruder = extruder
+ break
+
+ extruder_offsets = [used_extruder.getProperty("machine_nozzle_offset_x", "value"),
+ used_extruder.getProperty("machine_nozzle_offset_y", "value")]
+
+ # find the corner that's closest to the origin
+ min_distance2 = sys.maxsize
+ min_coord = None
+ for coord in head_and_fans_coordinates:
+ x = coord[0] - extruder_offsets[0]
+ y = coord[1] - extruder_offsets[1]
+
+ distance2 = x**2 + y**2
+ if distance2 <= min_distance2:
+ min_distance2 = distance2
+ min_coord = coord
+
+ return min_coord
+
def _fillStack(self):
+ min_coord = self.getMachineNearestCornerToExtruder(self._global_stack)
+ transform_x = -int(round(min_coord[0] / abs(min_coord[0])))
+ transform_y = -int(round(min_coord[1] / abs(min_coord[1])))
+
+ machine_size = [self._global_stack.getProperty("machine_width", "value"),
+ self._global_stack.getProperty("machine_depth", "value")]
+
+ def flip_x(polygon):
+ tm2 = [-1, 0, 0, 1, 0, 0]
+ return affinity.affine_transform(affinity.translate(polygon, xoff = -machine_size[0]), tm2)
+ def flip_y(polygon):
+ tm2 = [1, 0, 0, -1, 0, 0]
+ return affinity.affine_transform(affinity.translate(polygon, yoff = -machine_size[1]), tm2)
+
+ from shapely import affinity
+ from shapely.geometry import Polygon
+
node_list = []
for node in self._scene_node.getChildren():
if not issubclass(type(node), SceneNode):
continue
- if node.callDecoration("getConvexHull"):
- node_list.append(node)
-
-
- if len(node_list) < 2:
- self._node_stack = node_list[:]
- return
-
- # Copy the list
- self._original_node_list = node_list[:]
-
- ## Initialise the hit map (pre-compute all hits between all objects)
- self._hit_map = [[self._checkHit(i,j) for i in node_list] for j in node_list]
-
- # Check if we have to files that block eachother. If this is the case, there is no solution!
- for a in range(0,len(node_list)):
- for b in range(0,len(node_list)):
- if a != b and self._hit_map[a][b] and self._hit_map[b][a]:
- return
-
- # Sort the original list so that items that block the most other objects are at the beginning.
- # This does not decrease the worst case running time, but should improve it in most cases.
- sorted(node_list, key = cmp_to_key(self._calculateScore))
-
- todo_node_list = [_ObjectOrder([], node_list)]
- while len(todo_node_list) > 0:
- current = todo_node_list.pop()
- for node in current.todo:
- # Check if the object can be placed with what we have and still allows for a solution in the future
- if not self._checkHitMultiple(node, current.order) and not self._checkBlockMultiple(node, current.todo):
- # We found a possible result. Create new todo & order list.
- new_todo_list = current.todo[:]
- new_todo_list.remove(node)
- new_order = current.order[:] + [node]
- if len(new_todo_list) == 0:
- # We have no more nodes to check, so quit looking.
- todo_node_list = None
- self._node_stack = new_order
-
- return
- todo_node_list.append(_ObjectOrder(new_order, new_todo_list))
- self._node_stack = [] #No result found!
-
-
- # Check if first object can be printed before the provided list (using the hit map)
- def _checkHitMultiple(self, node, other_nodes):
- node_index = self._original_node_list.index(node)
- for other_node in other_nodes:
- other_node_index = self._original_node_list.index(other_node)
- if self._hit_map[node_index][other_node_index]:
- return True
- return False
-
- def _checkBlockMultiple(self, node, other_nodes):
- node_index = self._original_node_list.index(node)
- for other_node in other_nodes:
- other_node_index = self._original_node_list.index(other_node)
- if self._hit_map[other_node_index][node_index] and node_index != other_node_index:
- return True
- return False
-
- ## Calculate score simply sums the number of other objects it 'blocks'
- def _calculateScore(self, a, b):
- score_a = sum(self._hit_map[self._original_node_list.index(a)])
- score_b = sum(self._hit_map[self._original_node_list.index(b)])
- return score_a - score_b
-
- # Checks if A can be printed before B
- def _checkHit(self, a, b):
- if a == b:
- return False
-
- overlap = a.callDecoration("getConvexHullBoundary").intersectsPolygon(b.callDecoration("getConvexHullHeadFull"))
- if overlap:
- return True
- else:
- return False
-
-
-## Internal object used to keep track of a possible order in which to print objects.
-class _ObjectOrder():
- def __init__(self, order, todo):
- """
- :param order: List of indexes in which to print objects, ordered by printing order.
- :param todo: List of indexes which are not yet inserted into the order list.
- """
- self.order = order
- self.todo = todo
+ convex_hull = node.callDecoration("getConvexHull")
+ if convex_hull:
+ xmin = min(x for x, _ in convex_hull._points)
+ xmax = max(x for x, _ in convex_hull._points)
+ ymin = min(y for _, y in convex_hull._points)
+ ymax = max(y for _, y in convex_hull._points)
+
+ convex_hull_polygon = Polygon.from_bounds(xmin, ymin, xmax, ymax)
+ if transform_x < 0:
+ convex_hull_polygon = flip_x(convex_hull_polygon)
+ if transform_y < 0:
+ convex_hull_polygon = flip_y(convex_hull_polygon)
+
+ node_list.append({"node": node,
+ "min_coord": [convex_hull_polygon.bounds[0], convex_hull_polygon.bounds[1]],
+ })
+
+ node_list = sorted(node_list, key = lambda d: d["min_coord"])
+ self._node_stack = [d["node"] for d in node_list]