Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/Ultimaker/Cura.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorNino van Hooff <ninovanhooff@gmail.com>2019-09-26 11:42:54 +0300
committerNino van Hooff <ninovanhooff@gmail.com>2019-09-26 11:42:54 +0300
commite9965ab2a630ed4c8717b3e838769a39bd2d9195 (patch)
tree806bcdbd307b8c06dffdf738be8dc230caf245a6 /cura/OneAtATimeIterator.py
parent7db44ac78948eb9859e770a60a2acc1ea7bbee7a (diff)
Revert the OneAtATimeIterator to the pre 06-2018 implementation.
This seems like a better starting point to fix print head collisions, because we got less bug reports for it compared to the 2018 rewrite. CURA-6785
Diffstat (limited to 'cura/OneAtATimeIterator.py')
-rw-r--r--cura/OneAtATimeIterator.py227
1 files changed, 95 insertions, 132 deletions
diff --git a/cura/OneAtATimeIterator.py b/cura/OneAtATimeIterator.py
index a08f3ed2bf..ab97534ff4 100644
--- a/cura/OneAtATimeIterator.py
+++ b/cura/OneAtATimeIterator.py
@@ -1,149 +1,112 @@
-# Copyright (c) 2018 Ultimaker B.V.
+# Copyright (c) 2015 Ultimaker B.V.
# Cura is released under the terms of the LGPLv3 or higher.
-import sys
-
-from shapely import affinity
-from shapely.geometry import Polygon
-
-from UM.Scene.Iterator.Iterator import Iterator
+from UM.Scene.Iterator import Iterator
from UM.Scene.SceneNode import SceneNode
+from functools import cmp_to_key
+from UM.Application import Application
-
-# Iterator that determines the object print order when one-at a time mode is enabled.
-#
-# In one-at-a-time mode, only one extruder can be enabled to print. In order to maximize the number of objects we can
-# print, we need to print from the corner that's closest to the extruder that's being used. Here is an illustration:
-#
-# +--------------------------------+
-# | |
-# | |
-# | | - Rectangle represents the complete print head including fans, etc.
-# | X X | y - X's are the nozzles
-# | (1) (2) | ^
-# | | |
-# +--------------------------------+ +--> x
-#
-# In this case, the nozzles are symmetric, nozzle (1) is closer to the bottom left corner while (2) is closer to the
-# bottom right. If we use nozzle (1) to print, then we better off printing from the bottom left corner so the print
-# head will not collide into an object on its top-right side, which is a very large unused area. Following the same
-# logic, if we are printing with nozzle (2), then it's better to print from the bottom-right side.
-#
-# This iterator determines the print order following the rules above.
-#
-class OneAtATimeIterator(Iterator):
-
+## Iterator that returns a list of nodes in the order that they need to be printed
+# If there is no solution an empty list is returned.
+# Take note that the list of nodes can have children (that may or may not contain mesh data)
+class OneAtATimeIterator(Iterator.Iterator):
def __init__(self, scene_node):
- from cura.CuraApplication import CuraApplication
- self._global_stack = CuraApplication.getInstance().getGlobalContainerStack()
+ super().__init__(scene_node) # Call super to make multiple inheritence work.
+ self._hit_map = [[]]
self._original_node_list = []
- super().__init__(scene_node) # Call super to make multiple inheritance work.
-
- def getMachineNearestCornerToExtruder(self, global_stack):
- head_and_fans_coordinates = global_stack.getHeadAndFansCoordinates()
-
- used_extruder = None
- for extruder in global_stack.extruders.values():
- if extruder.isEnabled:
- used_extruder = extruder
- break
-
- extruder_offsets = [used_extruder.getProperty("machine_nozzle_offset_x", "value"),
- used_extruder.getProperty("machine_nozzle_offset_y", "value")]
-
- # find the corner that's closest to the origin
- min_distance2 = sys.maxsize
- min_coord = None
- for coord in head_and_fans_coordinates:
- x = coord[0] - extruder_offsets[0]
- y = coord[1] - extruder_offsets[1]
-
- distance2 = x**2 + y**2
- if distance2 <= min_distance2:
- min_distance2 = distance2
- min_coord = coord
-
- return min_coord
-
- def _checkForCollisions(self) -> bool:
- all_nodes = []
- for node in self._scene_node.getChildren():
- if not issubclass(type(node), SceneNode):
- continue
- convex_hull = node.callDecoration("getConvexHullHead")
- if not convex_hull:
- continue
-
- bounding_box = node.getBoundingBox()
- if not bounding_box:
- continue
- from UM.Math.Polygon import Polygon
- bounding_box_polygon = Polygon([[bounding_box.left, bounding_box.front],
- [bounding_box.left, bounding_box.back],
- [bounding_box.right, bounding_box.back],
- [bounding_box.right, bounding_box.front]])
-
- all_nodes.append({"node": node,
- "bounding_box": bounding_box_polygon,
- "convex_hull": convex_hull})
-
- has_collisions = False
- for i, node_dict in enumerate(all_nodes):
- for j, other_node_dict in enumerate(all_nodes):
- if i == j:
- continue
- if node_dict["bounding_box"].intersectsPolygon(other_node_dict["convex_hull"]):
- has_collisions = True
- break
-
- if has_collisions:
- break
-
- return has_collisions
-
def _fillStack(self):
- min_coord = self.getMachineNearestCornerToExtruder(self._global_stack)
- transform_x = -int(round(min_coord[0] / abs(min_coord[0])))
- transform_y = -int(round(min_coord[1] / abs(min_coord[1])))
-
- machine_size = [self._global_stack.getProperty("machine_width", "value"),
- self._global_stack.getProperty("machine_depth", "value")]
-
- def flip_x(polygon):
- tm2 = [-1, 0, 0, 1, 0, 0]
- return affinity.affine_transform(affinity.translate(polygon, xoff = -machine_size[0]), tm2)
-
- def flip_y(polygon):
- tm2 = [1, 0, 0, -1, 0, 0]
- return affinity.affine_transform(affinity.translate(polygon, yoff = -machine_size[1]), tm2)
-
- if self._checkForCollisions():
- self._node_stack = []
- return
-
node_list = []
for node in self._scene_node.getChildren():
if not issubclass(type(node), SceneNode):
continue
- convex_hull = node.callDecoration("getConvexHull")
- if convex_hull:
- xmin = min(x for x, _ in convex_hull._points)
- xmax = max(x for x, _ in convex_hull._points)
- ymin = min(y for _, y in convex_hull._points)
- ymax = max(y for _, y in convex_hull._points)
+ if node.callDecoration("getConvexHull"):
+ node_list.append(node)
- convex_hull_polygon = Polygon.from_bounds(xmin, ymin, xmax, ymax)
- if transform_x < 0:
- convex_hull_polygon = flip_x(convex_hull_polygon)
- if transform_y < 0:
- convex_hull_polygon = flip_y(convex_hull_polygon)
- node_list.append({"node": node,
- "min_coord": [convex_hull_polygon.bounds[0], convex_hull_polygon.bounds[1]],
- })
+ if len(node_list) < 2:
+ self._node_stack = node_list[:]
+ return
- node_list = sorted(node_list, key = lambda d: d["min_coord"])
+ # Copy the list
+ self._original_node_list = node_list[:]
+
+ ## Initialise the hit map (pre-compute all hits between all objects)
+ self._hit_map = [[self._checkHit(i,j) for i in node_list] for j in node_list]
+
+ # Check if we have to files that block eachother. If this is the case, there is no solution!
+ for a in range(0,len(node_list)):
+ for b in range(0,len(node_list)):
+ if a != b and self._hit_map[a][b] and self._hit_map[b][a]:
+ return
+
+ # Sort the original list so that items that block the most other objects are at the beginning.
+ # This does not decrease the worst case running time, but should improve it in most cases.
+ sorted(node_list, key = cmp_to_key(self._calculateScore))
+
+ todo_node_list = [_ObjectOrder([], node_list)]
+ while len(todo_node_list) > 0:
+ current = todo_node_list.pop()
+ for node in current.todo:
+ # Check if the object can be placed with what we have and still allows for a solution in the future
+ if not self._checkHitMultiple(node, current.order) and not self._checkBlockMultiple(node, current.todo):
+ # We found a possible result. Create new todo & order list.
+ new_todo_list = current.todo[:]
+ new_todo_list.remove(node)
+ new_order = current.order[:] + [node]
+ if len(new_todo_list) == 0:
+ # We have no more nodes to check, so quit looking.
+ todo_node_list = None
+ self._node_stack = new_order
+
+ return
+ todo_node_list.append(_ObjectOrder(new_order, new_todo_list))
+ self._node_stack = [] #No result found!
+
+
+ # Check if first object can be printed before the provided list (using the hit map)
+ def _checkHitMultiple(self, node, other_nodes):
+ node_index = self._original_node_list.index(node)
+ for other_node in other_nodes:
+ other_node_index = self._original_node_list.index(other_node)
+ if self._hit_map[node_index][other_node_index]:
+ return True
+ return False
+
+ def _checkBlockMultiple(self, node, other_nodes):
+ node_index = self._original_node_list.index(node)
+ for other_node in other_nodes:
+ other_node_index = self._original_node_list.index(other_node)
+ if self._hit_map[other_node_index][node_index] and node_index != other_node_index:
+ return True
+ return False
+
+ ## Calculate score simply sums the number of other objects it 'blocks'
+ def _calculateScore(self, a, b):
+ score_a = sum(self._hit_map[self._original_node_list.index(a)])
+ score_b = sum(self._hit_map[self._original_node_list.index(b)])
+ return score_a - score_b
+
+ # Checks if A can be printed before B
+ def _checkHit(self, a, b):
+ if a == b:
+ return False
+
+ overlap = a.callDecoration("getConvexHullBoundary").intersectsPolygon(b.callDecoration("getConvexHullHeadFull"))
+ if overlap:
+ return True
+ else:
+ return False
+
+
+## Internal object used to keep track of a possible order in which to print objects.
+class _ObjectOrder():
+ def __init__(self, order, todo):
+ """
+ :param order: List of indexes in which to print objects, ordered by printing order.
+ :param todo: List of indexes which are not yet inserted into the order list.
+ """
+ self.order = order
+ self.todo = todo
- self._node_stack = [d["node"] for d in node_list]