# Copyright (c) 2016 Ultimaker B.V. # Cura is released under the terms of the AGPLv3 or higher. from cura.Settings.ExtruderManager import ExtruderManager from UM.Settings.ContainerRegistry import ContainerRegistry from UM.i18n import i18nCatalog from UM.Scene.Platform import Platform from UM.Scene.Iterator.BreadthFirstIterator import BreadthFirstIterator from UM.Scene.SceneNode import SceneNode from UM.Application import Application from UM.Resources import Resources from UM.Mesh.MeshBuilder import MeshBuilder from UM.Math.Vector import Vector from UM.Math.Matrix import Matrix from UM.Math.Color import Color from UM.Math.AxisAlignedBox import AxisAlignedBox from UM.Math.Polygon import Polygon from UM.Message import Message from UM.Signal import Signal from PyQt5.QtCore import QTimer from UM.View.RenderBatch import RenderBatch from UM.View.GL.OpenGL import OpenGL catalog = i18nCatalog("cura") import numpy import math from typing import List # Setting for clearance around the prime PRIME_CLEARANCE = 6.5 ## Build volume is a special kind of node that is responsible for rendering the printable area & disallowed areas. class BuildVolume(SceneNode): raftThicknessChanged = Signal() def __init__(self, parent = None): super().__init__(parent) self._volume_outline_color = None self._x_axis_color = None self._y_axis_color = None self._z_axis_color = None self._disallowed_area_color = None self._error_area_color = None self._width = 0 self._height = 0 self._depth = 0 self._shape = "" self._shader = None self._origin_mesh = None self._origin_line_length = 20 self._origin_line_width = 0.5 self._grid_mesh = None self._grid_shader = None self._disallowed_areas = [] self._disallowed_area_mesh = None self._error_areas = [] self._error_mesh = None self.setCalculateBoundingBox(False) self._volume_aabb = None self._raft_thickness = 0.0 self._extra_z_clearance = 0.0 self._adhesion_type = None self._platform = Platform(self) self._global_container_stack = None Application.getInstance().globalContainerStackChanged.connect(self._onStackChanged) self._onStackChanged() self._engine_ready = False Application.getInstance().engineCreatedSignal.connect(self._onEngineCreated) self._has_errors = False Application.getInstance().getController().getScene().sceneChanged.connect(self._onSceneChanged) #Objects loaded at the moment. We are connected to the property changed events of these objects. self._scene_objects = set() self._change_timer = QTimer() self._change_timer.setInterval(100) self._change_timer.setSingleShot(True) self._change_timer.timeout.connect(self._onChangeTimerFinished) self._build_volume_message = Message(catalog.i18nc("@info:status", "The build volume height has been reduced due to the value of the" " \"Print Sequence\" setting to prevent the gantry from colliding" " with printed models.")) # Must be after setting _build_volume_message, apparently that is used in getMachineManager. # activeQualityChanged is always emitted after setActiveVariant, setActiveMaterial and setActiveQuality. # Therefore this works. Application.getInstance().getMachineManager().activeQualityChanged.connect(self._onStackChanged) # This should also ways work, and it is semantically more correct, # but it does not update the disallowed areas after material change Application.getInstance().getMachineManager().activeStackChanged.connect(self._onStackChanged) def _onSceneChanged(self, source): if self._global_container_stack: self._change_timer.start() def _onChangeTimerFinished(self): root = Application.getInstance().getController().getScene().getRoot() new_scene_objects = set(node for node in BreadthFirstIterator(root) if node.callDecoration("isSliceable")) if new_scene_objects != self._scene_objects: for node in new_scene_objects - self._scene_objects: #Nodes that were added to the scene. self._updateNodeListeners(node) node.decoratorsChanged.connect(self._updateNodeListeners) # Make sure that decoration changes afterwards also receive the same treatment for node in self._scene_objects - new_scene_objects: #Nodes that were removed from the scene. per_mesh_stack = node.callDecoration("getStack") if per_mesh_stack: per_mesh_stack.propertyChanged.disconnect(self._onSettingPropertyChanged) active_extruder_changed = node.callDecoration("getActiveExtruderChangedSignal") if active_extruder_changed is not None: node.callDecoration("getActiveExtruderChangedSignal").disconnect(self._updateDisallowedAreasAndRebuild) node.decoratorsChanged.disconnect(self._updateNodeListeners) self._scene_objects = new_scene_objects self._onSettingPropertyChanged("print_sequence", "value") # Create fake event, so right settings are triggered. ## Updates the listeners that listen for changes in per-mesh stacks. # # \param node The node for which the decorators changed. def _updateNodeListeners(self, node: SceneNode): per_mesh_stack = node.callDecoration("getStack") if per_mesh_stack: per_mesh_stack.propertyChanged.connect(self._onSettingPropertyChanged) active_extruder_changed = node.callDecoration("getActiveExtruderChangedSignal") if active_extruder_changed is not None: active_extruder_changed.connect(self._updateDisallowedAreasAndRebuild) self._updateDisallowedAreasAndRebuild() def setWidth(self, width): if width is not None: self._width = width def setHeight(self, height): if height is not None: self._height = height def setDepth(self, depth): if depth is not None: self._depth = depth def setShape(self, shape: str): if shape: self._shape = shape def getDisallowedAreas(self) -> List[Polygon]: return self._disallowed_areas def setDisallowedAreas(self, areas: List[Polygon]): self._disallowed_areas = areas def render(self, renderer): if not self.getMeshData(): return True if not self._shader: self._shader = OpenGL.getInstance().createShaderProgram(Resources.getPath(Resources.Shaders, "default.shader")) self._grid_shader = OpenGL.getInstance().createShaderProgram(Resources.getPath(Resources.Shaders, "grid.shader")) theme = Application.getInstance().getTheme() self._grid_shader.setUniformValue("u_gridColor0", Color(*theme.getColor("buildplate").getRgb())) self._grid_shader.setUniformValue("u_gridColor1", Color(*theme.getColor("buildplate_alt").getRgb())) renderer.queueNode(self, mode = RenderBatch.RenderMode.Lines) renderer.queueNode(self, mesh = self._origin_mesh) renderer.queueNode(self, mesh = self._grid_mesh, shader = self._grid_shader, backface_cull = True) if self._disallowed_area_mesh: renderer.queueNode(self, mesh = self._disallowed_area_mesh, shader = self._shader, transparent = True, backface_cull = True, sort = -9) if self._error_mesh: renderer.queueNode(self, mesh=self._error_mesh, shader=self._shader, transparent=True, backface_cull=True, sort=-8) return True ## For every sliceable node, update node._outside_buildarea # def updateNodeBoundaryCheck(self): root = Application.getInstance().getController().getScene().getRoot() nodes = list(BreadthFirstIterator(root)) group_nodes = [] build_volume_bounding_box = self.getBoundingBox() if build_volume_bounding_box: # It's over 9000! build_volume_bounding_box = build_volume_bounding_box.set(bottom=-9001) else: # No bounding box. This is triggered when running Cura from command line with a model for the first time # In that situation there is a model, but no machine (and therefore no build volume. return for node in nodes: # Need to check group nodes later if node.callDecoration("isGroup"): group_nodes.append(node) # Keep list of affected group_nodes if node.callDecoration("isSliceable") or node.callDecoration("isGroup"): node._outside_buildarea = False bbox = node.getBoundingBox() # Mark the node as outside the build volume if the bounding box test fails. if build_volume_bounding_box.intersectsBox(bbox) != AxisAlignedBox.IntersectionResult.FullIntersection: node._outside_buildarea = True continue convex_hull = node.callDecoration("getConvexHull") if convex_hull: if not convex_hull.isValid(): return # Check for collisions between disallowed areas and the object for area in self.getDisallowedAreas(): overlap = convex_hull.intersectsPolygon(area) if overlap is None: continue node._outside_buildarea = True continue # Group nodes should override the _outside_buildarea property of their children. for group_node in group_nodes: for child_node in group_node.getAllChildren(): child_node._outside_buildarea = group_node._outside_buildarea ## Recalculates the build volume & disallowed areas. def rebuild(self): if not self._width or not self._height or not self._depth: return if not Application.getInstance()._engine: return if not self._volume_outline_color: theme = Application.getInstance().getTheme() self._volume_outline_color = Color(*theme.getColor("volume_outline").getRgb()) self._x_axis_color = Color(*theme.getColor("x_axis").getRgb()) self._y_axis_color = Color(*theme.getColor("y_axis").getRgb()) self._z_axis_color = Color(*theme.getColor("z_axis").getRgb()) self._disallowed_area_color = Color(*theme.getColor("disallowed_area").getRgb()) self._error_area_color = Color(*theme.getColor("error_area").getRgb()) min_w = -self._width / 2 max_w = self._width / 2 min_h = 0.0 max_h = self._height min_d = -self._depth / 2 max_d = self._depth / 2 z_fight_distance = 0.2 # Distance between buildplate and disallowed area meshes to prevent z-fighting if self._shape != "elliptic": # Outline 'cube' of the build volume mb = MeshBuilder() mb.addLine(Vector(min_w, min_h, min_d), Vector(max_w, min_h, min_d), color = self._volume_outline_color) mb.addLine(Vector(min_w, min_h, min_d), Vector(min_w, max_h, min_d), color = self._volume_outline_color) mb.addLine(Vector(min_w, max_h, min_d), Vector(max_w, max_h, min_d), color = self._volume_outline_color) mb.addLine(Vector(max_w, min_h, min_d), Vector(max_w, max_h, min_d), color = self._volume_outline_color) mb.addLine(Vector(min_w, min_h, max_d), Vector(max_w, min_h, max_d), color = self._volume_outline_color) mb.addLine(Vector(min_w, min_h, max_d), Vector(min_w, max_h, max_d), color = self._volume_outline_color) mb.addLine(Vector(min_w, max_h, max_d), Vector(max_w, max_h, max_d), color = self._volume_outline_color) mb.addLine(Vector(max_w, min_h, max_d), Vector(max_w, max_h, max_d), color = self._volume_outline_color) mb.addLine(Vector(min_w, min_h, min_d), Vector(min_w, min_h, max_d), color = self._volume_outline_color) mb.addLine(Vector(max_w, min_h, min_d), Vector(max_w, min_h, max_d), color = self._volume_outline_color) mb.addLine(Vector(min_w, max_h, min_d), Vector(min_w, max_h, max_d), color = self._volume_outline_color) mb.addLine(Vector(max_w, max_h, min_d), Vector(max_w, max_h, max_d), color = self._volume_outline_color) self.setMeshData(mb.build()) # Build plate grid mesh mb = MeshBuilder() mb.addQuad( Vector(min_w, min_h - z_fight_distance, min_d), Vector(max_w, min_h - z_fight_distance, min_d), Vector(max_w, min_h - z_fight_distance, max_d), Vector(min_w, min_h - z_fight_distance, max_d) ) for n in range(0, 6): v = mb.getVertex(n) mb.setVertexUVCoordinates(n, v[0], v[2]) self._grid_mesh = mb.build() else: # Bottom and top 'ellipse' of the build volume aspect = 1.0 scale_matrix = Matrix() if self._width != 0: # Scale circular meshes by aspect ratio if width != height aspect = self._depth / self._width scale_matrix.compose(scale = Vector(1, 1, aspect)) mb = MeshBuilder() mb.addArc(max_w, Vector.Unit_Y, center = (0, min_h - z_fight_distance, 0), color = self._volume_outline_color) mb.addArc(max_w, Vector.Unit_Y, center = (0, max_h, 0), color = self._volume_outline_color) self.setMeshData(mb.build().getTransformed(scale_matrix)) # Build plate grid mesh mb = MeshBuilder() mb.addVertex(0, min_h - z_fight_distance, 0) mb.addArc(max_w, Vector.Unit_Y, center = Vector(0, min_h - z_fight_distance, 0)) sections = mb.getVertexCount() - 1 # Center point is not an arc section indices = [] for n in range(0, sections - 1): indices.append([0, n + 2, n + 1]) mb.addIndices(numpy.asarray(indices, dtype = numpy.int32)) mb.calculateNormals() for n in range(0, mb.getVertexCount()): v = mb.getVertex(n) mb.setVertexUVCoordinates(n, v[0], v[2] * aspect) self._grid_mesh = mb.build().getTransformed(scale_matrix) # Indication of the machine origin if self._global_container_stack.getProperty("machine_center_is_zero", "value"): origin = (Vector(min_w, min_h, min_d) + Vector(max_w, min_h, max_d)) / 2 else: origin = Vector(min_w, min_h, max_d) mb = MeshBuilder() mb.addCube( width = self._origin_line_length, height = self._origin_line_width, depth = self._origin_line_width, center = origin + Vector(self._origin_line_length / 2, 0, 0), color = self._x_axis_color ) mb.addCube( width = self._origin_line_width, height = self._origin_line_length, depth = self._origin_line_width, center = origin + Vector(0, self._origin_line_length / 2, 0), color = self._y_axis_color ) mb.addCube( width = self._origin_line_width, height = self._origin_line_width, depth = self._origin_line_length, center = origin - Vector(0, 0, self._origin_line_length / 2), color = self._z_axis_color ) self._origin_mesh = mb.build() disallowed_area_height = 0.1 disallowed_area_size = 0 if self._disallowed_areas: mb = MeshBuilder() color = self._disallowed_area_color for polygon in self._disallowed_areas: points = polygon.getPoints() if len(points) == 0: continue first = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height, self._clamp(points[0][1], min_d, max_d)) previous_point = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height, self._clamp(points[0][1], min_d, max_d)) for point in points: new_point = Vector(self._clamp(point[0], min_w, max_w), disallowed_area_height, self._clamp(point[1], min_d, max_d)) mb.addFace(first, previous_point, new_point, color = color) previous_point = new_point # Find the largest disallowed area to exclude it from the maximum scale bounds. # This is a very nasty hack. This pretty much only works for UM machines. # This disallowed area_size needs a -lot- of rework at some point in the future: TODO if numpy.min(points[:, 1]) >= 0: # This filters out all areas that have points to the left of the centre. This is done to filter the skirt area. size = abs(numpy.max(points[:, 1]) - numpy.min(points[:, 1])) else: size = 0 disallowed_area_size = max(size, disallowed_area_size) self._disallowed_area_mesh = mb.build() else: self._disallowed_area_mesh = None if self._error_areas: mb = MeshBuilder() for error_area in self._error_areas: color = self._error_area_color points = error_area.getPoints() first = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height, self._clamp(points[0][1], min_d, max_d)) previous_point = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height, self._clamp(points[0][1], min_d, max_d)) for point in points: new_point = Vector(self._clamp(point[0], min_w, max_w), disallowed_area_height, self._clamp(point[1], min_d, max_d)) mb.addFace(first, previous_point, new_point, color=color) previous_point = new_point self._error_mesh = mb.build() else: self._error_mesh = None self._volume_aabb = AxisAlignedBox( minimum = Vector(min_w, min_h - 1.0, min_d), maximum = Vector(max_w, max_h - self._raft_thickness - self._extra_z_clearance, max_d)) bed_adhesion_size = self._getEdgeDisallowedSize() # As this works better for UM machines, we only add the disallowed_area_size for the z direction. # This is probably wrong in all other cases. TODO! # The +1 and -1 is added as there is always a bit of extra room required to work properly. scale_to_max_bounds = AxisAlignedBox( minimum = Vector(min_w + bed_adhesion_size + 1, min_h, min_d + disallowed_area_size - bed_adhesion_size + 1), maximum = Vector(max_w - bed_adhesion_size - 1, max_h - self._raft_thickness - self._extra_z_clearance, max_d - disallowed_area_size + bed_adhesion_size - 1) ) Application.getInstance().getController().getScene()._maximum_bounds = scale_to_max_bounds self.updateNodeBoundaryCheck() def getBoundingBox(self) -> AxisAlignedBox: return self._volume_aabb def getRaftThickness(self) -> float: return self._raft_thickness def _updateRaftThickness(self): old_raft_thickness = self._raft_thickness self._adhesion_type = self._global_container_stack.getProperty("adhesion_type", "value") self._raft_thickness = 0.0 if self._adhesion_type == "raft": self._raft_thickness = ( self._global_container_stack.getProperty("raft_base_thickness", "value") + self._global_container_stack.getProperty("raft_interface_thickness", "value") + self._global_container_stack.getProperty("raft_surface_layers", "value") * self._global_container_stack.getProperty("raft_surface_thickness", "value") + self._global_container_stack.getProperty("raft_airgap", "value")) # Rounding errors do not matter, we check if raft_thickness has changed at all if old_raft_thickness != self._raft_thickness: self.setPosition(Vector(0, -self._raft_thickness, 0), SceneNode.TransformSpace.World) self.raftThicknessChanged.emit() def _updateExtraZClearance(self) -> None: extra_z = 0.0 extruders = ExtruderManager.getInstance().getMachineExtruders(self._global_container_stack.getId()) use_extruders = False for extruder in extruders: if extruder.getProperty("retraction_hop_enabled", "value"): retraction_hop = extruder.getProperty("retraction_hop", "value") if extra_z is None or retraction_hop > extra_z: extra_z = retraction_hop use_extruders = True if not use_extruders: # If no extruders, take global value. if self._global_container_stack.getProperty("retraction_hop_enabled", "value"): extra_z = self._global_container_stack.getProperty("retraction_hop", "value") if extra_z != self._extra_z_clearance: self._extra_z_clearance = extra_z ## Update the build volume visualization def _onStackChanged(self): if self._global_container_stack: self._global_container_stack.propertyChanged.disconnect(self._onSettingPropertyChanged) extruders = ExtruderManager.getInstance().getMachineExtruders(self._global_container_stack.getId()) for extruder in extruders: extruder.propertyChanged.disconnect(self._onSettingPropertyChanged) self._global_container_stack = Application.getInstance().getGlobalContainerStack() if self._global_container_stack: self._global_container_stack.propertyChanged.connect(self._onSettingPropertyChanged) extruders = ExtruderManager.getInstance().getMachineExtruders(self._global_container_stack.getId()) for extruder in extruders: extruder.propertyChanged.connect(self._onSettingPropertyChanged) self._width = self._global_container_stack.getProperty("machine_width", "value") machine_height = self._global_container_stack.getProperty("machine_height", "value") if self._global_container_stack.getProperty("print_sequence", "value") == "one_at_a_time" and len(self._scene_objects) > 1: self._height = min(self._global_container_stack.getProperty("gantry_height", "value"), machine_height) if self._height < machine_height: self._build_volume_message.show() else: self._build_volume_message.hide() else: self._height = self._global_container_stack.getProperty("machine_height", "value") self._build_volume_message.hide() self._depth = self._global_container_stack.getProperty("machine_depth", "value") self._shape = self._global_container_stack.getProperty("machine_shape", "value") self._updateDisallowedAreas() self._updateRaftThickness() if self._engine_ready: self.rebuild() def _onEngineCreated(self): self._engine_ready = True self.rebuild() def _onSettingPropertyChanged(self, setting_key: str, property_name: str): if property_name != "value": return rebuild_me = False if setting_key == "print_sequence": machine_height = self._global_container_stack.getProperty("machine_height", "value") if Application.getInstance().getGlobalContainerStack().getProperty("print_sequence", "value") == "one_at_a_time" and len(self._scene_objects) > 1: self._height = min(self._global_container_stack.getProperty("gantry_height", "value"), machine_height) if self._height < machine_height: self._build_volume_message.show() else: self._build_volume_message.hide() else: self._height = self._global_container_stack.getProperty("machine_height", "value") self._build_volume_message.hide() rebuild_me = True if setting_key in self._skirt_settings or setting_key in self._prime_settings or setting_key in self._tower_settings or setting_key == "print_sequence" or setting_key in self._ooze_shield_settings or setting_key in self._distance_settings or setting_key in self._extruder_settings: self._updateDisallowedAreas() rebuild_me = True if setting_key in self._raft_settings: self._updateRaftThickness() rebuild_me = True if setting_key in self._extra_z_settings: self._updateExtraZClearance() rebuild_me = True if rebuild_me: self.rebuild() def hasErrors(self) -> bool: return self._has_errors ## Calls _updateDisallowedAreas and makes sure the changes appear in the # scene. # # This is required for a signal to trigger the update in one go. The # ``_updateDisallowedAreas`` method itself shouldn't call ``rebuild``, # since there may be other changes before it needs to be rebuilt, which # would hit performance. def _updateDisallowedAreasAndRebuild(self): self._updateDisallowedAreas() self.rebuild() def _updateDisallowedAreas(self): if not self._global_container_stack: return self._error_areas = [] extruder_manager = ExtruderManager.getInstance() used_extruders = extruder_manager.getUsedExtruderStacks() disallowed_border_size = self._getEdgeDisallowedSize() if not used_extruders: # If no extruder is used, assume that the active extruder is used (else nothing is drawn) if extruder_manager.getActiveExtruderStack(): used_extruders = [extruder_manager.getActiveExtruderStack()] else: used_extruders = [self._global_container_stack] result_areas = self._computeDisallowedAreasStatic(disallowed_border_size, used_extruders) #Normal machine disallowed areas can always be added. prime_areas = self._computeDisallowedAreasPrime(disallowed_border_size, used_extruders) prime_disallowed_areas = self._computeDisallowedAreasStatic(0, used_extruders) #Where the priming is not allowed to happen. This is not added to the result, just for collision checking. #Check if prime positions intersect with disallowed areas. for extruder in used_extruders: extruder_id = extruder.getId() collision = False for prime_polygon in prime_areas[extruder_id]: for disallowed_polygon in prime_disallowed_areas[extruder_id]: if prime_polygon.intersectsPolygon(disallowed_polygon) is not None: collision = True break if collision: break #Also check other prime positions (without additional offset). for other_extruder_id in prime_areas: if extruder_id == other_extruder_id: #It is allowed to collide with itself. continue for other_prime_polygon in prime_areas[other_extruder_id]: if prime_polygon.intersectsPolygon(other_prime_polygon): collision = True break if collision: break if collision: break result_areas[extruder_id].extend(prime_areas[extruder_id]) nozzle_disallowed_areas = extruder.getProperty("nozzle_disallowed_areas", "value") for area in nozzle_disallowed_areas: polygon = Polygon(numpy.array(area, numpy.float32)) polygon = polygon.getMinkowskiHull(Polygon.approximatedCircle(disallowed_border_size)) result_areas[extruder_id].append(polygon) #Don't perform the offset on these. # Add prime tower location as disallowed area. prime_tower_collision = False prime_tower_areas = self._computeDisallowedAreasPrinted(used_extruders) for extruder_id in prime_tower_areas: for prime_tower_area in prime_tower_areas[extruder_id]: for area in result_areas[extruder_id]: if prime_tower_area.intersectsPolygon(area) is not None: prime_tower_collision = True break if prime_tower_collision: #Already found a collision. break if not prime_tower_collision: result_areas[extruder_id].extend(prime_tower_areas[extruder_id]) else: self._error_areas.extend(prime_tower_areas[extruder_id]) self._has_errors = len(self._error_areas) > 0 self._disallowed_areas = [] for extruder_id in result_areas: self._disallowed_areas.extend(result_areas[extruder_id]) ## Computes the disallowed areas for objects that are printed with print # features. # # This means that the brim, travel avoidance and such will be applied to # these features. # # \return A dictionary with for each used extruder ID the disallowed areas # where that extruder may not print. def _computeDisallowedAreasPrinted(self, used_extruders): result = {} for extruder in used_extruders: result[extruder.getId()] = [] #Currently, the only normally printed object is the prime tower. if ExtruderManager.getInstance().getResolveOrValue("prime_tower_enable") == True: prime_tower_size = self._global_container_stack.getProperty("prime_tower_size", "value") machine_width = self._global_container_stack.getProperty("machine_width", "value") machine_depth = self._global_container_stack.getProperty("machine_depth", "value") prime_tower_x = self._global_container_stack.getProperty("prime_tower_position_x", "value") prime_tower_y = - self._global_container_stack.getProperty("prime_tower_position_y", "value") if not self._global_container_stack.getProperty("machine_center_is_zero", "value"): prime_tower_x = prime_tower_x - machine_width / 2 #Offset by half machine_width and _depth to put the origin in the front-left. prime_tower_y = prime_tower_y + machine_depth / 2 prime_tower_area = Polygon([ [prime_tower_x - prime_tower_size, prime_tower_y - prime_tower_size], [prime_tower_x, prime_tower_y - prime_tower_size], [prime_tower_x, prime_tower_y], [prime_tower_x - prime_tower_size, prime_tower_y], ]) prime_tower_area = prime_tower_area.getMinkowskiHull(Polygon.approximatedCircle(0)) for extruder in used_extruders: result[extruder.getId()].append(prime_tower_area) #The prime tower location is the same for each extruder, regardless of offset. return result ## Computes the disallowed areas for the prime locations. # # These are special because they are not subject to things like brim or # travel avoidance. They do get a dilute with the border size though # because they may not intersect with brims and such of other objects. # # \param border_size The size with which to offset the disallowed areas # due to skirt, brim, travel avoid distance, etc. # \param used_extruders The extruder stacks to generate disallowed areas # for. # \return A dictionary with for each used extruder ID the prime areas. def _computeDisallowedAreasPrime(self, border_size, used_extruders): result = {} machine_width = self._global_container_stack.getProperty("machine_width", "value") machine_depth = self._global_container_stack.getProperty("machine_depth", "value") for extruder in used_extruders: prime_x = extruder.getProperty("extruder_prime_pos_x", "value") prime_y = - extruder.getProperty("extruder_prime_pos_y", "value") #Ignore extruder prime position if it is not set if prime_x == 0 and prime_y == 0: result[extruder.getId()] = [] continue if not self._global_container_stack.getProperty("machine_center_is_zero", "value"): prime_x = prime_x - machine_width / 2 #Offset by half machine_width and _depth to put the origin in the front-left. prime_y = prime_y + machine_depth / 2 prime_polygon = Polygon.approximatedCircle(PRIME_CLEARANCE) prime_polygon = prime_polygon.getMinkowskiHull(Polygon.approximatedCircle(border_size)) prime_polygon = prime_polygon.translate(prime_x, prime_y) result[extruder.getId()] = [prime_polygon] return result ## Computes the disallowed areas that are statically placed in the machine. # # It computes different disallowed areas depending on the offset of the # extruder. The resulting dictionary will therefore have an entry for each # extruder that is used. # # \param border_size The size with which to offset the disallowed areas # due to skirt, brim, travel avoid distance, etc. # \param used_extruders The extruder stacks to generate disallowed areas # for. # \return A dictionary with for each used extruder ID the disallowed areas # where that extruder may not print. def _computeDisallowedAreasStatic(self, border_size, used_extruders): #Convert disallowed areas to polygons and dilate them. machine_disallowed_polygons = [] for area in self._global_container_stack.getProperty("machine_disallowed_areas", "value"): polygon = Polygon(numpy.array(area, numpy.float32)) polygon = polygon.getMinkowskiHull(Polygon.approximatedCircle(border_size)) machine_disallowed_polygons.append(polygon) result = {} for extruder in used_extruders: extruder_id = extruder.getId() offset_x = extruder.getProperty("machine_nozzle_offset_x", "value") if offset_x is None: offset_x = 0 offset_y = extruder.getProperty("machine_nozzle_offset_y", "value") if offset_y is None: offset_y = 0 result[extruder_id] = [] for polygon in machine_disallowed_polygons: result[extruder_id].append(polygon.translate(offset_x, offset_y)) #Compensate for the nozzle offset of this extruder. #Add the border around the edge of the build volume. left_unreachable_border = 0 right_unreachable_border = 0 top_unreachable_border = 0 bottom_unreachable_border = 0 #The build volume is defined as the union of the area that all extruders can reach, so we need to know the relative offset to all extruders. for other_extruder in ExtruderManager.getInstance().getActiveExtruderStacks(): other_offset_x = other_extruder.getProperty("machine_nozzle_offset_x", "value") other_offset_y = other_extruder.getProperty("machine_nozzle_offset_y", "value") left_unreachable_border = min(left_unreachable_border, other_offset_x - offset_x) right_unreachable_border = max(right_unreachable_border, other_offset_x - offset_x) top_unreachable_border = min(top_unreachable_border, other_offset_y - offset_y) bottom_unreachable_border = max(bottom_unreachable_border, other_offset_y - offset_y) half_machine_width = self._global_container_stack.getProperty("machine_width", "value") / 2 half_machine_depth = self._global_container_stack.getProperty("machine_depth", "value") / 2 if self._shape != "elliptic": if border_size - left_unreachable_border > 0: result[extruder_id].append(Polygon(numpy.array([ [-half_machine_width, -half_machine_depth], [-half_machine_width, half_machine_depth], [-half_machine_width + border_size - left_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border], [-half_machine_width + border_size - left_unreachable_border, -half_machine_depth + border_size - top_unreachable_border] ], numpy.float32))) if border_size + right_unreachable_border > 0: result[extruder_id].append(Polygon(numpy.array([ [half_machine_width, half_machine_depth], [half_machine_width, -half_machine_depth], [half_machine_width - border_size - right_unreachable_border, -half_machine_depth + border_size - top_unreachable_border], [half_machine_width - border_size - right_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border] ], numpy.float32))) if border_size + bottom_unreachable_border > 0: result[extruder_id].append(Polygon(numpy.array([ [-half_machine_width, half_machine_depth], [half_machine_width, half_machine_depth], [half_machine_width - border_size - right_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border], [-half_machine_width + border_size - left_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border] ], numpy.float32))) if border_size - top_unreachable_border > 0: result[extruder_id].append(Polygon(numpy.array([ [half_machine_width, -half_machine_depth], [-half_machine_width, -half_machine_depth], [-half_machine_width + border_size - left_unreachable_border, -half_machine_depth + border_size - top_unreachable_border], [half_machine_width - border_size - right_unreachable_border, -half_machine_depth + border_size - top_unreachable_border] ], numpy.float32))) else: sections = 32 arc_vertex = [0, half_machine_depth - border_size] for i in range(0, sections): quadrant = math.floor(4 * i / sections) vertices = [] if quadrant == 0: vertices.append([-half_machine_width, half_machine_depth]) elif quadrant == 1: vertices.append([-half_machine_width, -half_machine_depth]) elif quadrant == 2: vertices.append([half_machine_width, -half_machine_depth]) elif quadrant == 3: vertices.append([half_machine_width, half_machine_depth]) vertices.append(arc_vertex) angle = 2 * math.pi * (i + 1) / sections arc_vertex = [-(half_machine_width - border_size) * math.sin(angle), (half_machine_depth - border_size) * math.cos(angle)] vertices.append(arc_vertex) result[extruder_id].append(Polygon(numpy.array(vertices, numpy.float32))) if border_size > 0: result[extruder_id].append(Polygon(numpy.array([ [-half_machine_width, -half_machine_depth], [-half_machine_width, half_machine_depth], [-half_machine_width + border_size, 0] ], numpy.float32))) result[extruder_id].append(Polygon(numpy.array([ [-half_machine_width, half_machine_depth], [ half_machine_width, half_machine_depth], [ 0, half_machine_depth - border_size] ], numpy.float32))) result[extruder_id].append(Polygon(numpy.array([ [ half_machine_width, half_machine_depth], [ half_machine_width, -half_machine_depth], [ half_machine_width - border_size, 0] ], numpy.float32))) result[extruder_id].append(Polygon(numpy.array([ [ half_machine_width,-half_machine_depth], [-half_machine_width,-half_machine_depth], [ 0, -half_machine_depth + border_size] ], numpy.float32))) return result ## Private convenience function to get a setting from the adhesion # extruder. # # \param setting_key The key of the setting to get. # \param property The property to get from the setting. # \return The property of the specified setting in the adhesion extruder. def _getSettingFromAdhesionExtruder(self, setting_key, property = "value"): return self._getSettingFromExtruder(setting_key, "adhesion_extruder_nr", property) ## Private convenience function to get a setting from every extruder. # # For single extrusion machines, this gets the setting from the global # stack. # # \return A sequence of setting values, one for each extruder. def _getSettingFromAllExtruders(self, setting_key, property = "value"): all_values = ExtruderManager.getInstance().getAllExtruderSettings(setting_key, property) all_types = ExtruderManager.getInstance().getAllExtruderSettings(setting_key, "type") for i in range(len(all_values)): if not all_values[i] and (all_types[i] == "int" or all_types[i] == "float"): all_values[i] = 0 return all_values ## Private convenience function to get a setting from the support infill # extruder. # # \param setting_key The key of the setting to get. # \param property The property to get from the setting. # \return The property of the specified setting in the support infill # extruder. def _getSettingFromSupportInfillExtruder(self, setting_key, property = "value"): return self._getSettingFromExtruder(setting_key, "support_infill_extruder_nr", property) ## Helper function to get a setting from an extruder specified in another # setting. # # \param setting_key The key of the setting to get. # \param extruder_setting_key The key of the setting that specifies from # which extruder to get the setting, if there are multiple extruders. # \param property The property to get from the setting. # \return The property of the specified setting in the specified extruder. def _getSettingFromExtruder(self, setting_key, extruder_setting_key, property = "value"): multi_extrusion = self._global_container_stack.getProperty("machine_extruder_count", "value") > 1 if not multi_extrusion: stack = self._global_container_stack else: extruder_index = self._global_container_stack.getProperty(extruder_setting_key, "value") if extruder_index == "-1": # If extruder index is -1 use global instead stack = self._global_container_stack else: extruder_stack_id = ExtruderManager.getInstance().extruderIds[str(extruder_index)] stack = ContainerRegistry.getInstance().findContainerStacks(id = extruder_stack_id)[0] value = stack.getProperty(setting_key, property) setting_type = stack.getProperty(setting_key, "type") if not value and (setting_type == "int" or setting_type == "float"): return 0 return value ## Convenience function to calculate the disallowed radius around the edge. # # This disallowed radius is to allow for space around the models that is # not part of the collision radius, such as bed adhesion (skirt/brim/raft) # and travel avoid distance. def _getEdgeDisallowedSize(self): if not self._global_container_stack: return 0 container_stack = self._global_container_stack # If we are printing one at a time, we need to add the bed adhesion size to the disallowed areas of the objects if container_stack.getProperty("print_sequence", "value") == "one_at_a_time": return 0.1 # Return a very small value, so we do draw disallowed area's near the edges. adhesion_type = container_stack.getProperty("adhesion_type", "value") if adhesion_type == "skirt": skirt_distance = self._getSettingFromAdhesionExtruder("skirt_gap") skirt_line_count = self._getSettingFromAdhesionExtruder("skirt_line_count") bed_adhesion_size = skirt_distance + (skirt_line_count * self._getSettingFromAdhesionExtruder("skirt_brim_line_width")) if len(ExtruderManager.getInstance().getUsedExtruderStacks()) > 1: adhesion_extruder_nr = int(self._global_container_stack.getProperty("adhesion_extruder_nr", "value")) extruder_values = ExtruderManager.getInstance().getAllExtruderValues("skirt_brim_line_width") del extruder_values[adhesion_extruder_nr] # Remove the value of the adhesion extruder nr. for value in extruder_values: bed_adhesion_size += value elif adhesion_type == "brim": bed_adhesion_size = self._getSettingFromAdhesionExtruder("brim_line_count") * self._getSettingFromAdhesionExtruder("skirt_brim_line_width") if self._global_container_stack.getProperty("machine_extruder_count", "value") > 1: adhesion_extruder_nr = int(self._global_container_stack.getProperty("adhesion_extruder_nr", "value")) extruder_values = ExtruderManager.getInstance().getAllExtruderValues("skirt_brim_line_width") del extruder_values[adhesion_extruder_nr] # Remove the value of the adhesion extruder nr. for value in extruder_values: bed_adhesion_size += value elif adhesion_type == "raft": bed_adhesion_size = self._getSettingFromAdhesionExtruder("raft_margin") elif adhesion_type == "none": bed_adhesion_size = 0 else: raise Exception("Unknown bed adhesion type. Did you forget to update the build volume calculations for your new bed adhesion type?") support_expansion = 0 if self._getSettingFromSupportInfillExtruder("support_offset") and self._global_container_stack.getProperty("support_enable", "value"): support_expansion += self._getSettingFromSupportInfillExtruder("support_offset") farthest_shield_distance = 0 if container_stack.getProperty("draft_shield_enabled", "value"): farthest_shield_distance = max(farthest_shield_distance, container_stack.getProperty("draft_shield_dist", "value")) if container_stack.getProperty("ooze_shield_enabled", "value"): farthest_shield_distance = max(farthest_shield_distance, container_stack.getProperty("ooze_shield_dist", "value")) move_from_wall_radius = 0 # Moves that start from outer wall. move_from_wall_radius = max(move_from_wall_radius, max(self._getSettingFromAllExtruders("infill_wipe_dist"))) used_extruders = ExtruderManager.getInstance().getUsedExtruderStacks() avoid_enabled_per_extruder = [stack.getProperty("travel_avoid_other_parts","value") for stack in used_extruders] travel_avoid_distance_per_extruder = [stack.getProperty("travel_avoid_distance", "value") for stack in used_extruders] for avoid_other_parts_enabled, avoid_distance in zip(avoid_enabled_per_extruder, travel_avoid_distance_per_extruder): #For each extruder (or just global). if avoid_other_parts_enabled: move_from_wall_radius = max(move_from_wall_radius, avoid_distance) # Now combine our different pieces of data to get the final border size. # Support expansion is added to the bed adhesion, since the bed adhesion goes around support. # Support expansion is added to farthest shield distance, since the shields go around support. border_size = max(move_from_wall_radius, support_expansion + farthest_shield_distance, support_expansion + bed_adhesion_size) return border_size def _clamp(self, value, min_value, max_value): return max(min(value, max_value), min_value) _skirt_settings = ["adhesion_type", "skirt_gap", "skirt_line_count", "skirt_brim_line_width", "brim_width", "brim_line_count", "raft_margin", "draft_shield_enabled", "draft_shield_dist"] _raft_settings = ["adhesion_type", "raft_base_thickness", "raft_interface_thickness", "raft_surface_layers", "raft_surface_thickness", "raft_airgap"] _extra_z_settings = ["retraction_hop_enabled", "retraction_hop"] _prime_settings = ["extruder_prime_pos_x", "extruder_prime_pos_y", "extruder_prime_pos_z"] _tower_settings = ["prime_tower_enable", "prime_tower_size", "prime_tower_position_x", "prime_tower_position_y"] _ooze_shield_settings = ["ooze_shield_enabled", "ooze_shield_dist"] _distance_settings = ["infill_wipe_dist", "travel_avoid_distance", "support_offset", "support_enable", "travel_avoid_other_parts"] _extruder_settings = ["support_enable", "support_bottom_enable", "support_roof_enable", "support_infill_extruder_nr", "support_extruder_nr_layer_0", "support_bottom_extruder_nr", "support_roof_extruder_nr", "brim_line_count", "adhesion_extruder_nr", "adhesion_type"] #Settings that can affect which extruders are used.