Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Arrange.py « cura - github.com/Ultimaker/Cura.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0d1f2e0c06133ae7541e981e06f94d23084efe90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from UM.Scene.Iterator.DepthFirstIterator import DepthFirstIterator
from UM.Logger import Logger
from UM.Math.Vector import Vector
from cura.ShapeArray import ShapeArray
from cura import ZOffsetDecorator

from collections import namedtuple

import numpy
import copy


##  Return object for  bestSpot
LocationSuggestion = namedtuple("LocationSuggestion", ["x", "y", "penalty_points", "priority"])


##  The Arrange classed is used together with ShapeArray. Use it to find
#   good locations for objects that you try to put on a build place.
#   Different priority schemes can be defined so it alters the behavior while using
#   the same logic.
class Arrange:
    build_volume = None

    def __init__(self, x, y, offset_x, offset_y, scale= 1.0):
        self.shape = (y, x)
        self._priority = numpy.zeros((x, y), dtype=numpy.int32)
        self._priority_unique_values = []
        self._occupied = numpy.zeros((x, y), dtype=numpy.int32)
        self._scale = scale  # convert input coordinates to arrange coordinates
        self._offset_x = offset_x
        self._offset_y = offset_y
        self._last_priority = 0

    ##  Helper to create an Arranger instance
    #
    #   Either fill in scene_root and create will find all sliceable nodes by itself,
    #   or use fixed_nodes to provide the nodes yourself.
    #   \param scene_root   Root for finding all scene nodes
    #   \param fixed_nodes  Scene nodes to be placed
    @classmethod
    def create(cls, scene_root = None, fixed_nodes = None, scale = 0.5):
        arranger = Arrange(220, 220, 110, 110, scale = scale)
        arranger.centerFirst()

        if fixed_nodes is None:
            fixed_nodes = []
            for node_ in DepthFirstIterator(scene_root):
                # Only count sliceable objects
                if node_.callDecoration("isSliceable"):
                    fixed_nodes.append(node_)

        # Place all objects fixed nodes
        for fixed_node in fixed_nodes:
            vertices = fixed_node.callDecoration("getConvexHull")
            points = copy.deepcopy(vertices._points)
            shape_arr = ShapeArray.fromPolygon(points, scale = scale)
            arranger.place(0, 0, shape_arr)

        # If a build volume was set, add the disallowed areas
        if Arrange.build_volume:
            disallowed_areas = Arrange.build_volume.getDisallowedAreas()
            for area in disallowed_areas:
                points = copy.deepcopy(area._points)
                shape_arr = ShapeArray.fromPolygon(points, scale = scale)
                arranger.place(0, 0, shape_arr)
        return arranger

    ##  Find placement for a node (using offset shape) and place it (using hull shape)
    #   return the nodes that should be placed
    #   \param node
    #   \param offset_shape_arr ShapeArray with offset, used to find location
    #   \param hull_shape_arr ShapeArray without offset, for placing the shape
    def findNodePlacement(self, node, offset_shape_arr, hull_shape_arr, step = 1):
        new_node = copy.deepcopy(node)
        best_spot = self.bestSpot(
            offset_shape_arr, start_prio = self._last_priority, step = step)
        x, y = best_spot.x, best_spot.y

        # Save the last priority.
        self._last_priority = best_spot.priority

        # Ensure that the object is above the build platform
        new_node.removeDecorator(ZOffsetDecorator.ZOffsetDecorator)
        if new_node.getBoundingBox():
            center_y = new_node.getWorldPosition().y - new_node.getBoundingBox().bottom
        else:
            center_y = 0

        if x is not None:  # We could find a place
            new_node.setPosition(Vector(x, center_y, y))
            found_spot = True
            self.place(x, y, hull_shape_arr)  # place the object in arranger
        else:
            Logger.log("d", "Could not find spot!"),
            found_spot = False
            new_node.setPosition(Vector(200, center_y, 100))
        return new_node, found_spot

    ##  Fill priority, center is best. Lower value is better
    #   This is a strategy for the arranger.
    def centerFirst(self):
        # Square distance: creates a more round shape
        self._priority = numpy.fromfunction(
            lambda i, j: (self._offset_x - i) ** 2 + (self._offset_y - j) ** 2, self.shape, dtype=numpy.int32)
        self._priority_unique_values = numpy.unique(self._priority)
        self._priority_unique_values.sort()

    ##  Fill priority, back is best. Lower value is better
    #   This is a strategy for the arranger.
    def backFirst(self):
        self._priority = numpy.fromfunction(
            lambda i, j: 10 * j + abs(self._offset_x - i), self.shape, dtype=numpy.int32)
        self._priority_unique_values = numpy.unique(self._priority)
        self._priority_unique_values.sort()

    ##  Return the amount of "penalty points" for polygon, which is the sum of priority
    #   None if occupied
    #   \param x x-coordinate to check shape
    #   \param y y-coordinate
    #   \param shape_arr the ShapeArray object to place
    def checkShape(self, x, y, shape_arr):
        x = int(self._scale * x)
        y = int(self._scale * y)
        offset_x = x + self._offset_x + shape_arr.offset_x
        offset_y = y + self._offset_y + shape_arr.offset_y
        occupied_slice = self._occupied[
            offset_y:offset_y + shape_arr.arr.shape[0],
            offset_x:offset_x + shape_arr.arr.shape[1]]
        try:
            if numpy.any(occupied_slice[numpy.where(shape_arr.arr == 1)]):
                return None
        except IndexError:  # out of bounds if you try to place an object outside
            return None
        prio_slice = self._priority[
            offset_y:offset_y + shape_arr.arr.shape[0],
            offset_x:offset_x + shape_arr.arr.shape[1]]
        return numpy.sum(prio_slice[numpy.where(shape_arr.arr == 1)])

    ##  Find "best" spot for ShapeArray
    #   Return namedtuple with properties x, y, penalty_points, priority
    #   \param shape_arr ShapeArray
    #   \param start_prio Start with this priority value (and skip the ones before)
    #   \param step Slicing value, higher = more skips = faster but less accurate
    def bestSpot(self, shape_arr, start_prio = 0, step = 1):
        start_idx_list = numpy.where(self._priority_unique_values == start_prio)
        if start_idx_list:
            start_idx = start_idx_list[0][0]
        else:
            start_idx = 0
        for priority in self._priority_unique_values[start_idx::step]:
            tryout_idx = numpy.where(self._priority == priority)
            for idx in range(len(tryout_idx[0])):
                x = tryout_idx[0][idx]
                y = tryout_idx[1][idx]
                projected_x = x - self._offset_x
                projected_y = y - self._offset_y

                # array to "world" coordinates
                penalty_points = self.checkShape(projected_x, projected_y, shape_arr)
                if penalty_points is not None:
                    return LocationSuggestion(x = projected_x, y = projected_y, penalty_points = penalty_points, priority = priority)
        return LocationSuggestion(x = None, y = None, penalty_points = None, priority = priority)  # No suitable location found :-(

    ##  Place the object.
    #   Marks the locations in self._occupied and self._priority
    #   \param x x-coordinate
    #   \param y y-coordinate
    #   \param shape_arr ShapeArray object
    def place(self, x, y, shape_arr):
        x = int(self._scale * x)
        y = int(self._scale * y)
        offset_x = x + self._offset_x + shape_arr.offset_x
        offset_y = y + self._offset_y + shape_arr.offset_y
        shape_y, shape_x = self._occupied.shape

        min_x = min(max(offset_x, 0), shape_x - 1)
        min_y = min(max(offset_y, 0), shape_y - 1)
        max_x = min(max(offset_x + shape_arr.arr.shape[1], 0), shape_x - 1)
        max_y = min(max(offset_y + shape_arr.arr.shape[0], 0), shape_y - 1)
        occupied_slice = self._occupied[min_y:max_y, min_x:max_x]
        # we use a slice of shape because it can be out of bounds
        occupied_slice[numpy.where(shape_arr.arr[
            min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 1

        # Set priority to low (= high number), so it won't get picked at trying out.
        prio_slice = self._priority[min_y:max_y, min_x:max_x]
        prio_slice[numpy.where(shape_arr.arr[
            min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 999