Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/Ultimaker/Cura.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSeva Alekseyev <sevaa@nih.gov>2016-08-12 22:15:56 +0300
committerGhostkeeper <rubend@tutanota.com>2016-08-24 18:28:30 +0300
commita27f82e64b160cbfba78dc640477ba7e3e083457 (patch)
tree4cc50bb05b51ba0149f342d0dd8843471e511933 /plugins/X3DReader
parent5cb9f979861158629ff8f250d6f32212513b03ad (diff)
Merging all shapes into a single mesh during X3D loading
Diffstat (limited to 'plugins/X3DReader')
-rw-r--r--plugins/X3DReader/X3DReader.py544
1 files changed, 318 insertions, 226 deletions
diff --git a/plugins/X3DReader/X3DReader.py b/plugins/X3DReader/X3DReader.py
index 72fba5d1fe..8a5822d9ed 100644
--- a/plugins/X3DReader/X3DReader.py
+++ b/plugins/X3DReader/X3DReader.py
@@ -11,6 +11,7 @@ from UM.Job import Job
from math import pi, sin, cos, sqrt
import numpy
+
EPSILON = 0.000001 # So very crude. :(
try:
@@ -18,9 +19,19 @@ try:
except ImportError:
import xml.etree.ElementTree as ET
+# TODO: preserve the structure of scenes that contain several objects
+# Use CADPart, for example, to distinguish between separate objects
-DEFAULT_SUBDIV = 16 # Default subdivision factor for spheres, cones, and cylinders
+DEFAULT_SUBDIV = 16 # Default subdivision factor for spheres, cones, and cylinders
+class Shape:
+ def __init__(self, v, f, ib, n):
+ self.verts = v
+ self.faces = f
+ # Those are here for debugging purposes only
+ self.index_base = ib
+ self.name = n
+
class X3DReader(MeshReader):
def __init__(self):
super().__init__()
@@ -32,102 +43,97 @@ class X3DReader(MeshReader):
def read(self, file_name):
try:
self.defs = {}
- self.sceneNodes = []
- self.fileName = file_name
+ self.shapes = []
tree = ET.parse(file_name)
- root = tree.getroot()
+ xml_root = tree.getroot()
- if root.tag != "X3D":
+ if xml_root.tag != "X3D":
return None
scale = 1000 # Default X3D unit it one meter, while Cura's is one millimeters
- if root[0].tag == "head":
- for headNode in root[0]:
- if headNode.tag == "unit" and headNode.attrib.get("category") == "length":
- scale *= float(headNode.attrib["conversionFactor"])
+ if xml_root[0].tag == "head":
+ for head_node in xml_root[0]:
+ if head_node.tag == "unit" and head_node.attrib.get("category") == "length":
+ scale *= float(head_node.attrib["conversionFactor"])
break
- scene = root[1]
+ xml_scene = xml_root[1]
else:
- scene = root[0]
+ xml_scene = xml_root[0]
- if scene.tag != "Scene":
+ if xml_scene.tag != "Scene":
return None
self.transform = Matrix()
self.transform.setByScaleFactor(scale)
+ self.index_base = 0
- # Traverse the scene tree, populate the sceneNodes array
- self.processChildNodes(scene)
+ # Traverse the scene tree, populate the shapes list
+ self.processChildNodes(xml_scene)
- if len(self.sceneNodes) > 1:
- theScene = SceneNode()
- group_decorator = GroupDecorator()
- theScene.addDecorator(group_decorator)
- for node in self.sceneNodes:
- theScene.addChild(node)
- theScene.setSelectable(True)
- elif len(self.sceneNodes) == 1:
- theScene = self.sceneNodes[0]
- else: # No shapes read :(
+ if self.shapes:
+ bui = MeshBuilder()
+ bui.setVertices(numpy.concatenate([shape.verts for shape in self.shapes]))
+ bui.setIndices(numpy.concatenate([shape.faces for shape in self.shapes]))
+ bui.calculateNormals()
+ bui.setFileName(file_name)
+
+ scene = SceneNode()
+ scene.setMeshData(bui.build().getTransformed(Matrix()))
+ scene.setSelectable(True)
+ scene.setName(file_name)
+ else:
return None
- theScene.setName(file_name)
+
except Exception as e:
Logger.log("e", "exception occured in x3d reader: %s", e)
try:
- boundingBox = theScene.getBoundingBox()
+ boundingBox = scene.getBoundingBox()
boundingBox.isValid()
except:
return None
- return theScene
+ return scene
# ------------------------- XML tree traversal
- def processNode(self, xmlNode):
- xmlNode = self.resolveDefUse(xmlNode)
- if xmlNode is None:
+ def processNode(self, xml_node):
+ xml_node = self.resolveDefUse(xml_node)
+ if xml_node is None:
return
- tag = xmlNode.tag
- if tag in ("Group", "StaticGroup", "CADAssembly", "CADFace", "CADLayer", "CADPart", "Collision"):
- self.processChildNodes(xmlNode)
+ tag = xml_node.tag
+ if tag in ("Group", "StaticGroup", "CADAssembly", "CADFace", "CADLayer", "Collision"):
+ self.processChildNodes(xml_node)
+ if tag == "CADPart":
+ self.processTransform(xml_node) # TODO: split the parts
elif tag == "LOD":
- self.processNode(xmlNode[0])
+ self.processNode(xml_node[0])
elif tag == "Transform":
- self.processTransform(xmlNode)
+ self.processTransform(xml_node)
elif tag == "Shape":
- self.processShape(xmlNode)
+ self.processShape(xml_node)
- def processShape(self, xmlNode):
+ def processShape(self, xml_node):
# Find the geometry and the appearance inside the Shape
geometry = appearance = None
- for subNode in xmlNode:
+ for subNode in xml_node:
if subNode.tag == "Appearance" and not appearance:
appearance = self.resolveDefUse(subNode)
- elif subNode.tag in self.geometryImporters and not geometry:
+ elif subNode.tag in self.geometry_importers and not geometry:
geometry = self.resolveDefUse(subNode)
# TODO: appearance is completely ignored. At least apply the material color...
if not geometry is None:
try:
- bui = MeshBuilder()
- self.geometryImporters[geometry.tag](self, geometry, bui)
-
- bui.calculateNormals()
- bui.setFileName(self.fileName)
-
- sceneNode = SceneNode()
- if "DEF" in geometry.attrib:
- sceneNode.setName(geometry.tag + "#" + geometry.attrib["DEF"])
- else:
- sceneNode.setName(geometry.tag)
-
- sceneNode.setMeshData(bui.build().getTransformed(self.transform))
- sceneNode.setSelectable(True)
- self.sceneNodes.append(sceneNode)
+ self.verts = self.faces = [] # Safeguard
+ self.geometry_importers[geometry.tag](self, geometry)
+ m = self.transform.getData()
+ verts = numpy.array([m.dot(vert)[:3] for vert in self.verts])
+ self.shapes.append(Shape(verts, self.faces, self.index_base, geometry.tag))
+ self.index_base += len(verts)
except Exception as e:
Logger.log("e", "exception occured in x3d reader while reading %s: %s", geometry.tag, e)
@@ -198,12 +204,33 @@ class X3DReader(MeshReader):
# Primitives
- def geomBox(self, node, bui):
- size = readFloatArray(node, "size", [2, 2, 2])
- bui.addCube(size[0], size[1], size[2])
+ def geomBox(self, node):
+ (dx, dy, dz) = readFloatArray(node, "size", [2, 2, 2])
+ dx /= 2
+ dy /= 2
+ dz /= 2
+ self.reserveFaceAndVertexCount(12, 8)
+
+ # xz plane at +y, ccw
+ self.addVertex(dx, dy, dz)
+ self.addVertex(-dx, dy, dz)
+ self.addVertex(-dx, dy, -dz)
+ self.addVertex(dx, dy, -dz)
+ # xz plane at -y
+ self.addVertex(dx, -dy, dz)
+ self.addVertex(-dx, -dy, dz)
+ self.addVertex(-dx, -dy, -dz)
+ self.addVertex(dx, -dy, -dz)
+
+ self.addQuad(0, 1, 2, 3) # +y
+ self.addQuad(4, 0, 3, 7) # +x
+ self.addQuad(7, 3, 2, 6) # -z
+ self.addQuad(6, 2, 1, 5) # -x
+ self.addQuad(5, 1, 0, 4) # +z
+ self.addQuad(7, 6, 5, 4) # -y
# The sphere is subdivided into nr rings and ns segments
- def geomSphere(self, node, bui):
+ def geomSphere(self, node):
r = readFloat(node, "radius", 0.5)
subdiv = readIntArray(node, 'subdivision', None)
if subdiv:
@@ -217,17 +244,17 @@ class X3DReader(MeshReader):
lau = pi / nr # Unit angle of latitude (rings) for the given tesselation
lou = 2 * pi / ns # Unit angle of longitude (segments)
- bui.reserveFaceAndVertexCount(ns*(nr*2 - 2), 2 + (nr + 1)*ns)
+ self.reserveFaceAndVertexCount(ns*(nr*2 - 2), 2 + (nr - 1)*ns)
# +y and -y poles
- bui.addVertex(0, r, 0)
- bui.addVertex(0, -r, 0)
+ self.addVertex(0, r, 0)
+ self.addVertex(0, -r, 0)
# The non-polar vertices go from x=0, negative z plane counterclockwise -
# to -x, to +z, to +x, back to -z
for ring in range(1, nr):
for seg in range(ns):
- bui.addVertex(-r*sin(lou * seg) * sin(lau * ring),
+ self.addVertex(-r*sin(lou * seg) * sin(lau * ring),
r*cos(lau * ring),
-r*cos(lou * seg) * sin(lau * ring))
@@ -241,8 +268,8 @@ class X3DReader(MeshReader):
# (starting from +y pole)
# Bottom cap goes: up left down (starting from -y pole)
for seg in range(ns):
- addTri(bui, 0, seg + 2, (seg + 1) % ns + 2)
- addTri(bui, 1, vb + (seg + 1) % ns, vb + seg)
+ self.addTri(0, seg + 2, (seg + 1) % ns + 2)
+ self.addTri(1, vb + (seg + 1) % ns, vb + seg)
# Sides
# Side face vertices go in order: down right upleft, downright up left
@@ -253,9 +280,9 @@ class X3DReader(MeshReader):
# First vertex index for the bottom edge of the ring
for seg in range(ns):
nseg = (seg + 1) % ns
- addQuad(bui, tvb + seg, bvb + seg, bvb + nseg, tvb + nseg)
+ self.addQuad(tvb + seg, bvb + seg, bvb + nseg, tvb + nseg)
- def geomCone(self, node, bui):
+ def geomCone(self, node):
r = readFloat(node, "bottomRadius", 1)
height = readFloat(node, "height", 2)
bottom = readBoolean(node, "bottom", True)
@@ -265,21 +292,22 @@ class X3DReader(MeshReader):
d = height / 2
angle = 2 * pi / n
- bui.reserveFaceAndVertexCount((n if side else 0) + (n-1 if bottom else 0), n+1)
+ self.reserveFaceAndVertexCount((n if side else 0) + (n-2 if bottom else 0), n+1)
- bui.addVertex(0, d, 0)
+ # Vertex 0 is the apex, vertices 1..n are the bottom
+ self.addVertex(0, d, 0)
for i in range(n):
- bui.addVertex(-r * sin(angle * i), -d, -r * cos(angle * i))
+ self.addVertex(-r * sin(angle * i), -d, -r * cos(angle * i))
# Side face vertices go: up down right
if side:
for i in range(n):
- addTri(bui, 1 + (i + 1) % n, 0, 1 + i)
+ self.addTri(1 + (i + 1) % n, 0, 1 + i)
if bottom:
for i in range(2, n):
- addTri(bui, 1, i, i+1)
+ self.addTri(1, i, i+1)
- def geomCylinder(self, node, bui):
+ def geomCylinder(self, node):
r = readFloat(node, "radius", 1)
height = readFloat(node, "height", 2)
bottom = readBoolean(node, "bottom", True)
@@ -291,30 +319,30 @@ class X3DReader(MeshReader):
angle = 2 * pi / n
hh = height/2
- bui.reserveFaceAndVertexCount((nn if side else 0) + (n - 2 if top else 0) + (n - 2 if bottom else 0), nn)
+ self.reserveFaceAndVertexCount((nn if side else 0) + (n - 2 if top else 0) + (n - 2 if bottom else 0), nn)
# The seam is at x=0, z=-r, vertices go ccw -
# to pos x, to neg z, to neg x, back to neg z
for i in range(n):
rs = -r * sin(angle * i)
rc = -r * cos(angle * i)
- bui.addVertex(rs, hh, rc)
- bui.addVertex(rs, -hh, rc)
+ self.addVertex(rs, hh, rc)
+ self.addVertex(rs, -hh, rc)
if side:
for i in range(n):
ni = (i + 1) % n
- addQuad(bui, ni * 2 + 1, ni * 2, i * 2, i * 2 + 1)
+ self.addQuad(ni * 2 + 1, ni * 2, i * 2, i * 2 + 1)
for i in range(2, nn-3, 2):
if top:
- addTri(bui, 0, i, i+2)
+ self.addTri(0, i, i+2)
if bottom:
- addTri(bui, 1, i+1, i+3)
+ self.addTri(1, i+1, i+3)
-# Semi-primitives
+ # Semi-primitives
- def geomElevationGrid(self, node, bui):
+ def geomElevationGrid(self, node):
dx = readFloat(node, "xSpacing", 1)
dz = readFloat(node, "zSpacing", 1)
nx = readInt(node, "xDimension", 0)
@@ -325,18 +353,18 @@ class X3DReader(MeshReader):
if nx <= 0 or nz <= 0 or len(height) < nx*nz:
return # That's weird, the wording of the standard suggests grids with zero quads are somehow valid
- bui.reserveFaceAndVertexCount(2*(nx-1)*(nz-1), nx*nz)
+ self.reserveFaceAndVertexCount(2*(nx-1)*(nz-1), nx*nz)
for z in range(nz):
for x in range(nx):
- bui.addVertex(x * dx, height[z*nx + x], z * dz)
+ self.addVertex(x * dx, height[z*nx + x], z * dz)
for z in range(1, nz):
for x in range(1, nx):
- addTriFlip(bui, (z - 1)*nx + x - 1, z*nx + x, (z - 1)*nx + x, ccw)
- addTriFlip(bui, (z - 1)*nx + x - 1, z*nx + x - 1, z*nx + x, ccw)
+ self.addTriFlip((z - 1)*nx + x - 1, z*nx + x, (z - 1)*nx + x, ccw)
+ self.addTriFlip((z - 1)*nx + x - 1, z*nx + x - 1, z*nx + x, ccw)
- def geomExtrusion(self, node, bui):
+ def geomExtrusion(self, node):
ccw = readBoolean(node, "ccw", True)
beginCap = readBoolean(node, "beginCap", True)
endCap = readBoolean(node, "endCap", True)
@@ -403,7 +431,7 @@ class X3DReader(MeshReader):
orig_z = Vector(*m.dot(orig_z.getData()))
return orig_z
- bui.reserveFaceAndVertexCount(2*nsf*ncf + (nc - 2 if beginCap else 0) + (nc - 2 if endCap else 0), ns*nc)
+ self.reserveFaceAndVertexCount(2*nsf*ncf + (nc - 2 if beginCap else 0) + (nc - 2 if endCap else 0), ns*nc)
z = None
for i, spt in enumerate(spine):
@@ -456,10 +484,10 @@ class X3DReader(MeshReader):
sptv3 = numpy.array(spt.getData()[:3])
for cpt in cross:
v = sptv3 + m.dot(cpt)
- bui.addVertex(*v)
+ self.addVertex(*v)
if beginCap:
- addFace(bui, [x for x in range(nc - 1, -1, -1)], ccw)
+ self.addFace([x for x in range(nc - 1, -1, -1)], ccw)
# Order of edges in the face: forward along cross, forward along spine,
# backward along cross, backward along spine, flipped if now ccw.
@@ -468,117 +496,167 @@ class X3DReader(MeshReader):
for s in range(ns - 1):
for c in range(ncf):
- addQuadFlip(bui, s * nc + c, s * nc + (c + 1) % nc,
+ self.addQuadFlip(s * nc + c, s * nc + (c + 1) % nc,
(s + 1) * nc + (c + 1) % nc, (s + 1) * nc + c, ccw)
if spineClosed:
# The faces between the last and the first spine points
b = (ns - 1) * nc
for c in range(ncf):
- addQuadFlip(bui, b + c, b + (c + 1) % nc,
+ self.addQuadFlip(b + c, b + (c + 1) % nc,
(c + 1) % nc, c, ccw)
if endCap:
- addFace(bui, [(ns - 1) * nc + x for x in range(0, nc)], ccw)
+ self.addFace([(ns - 1) * nc + x for x in range(0, nc)], ccw)
# Triangle meshes
# Helper for numerous nodes with a Coordinate subnode holding vertices
# That all triangle meshes and IndexedFaceSet
- # nFaces can be a function, in case the face count is a function of coord
- def startCoordMesh(self, node, bui, nFaces):
+ # num_faces can be a function, in case the face count is a function of coord
+ def startCoordMesh(self, node, num_faces):
ccw = readBoolean(node, "ccw", True)
coord = self.readVertices(node)
- if hasattr(nFaces, '__call__'):
- nFaces = nFaces(coord)
- bui.reserveFaceAndVertexCount(nFaces, len(coord))
+ if hasattr(num_faces, '__call__'):
+ num_faces = num_faces(coord)
+ self.reserveFaceAndVertexCount(num_faces, len(coord))
for pt in coord:
- bui.addVertex(*pt)
+ self.addVertex(*pt)
return ccw
- def geomIndexedTriangleSet(self, node, bui):
+ def geomIndexedTriangleSet(self, node):
index = readIntArray(node, "index", [])
- nFaces = len(index) // 3
- ccw = self.startCoordMesh(node, bui, nFaces)
+ num_faces = len(index) // 3
+ ccw = self.startCoordMesh(node, num_faces)
- for i in range(0, nFaces*3, 3):
- addTriFlip(bui, index[i], index[i+1], index[i+2], ccw)
+ for i in range(0, num_faces*3, 3):
+ self.addTriFlip(index[i], index[i+1], index[i+2], ccw)
- def geomIndexedTriangleStripSet(self, node, bui):
+ def geomIndexedTriangleStripSet(self, node):
strips = readIndex(node, "index")
- ccw = self.startCoordMesh(node, bui, sum([len(strip) - 2 for strip in strips]))
+ ccw = self.startCoordMesh(node, sum([len(strip) - 2 for strip in strips]))
for strip in strips:
sccw = ccw # Running CCW value, reset for each strip
for i in range(len(strip) - 2):
- addTriFlip(bui, strip[i], strip[i+1], strip[i+2], sccw)
+ self.addTriFlip(strip[i], strip[i+1], strip[i+2], sccw)
sccw = not sccw
- def geomIndexedTriangleFanSet(self, node, bui):
+ def geomIndexedTriangleFanSet(self, node):
fans = readIndex(node, "index")
- ccw = self.startCoordMesh(node, bui, sum([len(fan) - 2 for fan in fans]))
+ ccw = self.startCoordMesh(node, sum([len(fan) - 2 for fan in fans]))
for fan in fans:
for i in range(1, len(fan) - 1):
- addTriFlip(bui, fan[0], fan[i], fan[i+1], ccw)
+ self.addTriFlip(fan[0], fan[i], fan[i+1], ccw)
- def geomTriangleSet(self, node, bui):
- ccw = self.startCoordMesh(node, bui, lambda coord: len(coord) // 3)
- for i in range(0, len(bui.getVertices()), 3):
- addTriFlip(bui, i, i+1, i+2, ccw)
+ def geomTriangleSet(self, node):
+ ccw = self.startCoordMesh(node, lambda coord: len(coord) // 3)
+ for i in range(0, len(self.verts), 3):
+ self.addTriFlip(i, i+1, i+2, ccw)
- def geomTriangleStripSet(self, node, bui):
+ def geomTriangleStripSet(self, node):
strips = readIntArray(node, "stripCount", [])
- ccw = self.startCoordMesh(node, bui, sum([n-2 for n in strips]))
+ ccw = self.startCoordMesh(node, sum([n-2 for n in strips]))
vb = 0
for n in strips:
sccw = ccw
for i in range(n-2):
- addTriFlip(bui, vb+i, vb+i+1, vb+i+2, sccw)
+ self.addTriFlip(vb+i, vb+i+1, vb+i+2, sccw)
sccw = not sccw
vb += n
- def geomTriangleFanSet(self, node, bui):
+ def geomTriangleFanSet(self, node):
fans = readIntArray(node, "fanCount", [])
- ccw = self.startCoordMesh(node, bui, sum([n-2 for n in fans]))
+ ccw = self.startCoordMesh(node, sum([n-2 for n in fans]))
vb = 0
for n in fans:
for i in range(1, n-1):
- addTriFlip(bui, vb, vb+i, vb+i+1, ccw)
+ self.addTriFlip(vb, vb+i, vb+i+1, ccw)
vb += n
# Quad geometries from the CAD module, might be relevant for printing
- def geomQuadSet(self, node, bui):
- ccw = self.startCoordMesh(node, bui, lambda coord: 2*(len(coord) // 4))
- for i in range(0, len(bui.getVertices()), 4):
- addQuadFlip(bui, i, i+1, i+2, i+3, ccw)
+ def geomQuadSet(self, node):
+ ccw = self.startCoordMesh(node, lambda coord: 2*(len(coord) // 4))
+ for i in range(0, len(self.verts), 4):
+ self.addQuadFlip(i, i+1, i+2, i+3, ccw)
- def geomIndexedQuadSet(self, node, bui):
+ def geomIndexedQuadSet(self, node):
index = readIntArray(node, "index", [])
nQuads = len(index) // 4
- ccw = self.startCoordMesh(node, bui, nQuads*2)
+ ccw = self.startCoordMesh(node, nQuads*2)
for i in range(0, nQuads*4, 4):
- addQuadFlip(bui, index[i], index[i+1], index[i+2], index[i+3], ccw)
+ self.addQuadFlip(index[i], index[i+1], index[i+2], index[i+3], ccw)
+
+ # 2D polygon geometries
+ # Won't work for now, since Cura expects every mesh to have a nontrivial convex hull
+ # The only way around that is merging meshes.
+
+ def geomDisk2D(self, node):
+ innerRadius = readFloat(node, "innerRadius", 0)
+ outerRadius = readFloat(node, "outerRadius", 1)
+ n = readInt(node, "subdivision", DEFAULT_SUBDIV)
+
+ angle = 2 * pi / n
+
+ if innerRadius:
+ self.reserveFaceAndVertexCount(n*4 if innerRadius else n-2, n*2 if innerRadius else n)
+
+ for i in range(n):
+ s = sin(angle * i)
+ c = cos(angle * i)
+ self.addVertex(outerRadius*c, outerRadius*s, 0)
+ if innerRadius:
+ self.addVertex(innerRadius*c, innerRadius*s, 0)
+ ni = (i+1) % n
+ self.addQuad(2*i, 2*ni, 2*ni+1, 2*i+1)
+
+ if not innerRadius:
+ for i in range(2, n):
+ self.addTri(0, i-1, i)
+
+ def geomRectangle2D(self, node):
+ (x, y) = readFloatArray(node, "size", (2, 2))
+ self.reserveFaceAndVertexCount(2, 4)
+ self.addVertex(-x/2, -y/2, 0)
+ self.addVertex(x/2, -y/2, 0)
+ self.addVertex(x/2, y/2, 0)
+ self.addVertex(-x/2, y/2, 0)
+ self.addQuad(0, 1, 2, 3)
+
+ def geomTriangleSet2D(self, node):
+ verts = readFloatArray(node, "vertices", ())
+ num_faces = len(verts) // 6;
+ verts = [(verts[i], verts[i+1], 0) for i in range(0, 6 * num_faces, 2)]
+ self.reserveFaceAndVertexCount(num_faces, num_faces * 3)
+ for vert in verts:
+ self.addVertex(*vert)
+
+ # The front face is on the +Z side, so CCW is a variable
+ for i in range(0, num_faces*3, 3):
+ a = Vector(*verts[i+2]) - Vector(*verts[i])
+ b = Vector(*verts[i+1]) - Vector(*verts[i])
+ self.addTriFlip(i, i+1, i+2, a.x*b.y > a.y*b.x)
# General purpose polygon mesh
- def geomIndexedFaceSet(self, node, bui):
+ def geomIndexedFaceSet(self, node):
faces = readIndex(node, "coordIndex")
- ccw = self.startCoordMesh(node, bui, sum([len(face) - 2 for face in faces]))
+ ccw = self.startCoordMesh(node, sum([len(face) - 2 for face in faces]))
for face in faces:
if len(face) == 3:
- addTriFlip(bui, face[0], face[1], face[2], ccw)
+ self.addTriFlip(face[0], face[1], face[2], ccw)
elif len(face) > 3:
- addFace(bui, face, ccw)
+ self.addFace(face, ccw)
- geometryImporters = {
+ geometry_importers = {
'IndexedFaceSet': geomIndexedFaceSet,
'IndexedTriangleSet': geomIndexedTriangleSet,
'IndexedTriangleStripSet': geomIndexedTriangleStripSet,
@@ -588,6 +666,9 @@ class X3DReader(MeshReader):
'TriangleFanSet': geomTriangleFanSet,
'QuadSet': geomQuadSet,
'IndexedQuadSet': geomIndexedQuadSet,
+ 'TriangleSet2D': geomTriangleSet2D,
+ 'Rectangle2D': geomRectangle2D,
+ 'Disk2D': geomDisk2D,
'ElevationGrid': geomElevationGrid,
'Extrusion': geomExtrusion,
'Sphere': geomSphere,
@@ -609,6 +690,103 @@ class X3DReader(MeshReader):
return [(co[i], co[i+1], co[i+2]) for i in range(0, (len(co) // 3)*3, 3)]
return []
+ # Mesh builder helpers
+
+ def reserveFaceAndVertexCount(self, num_faces, num_verts):
+ # Unlike the Cura MeshBuilder, we use 4-vectors here for easier transform
+ self.verts = numpy.array([(0,0,0,1) for i in range(num_verts)], dtype=numpy.float32)
+ self.faces = numpy.zeros((num_faces, 3), dtype=numpy.int32)
+ self.num_faces = 0
+ self.num_verts = 0
+
+ def addVertex(self, x, y, z):
+ self.verts[self.num_verts, 0] = x
+ self.verts[self.num_verts, 1] = y
+ self.verts[self.num_verts, 2] = z
+ self.num_verts += 1
+
+ # Indices are 0-based for this shape, but they won't be zero-based in the merged mesh
+ def addTri(self, a, b, c):
+ self.faces[self.num_faces, 0] = self.index_base + a
+ self.faces[self.num_faces, 1] = self.index_base + b
+ self.faces[self.num_faces, 2] = self.index_base + c
+ self.num_faces += 1
+
+ def addTriFlip(self, a, b, c, ccw):
+ if ccw:
+ self.addTri(a, b, c)
+ else:
+ self.addTri(b, a, c)
+
+ # Needs to be convex, but not necessaily planar
+ # Assumed ccw, cut along the ac diagonal
+ def addQuad(self, a, b, c, d):
+ self.addTri(a, b, c)
+ self.addTri(c, d, a)
+
+ def addQuadFlip(self, a, b, c, d, ccw):
+ if ccw:
+ self.addTri(a, b, c)
+ self.addTri(c, d, a)
+ else:
+ self.addTri(a, c, b)
+ self.addTri(c, a, d)
+
+
+ # Arbitrary polygon triangulation.
+ # Doesn't assume convexity and doesn't check the "convex" flag in the file.
+ # Works by the "cutting of ears" algorithm:
+ # - Find an outer vertex with the smallest angle and no vertices inside its adjacent triangle
+ # - Remove the triangle at that vertex
+ # - Repeat until done
+ # Vertex coordinates are supposed to be already set
+ def addFace(self, indices, ccw):
+ # Resolve indices to coordinates for faster math
+ n = len(indices)
+ verts = self.verts
+ face = [Vector(verts[i, 0], verts[i, 1], verts[i, 2]) for i in indices]
+
+ # Need a normal to the plane so that we can know which vertices form inner angles
+ normal = findOuterNormal(face)
+
+ if not normal: # Couldn't find an outer edge, non-planar polygon maybe?
+ return
+
+ # Find the vertex with the smallest inner angle and no points inside, cut off. Repeat until done
+ m = len(face)
+ vi = [i for i in range(m)] # We'll be using this to kick vertices from the face
+ while m > 3:
+ max_cos = EPSILON # We don't want to check anything on Pi angles
+ i_min = 0 # max cos corresponds to min angle
+ for i in range(m):
+ inext = (i + 1) % m
+ iprev = (i + m - 1) % m
+ v = face[vi[i]]
+ next = face[vi[inext]] - v
+ prev = face[vi[iprev]] - v
+ nextXprev = next.cross(prev)
+ if nextXprev.dot(normal) > EPSILON: # If it's an inner angle
+ cos = next.dot(prev) / (next.length() * prev.length())
+ if cos > max_cos:
+ # Check if there are vertices inside the triangle
+ no_points_inside = True
+ for j in range(m):
+ if j != i and j != iprev and j != inext:
+ vx = face[vi[j]] - v
+ if pointInsideTriangle(vx, next, prev, nextXprev):
+ no_points_inside = False
+ break
+
+ if no_points_inside:
+ max_cos = cos
+ i_min = i
+
+ self.addTriFlip(indices[vi[(i_min + m - 1) % m]], indices[vi[i_min]], indices[vi[(i_min + 1) % m]], ccw)
+ vi.pop(i_min)
+ m -= 1
+ self.addTriFlip(indices[vi[0]], indices[vi[1]], indices[vi[2]], ccw)
+
+
# ------------------------------------------------------------
# X3D field parsers
# ------------------------------------------------------------
@@ -665,89 +843,6 @@ def readIndex(node, attr):
if chunk:
chunks.append(chunk)
return chunks
-
-# Mesh builder helpers
-
-def addTri(bui, a, b, c):
- bui._indices[bui._face_count, 0] = a
- bui._indices[bui._face_count, 1] = b
- bui._indices[bui._face_count, 2] = c
- bui._face_count += 1
-
-def addTriFlip(bui, a, b, c, ccw):
- if ccw:
- addTri(bui, a, b, c)
- else:
- addTri(bui, b, a, c)
-
-# Needs to be convex, but not necessaily planar
-# Assumed ccw, cut along the ac diagonal
-def addQuad(bui, a, b, c, d):
- addTri(bui, a, b, c)
- addTri(bui, c, d, a)
-
-def addQuadFlip(bui, a, b, c, d, ccw):
- if ccw:
- addTri(bui, a, b, c)
- addTri(bui, c, d, a)
- else:
- addTri(bui, a, c, b)
- addTri(bui, c, a, d)
-
-
-# Arbitrary polygon triangulation.
-# Doesn't assume convexity and doesn't check the "convex" flag in the file.
-# Works by the "cutting of ears" algorithm:
-# - Find an outer vertex with the smallest angle and no vertices inside its adjacent triangle
-# - Remove the triangle at that vertex
-# - Repeat until done
-# Vertex coordinates are supposed to be already in the mesh builder object
-def addFace(bui, indices, ccw):
- # Resolve indices to coordinates for faster math
- n = len(indices)
- verts = bui.getVertices()
- face = [Vector(verts[i, 0], verts[i, 1], verts[i, 2]) for i in indices]
-
- # Need a normal to the plane so that we can know which vertices form inner angles
- normal = findOuterNormal(face)
-
- if not normal: # Couldn't find an outer edge, non-planar polygon maybe?
- return
-
- # Find the vertex with the smallest inner angle and no points inside, cut off. Repeat until done
- m = len(face)
- vi = [i for i in range(m)] # We'll be using this to kick vertices from the face
- while m > 3:
- maxCos = EPSILON # We don't want to check anything on Pi angles
- iMin = 0 # max cos corresponds to min angle
- for i in range(m):
- inext = (i + 1) % m
- iprev = (i + m - 1) % m
- v = face[vi[i]]
- next = face[vi[inext]] - v
- prev = face[vi[iprev]] - v
- nextXprev = next.cross(prev)
- if nextXprev.dot(normal) > EPSILON: # If it's an inner angle
- cos = next.dot(prev) / (next.length() * prev.length())
- if cos > maxCos:
- # Check if there are vertices inside the triangle
- noPointsInside = True
- for j in range(m):
- if j != i and j != iprev and j != inext:
- vx = face[vi[j]] - v
- if pointInsideTriangle(vx, next, prev, nextXprev):
- noPointsInside = False
- break
-
- if noPointsInside:
- maxCos = cos
- iMin = i
-
- addTriFlip(bui, indices[vi[(iMin + m - 1) % m]], indices[vi[iMin]], indices[vi[(iMin + 1) % m]], ccw)
- vi.pop(iMin)
- m -= 1
- addTriFlip(bui, indices[vi[0]], indices[vi[1]], indices[vi[2]], ccw)
-
# Given a face as a sequence of vectors, returns a normal to the polygon place that forms a right triple
# with a vector along the polygon sequence and a vector backwards
@@ -758,21 +853,21 @@ def findOuterNormal(face):
edge = face[j] - face[i]
if edge.length() > EPSILON:
edge = edge.normalized()
- prevRejection = Vector()
- isOuter = True
+ prev_rejection = Vector()
+ is_outer = True
for k in range(n):
if k != i and k != j:
pt = face[k] - face[i]
pte = pt.dot(edge)
rejection = pt - edge*pte
- if rejection.dot(prevRejection) < -EPSILON: # points on both sides of the edge - not an outer one
- isOuter = False
+ if rejection.dot(prev_rejection) < -EPSILON: # points on both sides of the edge - not an outer one
+ is_outer = False
break
- elif rejection.length() > prevRejection.length(): # Pick a greater rejection for numeric stability
- prevRejection = rejection
+ elif rejection.length() > prev_rejection.length(): # Pick a greater rejection for numeric stability
+ prev_rejection = rejection
- if isOuter: # Found an outer edge, prevRejection is the rejection inside the face. Generate a normal.
- return edge.cross(prevRejection)
+ if is_outer: # Found an outer edge, prev_rejection is the rejection inside the face. Generate a normal.
+ return edge.cross(prev_rejection)
return False
@@ -780,9 +875,9 @@ def findOuterNormal(face):
# No error handling.
# For stability, taking the ration between the biggest coordinates would be better; none of that, either.
def ratio(a, b):
- if b.x > EPSILON:
+ if b.x > EPSILON or b.x < -EPSILON:
return a.x / b.x
- elif b.y > EPSILON:
+ elif b.y > EPSILON or b.y < -EPSILON:
return a.y / b.y
else:
return a.z / b.z
@@ -806,6 +901,3 @@ def toNumpyRotation(rot):
(x * x * t + c, x * y * t - z*s, x * z * t + y * s),
(x * y * t + z*s, y * y * t + c, y * z * t - x * s),
(x * z * t - y * s, y * z * t + x * s, z * z * t + c)))
-
-
- \ No newline at end of file