Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BuildVolume.py « cura - github.com/Ultimaker/Cura.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 203c00b44553908f5d6f78267dd1854a1877e49b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
# Copyright (c) 2016 Ultimaker B.V.
# Cura is released under the terms of the AGPLv3 or higher.

from cura.Settings.ExtruderManager import ExtruderManager
from UM.Settings.ContainerRegistry import ContainerRegistry
from UM.i18n import i18nCatalog
from UM.Scene.Platform import Platform
from UM.Scene.Iterator.BreadthFirstIterator import BreadthFirstIterator
from UM.Scene.SceneNode import SceneNode
from UM.Application import Application
from UM.Resources import Resources
from UM.Mesh.MeshBuilder import MeshBuilder
from UM.Math.Vector import Vector
from UM.Math.Matrix import Matrix
from UM.Math.Color import Color
from UM.Math.AxisAlignedBox import AxisAlignedBox
from UM.Math.Polygon import Polygon
from UM.Message import Message
from UM.Signal import Signal
from PyQt5.QtCore import QTimer
from UM.View.RenderBatch import RenderBatch
from UM.View.GL.OpenGL import OpenGL
catalog = i18nCatalog("cura")

import numpy
import math

from typing import List

# Setting for clearance around the prime
PRIME_CLEARANCE = 6.5


##  Build volume is a special kind of node that is responsible for rendering the printable area & disallowed areas.
class BuildVolume(SceneNode):
    raftThicknessChanged = Signal()

    def __init__(self, parent = None):
        super().__init__(parent)

        self._volume_outline_color = None
        self._x_axis_color = None
        self._y_axis_color = None
        self._z_axis_color = None
        self._disallowed_area_color = None
        self._error_area_color = None

        self._width = 0
        self._height = 0
        self._depth = 0
        self._shape = ""

        self._shader = None

        self._origin_mesh = None
        self._origin_line_length = 20
        self._origin_line_width = 0.5

        self._grid_mesh = None
        self._grid_shader = None

        self._disallowed_areas = []
        self._disallowed_area_mesh = None

        self._error_areas = []
        self._error_mesh = None

        self.setCalculateBoundingBox(False)
        self._volume_aabb = None

        self._raft_thickness = 0.0
        self._extra_z_clearance = 0.0
        self._adhesion_type = None
        self._platform = Platform(self)

        self._global_container_stack = None
        Application.getInstance().globalContainerStackChanged.connect(self._onStackChanged)
        self._onStackChanged()

        self._engine_ready = False
        Application.getInstance().engineCreatedSignal.connect(self._onEngineCreated)

        self._has_errors = False
        Application.getInstance().getController().getScene().sceneChanged.connect(self._onSceneChanged)

        #Objects loaded at the moment. We are connected to the property changed events of these objects.
        self._scene_objects = set()

        self._change_timer = QTimer()
        self._change_timer.setInterval(100)
        self._change_timer.setSingleShot(True)
        self._change_timer.timeout.connect(self._onChangeTimerFinished)

        self._build_volume_message = Message(catalog.i18nc("@info:status",
            "The build volume height has been reduced due to the value of the"
            " \"Print Sequence\" setting to prevent the gantry from colliding"
            " with printed models."))

        # Must be after setting _build_volume_message, apparently that is used in getMachineManager.
        # activeQualityChanged is always emitted after setActiveVariant, setActiveMaterial and setActiveQuality.
        # Therefore this works.
        Application.getInstance().getMachineManager().activeQualityChanged.connect(self._onStackChanged)
        # This should also ways work, and it is semantically more correct,
        # but it does not update the disallowed areas after material change
        Application.getInstance().getMachineManager().activeStackChanged.connect(self._onStackChanged)


    def _onSceneChanged(self, source):
        if self._global_container_stack:
            self._change_timer.start()

    def _onChangeTimerFinished(self):
        root = Application.getInstance().getController().getScene().getRoot()
        new_scene_objects = set(node for node in BreadthFirstIterator(root) if node.callDecoration("isSliceable"))
        if new_scene_objects != self._scene_objects:
            for node in new_scene_objects - self._scene_objects: #Nodes that were added to the scene.
                self._updateNodeListeners(node)
                node.decoratorsChanged.connect(self._updateNodeListeners)  # Make sure that decoration changes afterwards also receive the same treatment
            for node in self._scene_objects - new_scene_objects: #Nodes that were removed from the scene.
                per_mesh_stack = node.callDecoration("getStack")
                if per_mesh_stack:
                    per_mesh_stack.propertyChanged.disconnect(self._onSettingPropertyChanged)
                active_extruder_changed = node.callDecoration("getActiveExtruderChangedSignal")
                if active_extruder_changed is not None:
                    node.callDecoration("getActiveExtruderChangedSignal").disconnect(self._updateDisallowedAreasAndRebuild)
                node.decoratorsChanged.disconnect(self._updateNodeListeners)

            self._scene_objects = new_scene_objects
            self._onSettingPropertyChanged("print_sequence", "value")  # Create fake event, so right settings are triggered.

    ##  Updates the listeners that listen for changes in per-mesh stacks.
    #
    #   \param node The node for which the decorators changed.
    def _updateNodeListeners(self, node: SceneNode):
        per_mesh_stack = node.callDecoration("getStack")
        if per_mesh_stack:
            per_mesh_stack.propertyChanged.connect(self._onSettingPropertyChanged)
        active_extruder_changed = node.callDecoration("getActiveExtruderChangedSignal")
        if active_extruder_changed is not None:
            active_extruder_changed.connect(self._updateDisallowedAreasAndRebuild)
            self._updateDisallowedAreasAndRebuild()

    def setWidth(self, width):
        if width is not None:
            self._width = width

    def setHeight(self, height):
        if height is not None:
            self._height = height

    def setDepth(self, depth):
        if depth is not None:
            self._depth = depth

    def setShape(self, shape: str):
        if shape:
            self._shape = shape

    def getDisallowedAreas(self) -> List[Polygon]:
        return self._disallowed_areas

    def setDisallowedAreas(self, areas: List[Polygon]):
        self._disallowed_areas = areas

    def render(self, renderer):
        if not self.getMeshData():
            return True

        if not self._shader:
            self._shader = OpenGL.getInstance().createShaderProgram(Resources.getPath(Resources.Shaders, "default.shader"))
            self._grid_shader = OpenGL.getInstance().createShaderProgram(Resources.getPath(Resources.Shaders, "grid.shader"))
            theme = Application.getInstance().getTheme()
            self._grid_shader.setUniformValue("u_gridColor0", Color(*theme.getColor("buildplate").getRgb()))
            self._grid_shader.setUniformValue("u_gridColor1", Color(*theme.getColor("buildplate_alt").getRgb()))

        renderer.queueNode(self, mode = RenderBatch.RenderMode.Lines)
        renderer.queueNode(self, mesh = self._origin_mesh)
        renderer.queueNode(self, mesh = self._grid_mesh, shader = self._grid_shader, backface_cull = True)
        if self._disallowed_area_mesh:
            renderer.queueNode(self, mesh = self._disallowed_area_mesh, shader = self._shader, transparent = True, backface_cull = True, sort = -9)

        if self._error_mesh:
            renderer.queueNode(self, mesh=self._error_mesh, shader=self._shader, transparent=True,
                               backface_cull=True, sort=-8)

        return True

    ##  For every sliceable node, update node._outside_buildarea
    #
    def updateNodeBoundaryCheck(self):
        root = Application.getInstance().getController().getScene().getRoot()
        nodes = list(BreadthFirstIterator(root))
        group_nodes = []

        build_volume_bounding_box = self.getBoundingBox()
        if build_volume_bounding_box:
            # It's over 9000!
            build_volume_bounding_box = build_volume_bounding_box.set(bottom=-9001)
        else:
            # No bounding box. This is triggered when running Cura from command line with a model for the first time
            # In that situation there is a model, but no machine (and therefore no build volume.
            return

        for node in nodes:
            # Need to check group nodes later
            if node.callDecoration("isGroup"):
                group_nodes.append(node)  # Keep list of affected group_nodes

            if node.callDecoration("isSliceable") or node.callDecoration("isGroup"):
                node._outside_buildarea = False
                bbox = node.getBoundingBox()

                # Mark the node as outside the build volume if the bounding box test fails.
                if build_volume_bounding_box.intersectsBox(bbox) != AxisAlignedBox.IntersectionResult.FullIntersection:
                    node._outside_buildarea = True
                    continue

                convex_hull = node.callDecoration("getConvexHull")
                if convex_hull:
                    if not convex_hull.isValid():
                        return
                    # Check for collisions between disallowed areas and the object
                    for area in self.getDisallowedAreas():
                        overlap = convex_hull.intersectsPolygon(area)
                        if overlap is None:
                            continue
                        node._outside_buildarea = True
                        continue

        # Group nodes should override the _outside_buildarea property of their children.
        for group_node in group_nodes:
            for child_node in group_node.getAllChildren():
                child_node._outside_buildarea = group_node._outside_buildarea

    ##  Recalculates the build volume & disallowed areas.
    def rebuild(self):
        if not self._width or not self._height or not self._depth:
            return

        if not Application.getInstance()._engine:
            return

        if not self._volume_outline_color:
            theme = Application.getInstance().getTheme()
            self._volume_outline_color = Color(*theme.getColor("volume_outline").getRgb())
            self._x_axis_color = Color(*theme.getColor("x_axis").getRgb())
            self._y_axis_color = Color(*theme.getColor("y_axis").getRgb())
            self._z_axis_color = Color(*theme.getColor("z_axis").getRgb())
            self._disallowed_area_color = Color(*theme.getColor("disallowed_area").getRgb())
            self._error_area_color = Color(*theme.getColor("error_area").getRgb())

        min_w = -self._width / 2
        max_w = self._width / 2
        min_h = 0.0
        max_h = self._height
        min_d = -self._depth / 2
        max_d = self._depth / 2

        z_fight_distance = 0.2 # Distance between buildplate and disallowed area meshes to prevent z-fighting

        if self._shape != "elliptic":
            # Outline 'cube' of the build volume
            mb = MeshBuilder()
            mb.addLine(Vector(min_w, min_h, min_d), Vector(max_w, min_h, min_d), color = self._volume_outline_color)
            mb.addLine(Vector(min_w, min_h, min_d), Vector(min_w, max_h, min_d), color = self._volume_outline_color)
            mb.addLine(Vector(min_w, max_h, min_d), Vector(max_w, max_h, min_d), color = self._volume_outline_color)
            mb.addLine(Vector(max_w, min_h, min_d), Vector(max_w, max_h, min_d), color = self._volume_outline_color)

            mb.addLine(Vector(min_w, min_h, max_d), Vector(max_w, min_h, max_d), color = self._volume_outline_color)
            mb.addLine(Vector(min_w, min_h, max_d), Vector(min_w, max_h, max_d), color = self._volume_outline_color)
            mb.addLine(Vector(min_w, max_h, max_d), Vector(max_w, max_h, max_d), color = self._volume_outline_color)
            mb.addLine(Vector(max_w, min_h, max_d), Vector(max_w, max_h, max_d), color = self._volume_outline_color)

            mb.addLine(Vector(min_w, min_h, min_d), Vector(min_w, min_h, max_d), color = self._volume_outline_color)
            mb.addLine(Vector(max_w, min_h, min_d), Vector(max_w, min_h, max_d), color = self._volume_outline_color)
            mb.addLine(Vector(min_w, max_h, min_d), Vector(min_w, max_h, max_d), color = self._volume_outline_color)
            mb.addLine(Vector(max_w, max_h, min_d), Vector(max_w, max_h, max_d), color = self._volume_outline_color)

            self.setMeshData(mb.build())

            # Build plate grid mesh
            mb = MeshBuilder()
            mb.addQuad(
                Vector(min_w, min_h - z_fight_distance, min_d),
                Vector(max_w, min_h - z_fight_distance, min_d),
                Vector(max_w, min_h - z_fight_distance, max_d),
                Vector(min_w, min_h - z_fight_distance, max_d)
            )

            for n in range(0, 6):
                v = mb.getVertex(n)
                mb.setVertexUVCoordinates(n, v[0], v[2])
            self._grid_mesh = mb.build()

        else:
            # Bottom and top 'ellipse' of the build volume
            aspect = 1.0
            scale_matrix = Matrix()
            if self._width != 0:
                # Scale circular meshes by aspect ratio if width != height
                aspect = self._depth / self._width
                scale_matrix.compose(scale = Vector(1, 1, aspect))
            mb = MeshBuilder()
            mb.addArc(max_w, Vector.Unit_Y, center = (0, min_h - z_fight_distance, 0), color = self._volume_outline_color)
            mb.addArc(max_w, Vector.Unit_Y, center = (0, max_h, 0),  color = self._volume_outline_color)
            self.setMeshData(mb.build().getTransformed(scale_matrix))

            # Build plate grid mesh
            mb = MeshBuilder()
            mb.addVertex(0, min_h - z_fight_distance, 0)
            mb.addArc(max_w, Vector.Unit_Y, center = Vector(0, min_h - z_fight_distance, 0))
            sections = mb.getVertexCount() - 1 # Center point is not an arc section
            indices = []
            for n in range(0, sections - 1):
                indices.append([0, n + 2, n + 1])
            mb.addIndices(numpy.asarray(indices, dtype = numpy.int32))
            mb.calculateNormals()

            for n in range(0, mb.getVertexCount()):
                v = mb.getVertex(n)
                mb.setVertexUVCoordinates(n, v[0], v[2] * aspect)
            self._grid_mesh = mb.build().getTransformed(scale_matrix)

        # Indication of the machine origin
        if self._global_container_stack.getProperty("machine_center_is_zero", "value"):
            origin = (Vector(min_w, min_h, min_d) + Vector(max_w, min_h, max_d)) / 2
        else:
            origin = Vector(min_w, min_h, max_d)

        mb = MeshBuilder()
        mb.addCube(
            width = self._origin_line_length,
            height = self._origin_line_width,
            depth = self._origin_line_width,
            center = origin + Vector(self._origin_line_length / 2, 0, 0),
            color = self._x_axis_color
        )
        mb.addCube(
            width = self._origin_line_width,
            height = self._origin_line_length,
            depth = self._origin_line_width,
            center = origin + Vector(0, self._origin_line_length / 2, 0),
            color = self._y_axis_color
        )
        mb.addCube(
            width = self._origin_line_width,
            height = self._origin_line_width,
            depth = self._origin_line_length,
            center = origin - Vector(0, 0, self._origin_line_length / 2),
            color = self._z_axis_color
        )
        self._origin_mesh = mb.build()

        disallowed_area_height = 0.1
        disallowed_area_size = 0
        if self._disallowed_areas:
            mb = MeshBuilder()
            color = self._disallowed_area_color
            for polygon in self._disallowed_areas:
                points = polygon.getPoints()
                if len(points) == 0:
                    continue

                first = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height, self._clamp(points[0][1], min_d, max_d))
                previous_point = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height, self._clamp(points[0][1], min_d, max_d))
                for point in points:
                    new_point = Vector(self._clamp(point[0], min_w, max_w), disallowed_area_height, self._clamp(point[1], min_d, max_d))
                    mb.addFace(first, previous_point, new_point, color = color)
                    previous_point = new_point

                # Find the largest disallowed area to exclude it from the maximum scale bounds.
                # This is a very nasty hack. This pretty much only works for UM machines.
                # This disallowed area_size needs a -lot- of rework at some point in the future: TODO
                if numpy.min(points[:, 1]) >= 0: # This filters out all areas that have points to the left of the centre. This is done to filter the skirt area.
                    size = abs(numpy.max(points[:, 1]) - numpy.min(points[:, 1]))
                else:
                    size = 0
                disallowed_area_size = max(size, disallowed_area_size)

            self._disallowed_area_mesh = mb.build()
        else:
            self._disallowed_area_mesh = None

        if self._error_areas:
            mb = MeshBuilder()
            for error_area in self._error_areas:
                color = self._error_area_color
                points = error_area.getPoints()
                first = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height,
                               self._clamp(points[0][1], min_d, max_d))
                previous_point = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height,
                                        self._clamp(points[0][1], min_d, max_d))
                for point in points:
                    new_point = Vector(self._clamp(point[0], min_w, max_w), disallowed_area_height,
                                       self._clamp(point[1], min_d, max_d))
                    mb.addFace(first, previous_point, new_point, color=color)
                    previous_point = new_point
            self._error_mesh = mb.build()
        else:
            self._error_mesh = None

        self._volume_aabb = AxisAlignedBox(
            minimum = Vector(min_w, min_h - 1.0, min_d),
            maximum = Vector(max_w, max_h - self._raft_thickness - self._extra_z_clearance, max_d))

        bed_adhesion_size = self._getEdgeDisallowedSize()

        # As this works better for UM machines, we only add the disallowed_area_size for the z direction.
        # This is probably wrong in all other cases. TODO!
        # The +1 and -1 is added as there is always a bit of extra room required to work properly.
        scale_to_max_bounds = AxisAlignedBox(
            minimum = Vector(min_w + bed_adhesion_size + 1, min_h, min_d + disallowed_area_size - bed_adhesion_size + 1),
            maximum = Vector(max_w - bed_adhesion_size - 1, max_h - self._raft_thickness - self._extra_z_clearance, max_d - disallowed_area_size + bed_adhesion_size - 1)
        )

        Application.getInstance().getController().getScene()._maximum_bounds = scale_to_max_bounds

        self.updateNodeBoundaryCheck()

    def getBoundingBox(self) -> AxisAlignedBox:
        return self._volume_aabb

    def getRaftThickness(self) -> float:
        return self._raft_thickness

    def _updateRaftThickness(self):
        old_raft_thickness = self._raft_thickness
        self._adhesion_type = self._global_container_stack.getProperty("adhesion_type", "value")
        self._raft_thickness = 0.0
        if self._adhesion_type == "raft":
            self._raft_thickness = (
                self._global_container_stack.getProperty("raft_base_thickness", "value") +
                self._global_container_stack.getProperty("raft_interface_thickness", "value") +
                self._global_container_stack.getProperty("raft_surface_layers", "value") *
                    self._global_container_stack.getProperty("raft_surface_thickness", "value") +
                self._global_container_stack.getProperty("raft_airgap", "value"))

        # Rounding errors do not matter, we check if raft_thickness has changed at all
        if old_raft_thickness != self._raft_thickness:
            self.setPosition(Vector(0, -self._raft_thickness, 0), SceneNode.TransformSpace.World)
            self.raftThicknessChanged.emit()

    def _updateExtraZClearance(self) -> None:
        extra_z = 0.0
        extruders = ExtruderManager.getInstance().getMachineExtruders(self._global_container_stack.getId())
        use_extruders = False
        for extruder in extruders:
            if extruder.getProperty("retraction_hop_enabled", "value"):
                retraction_hop = extruder.getProperty("retraction_hop", "value")
                if extra_z is None or retraction_hop > extra_z:
                    extra_z = retraction_hop
            use_extruders = True
        if not use_extruders:
            # If no extruders, take global value.
            if self._global_container_stack.getProperty("retraction_hop_enabled", "value"):
                extra_z = self._global_container_stack.getProperty("retraction_hop", "value")
        if extra_z != self._extra_z_clearance:
            self._extra_z_clearance = extra_z

    ##  Update the build volume visualization
    def _onStackChanged(self):
        if self._global_container_stack:
            self._global_container_stack.propertyChanged.disconnect(self._onSettingPropertyChanged)
            extruders = ExtruderManager.getInstance().getMachineExtruders(self._global_container_stack.getId())
            for extruder in extruders:
                extruder.propertyChanged.disconnect(self._onSettingPropertyChanged)

        self._global_container_stack = Application.getInstance().getGlobalContainerStack()

        if self._global_container_stack:
            self._global_container_stack.propertyChanged.connect(self._onSettingPropertyChanged)
            extruders = ExtruderManager.getInstance().getMachineExtruders(self._global_container_stack.getId())
            for extruder in extruders:
                extruder.propertyChanged.connect(self._onSettingPropertyChanged)

            self._width = self._global_container_stack.getProperty("machine_width", "value")
            machine_height = self._global_container_stack.getProperty("machine_height", "value")
            if self._global_container_stack.getProperty("print_sequence", "value") == "one_at_a_time" and len(self._scene_objects) > 1:
                self._height = min(self._global_container_stack.getProperty("gantry_height", "value"), machine_height)
                if self._height < machine_height:
                    self._build_volume_message.show()
                else:
                    self._build_volume_message.hide()
            else:
                self._height = self._global_container_stack.getProperty("machine_height", "value")
                self._build_volume_message.hide()
            self._depth = self._global_container_stack.getProperty("machine_depth", "value")
            self._shape = self._global_container_stack.getProperty("machine_shape", "value")

            self._updateDisallowedAreas()
            self._updateRaftThickness()

            if self._engine_ready:
                self.rebuild()

    def _onEngineCreated(self):
        self._engine_ready = True
        self.rebuild()

    def _onSettingPropertyChanged(self, setting_key: str, property_name: str):
        if property_name != "value":
            return

        rebuild_me = False
        if setting_key == "print_sequence":
            machine_height = self._global_container_stack.getProperty("machine_height", "value")
            if Application.getInstance().getGlobalContainerStack().getProperty("print_sequence", "value") == "one_at_a_time" and len(self._scene_objects) > 1:
                self._height = min(self._global_container_stack.getProperty("gantry_height", "value"), machine_height)
                if self._height < machine_height:
                    self._build_volume_message.show()
                else:
                    self._build_volume_message.hide()
            else:
                self._height = self._global_container_stack.getProperty("machine_height", "value")
                self._build_volume_message.hide()
            rebuild_me = True

        if setting_key in self._skirt_settings or setting_key in self._prime_settings or setting_key in self._tower_settings or setting_key == "print_sequence" or setting_key in self._ooze_shield_settings or setting_key in self._distance_settings or setting_key in self._extruder_settings:
            self._updateDisallowedAreas()
            rebuild_me = True

        if setting_key in self._raft_settings:
            self._updateRaftThickness()
            rebuild_me = True

        if setting_key in self._extra_z_settings:
            self._updateExtraZClearance()
            rebuild_me = True

        if rebuild_me:
            self.rebuild()

    def hasErrors(self) -> bool:
        return self._has_errors

    ##  Calls _updateDisallowedAreas and makes sure the changes appear in the
    #   scene.
    #
    #   This is required for a signal to trigger the update in one go. The
    #   ``_updateDisallowedAreas`` method itself shouldn't call ``rebuild``,
    #   since there may be other changes before it needs to be rebuilt, which
    #   would hit performance.
    def _updateDisallowedAreasAndRebuild(self):
        self._updateDisallowedAreas()
        self.rebuild()

    def _updateDisallowedAreas(self):
        if not self._global_container_stack:
            return

        self._error_areas = []

        extruder_manager = ExtruderManager.getInstance()
        used_extruders = extruder_manager.getUsedExtruderStacks()
        disallowed_border_size = self._getEdgeDisallowedSize()

        if not used_extruders:
            # If no extruder is used, assume that the active extruder is used (else nothing is drawn)
            if extruder_manager.getActiveExtruderStack():
                used_extruders = [extruder_manager.getActiveExtruderStack()]
            else:
                used_extruders = [self._global_container_stack]

        result_areas = self._computeDisallowedAreasStatic(disallowed_border_size, used_extruders) #Normal machine disallowed areas can always be added.
        prime_areas = self._computeDisallowedAreasPrime(disallowed_border_size, used_extruders)
        prime_disallowed_areas = self._computeDisallowedAreasStatic(0, used_extruders) #Where the priming is not allowed to happen. This is not added to the result, just for collision checking.

        #Check if prime positions intersect with disallowed areas.
        for extruder in used_extruders:
            extruder_id = extruder.getId()

            collision = False
            for prime_polygon in prime_areas[extruder_id]:
                for disallowed_polygon in prime_disallowed_areas[extruder_id]:
                    if prime_polygon.intersectsPolygon(disallowed_polygon) is not None:
                        collision = True
                        break
                if collision:
                    break

                #Also check other prime positions (without additional offset).
                for other_extruder_id in prime_areas:
                    if extruder_id == other_extruder_id: #It is allowed to collide with itself.
                        continue
                    for other_prime_polygon in prime_areas[other_extruder_id]:
                        if prime_polygon.intersectsPolygon(other_prime_polygon):
                            collision = True
                            break
                    if collision:
                        break
                if collision:
                    break

            result_areas[extruder_id].extend(prime_areas[extruder_id])

            nozzle_disallowed_areas = extruder.getProperty("nozzle_disallowed_areas", "value")
            for area in nozzle_disallowed_areas:
                polygon = Polygon(numpy.array(area, numpy.float32))
                polygon = polygon.getMinkowskiHull(Polygon.approximatedCircle(disallowed_border_size))
                result_areas[extruder_id].append(polygon) #Don't perform the offset on these.

        # Add prime tower location as disallowed area.
        prime_tower_collision = False
        prime_tower_areas = self._computeDisallowedAreasPrinted(used_extruders)
        for extruder_id in prime_tower_areas:
            for prime_tower_area in prime_tower_areas[extruder_id]:
                for area in result_areas[extruder_id]:
                    if prime_tower_area.intersectsPolygon(area) is not None:
                        prime_tower_collision = True
                        break
                if prime_tower_collision: #Already found a collision.
                    break
            if not prime_tower_collision:
                result_areas[extruder_id].extend(prime_tower_areas[extruder_id])
            else:
                self._error_areas.extend(prime_tower_areas[extruder_id])

        self._has_errors = len(self._error_areas) > 0

        self._disallowed_areas = []
        for extruder_id in result_areas:
            self._disallowed_areas.extend(result_areas[extruder_id])

    ##  Computes the disallowed areas for objects that are printed with print
    #   features.
    #
    #   This means that the brim, travel avoidance and such will be applied to
    #   these features.
    #
    #   \return A dictionary with for each used extruder ID the disallowed areas
    #   where that extruder may not print.
    def _computeDisallowedAreasPrinted(self, used_extruders):
        result = {}
        for extruder in used_extruders:
            result[extruder.getId()] = []

        #Currently, the only normally printed object is the prime tower.
        if ExtruderManager.getInstance().getResolveOrValue("prime_tower_enable") == True:
            prime_tower_size = self._global_container_stack.getProperty("prime_tower_size", "value")
            machine_width = self._global_container_stack.getProperty("machine_width", "value")
            machine_depth = self._global_container_stack.getProperty("machine_depth", "value")
            prime_tower_x = self._global_container_stack.getProperty("prime_tower_position_x", "value")
            prime_tower_y = - self._global_container_stack.getProperty("prime_tower_position_y", "value")
            if not self._global_container_stack.getProperty("machine_center_is_zero", "value"):
                prime_tower_x = prime_tower_x - machine_width / 2 #Offset by half machine_width and _depth to put the origin in the front-left.
                prime_tower_y = prime_tower_y + machine_depth / 2

            prime_tower_area = Polygon([
                [prime_tower_x - prime_tower_size, prime_tower_y - prime_tower_size],
                [prime_tower_x, prime_tower_y - prime_tower_size],
                [prime_tower_x, prime_tower_y],
                [prime_tower_x - prime_tower_size, prime_tower_y],
            ])
            prime_tower_area = prime_tower_area.getMinkowskiHull(Polygon.approximatedCircle(0))
            for extruder in used_extruders:
                result[extruder.getId()].append(prime_tower_area) #The prime tower location is the same for each extruder, regardless of offset.

        return result

    ##  Computes the disallowed areas for the prime locations.
    #
    #   These are special because they are not subject to things like brim or
    #   travel avoidance. They do get a dilute with the border size though
    #   because they may not intersect with brims and such of other objects.
    #
    #   \param border_size The size with which to offset the disallowed areas
    #   due to skirt, brim, travel avoid distance, etc.
    #   \param used_extruders The extruder stacks to generate disallowed areas
    #   for.
    #   \return A dictionary with for each used extruder ID the prime areas.
    def _computeDisallowedAreasPrime(self, border_size, used_extruders):
        result = {}

        machine_width = self._global_container_stack.getProperty("machine_width", "value")
        machine_depth = self._global_container_stack.getProperty("machine_depth", "value")
        for extruder in used_extruders:
            prime_x = extruder.getProperty("extruder_prime_pos_x", "value")
            prime_y = - extruder.getProperty("extruder_prime_pos_y", "value")

            #Ignore extruder prime position if it is not set
            if prime_x == 0 and prime_y == 0:
                result[extruder.getId()] = []
                continue

            if not self._global_container_stack.getProperty("machine_center_is_zero", "value"):
                prime_x = prime_x - machine_width / 2 #Offset by half machine_width and _depth to put the origin in the front-left.
                prime_y = prime_y + machine_depth / 2

            prime_polygon = Polygon.approximatedCircle(PRIME_CLEARANCE)
            prime_polygon = prime_polygon.getMinkowskiHull(Polygon.approximatedCircle(border_size))

            prime_polygon = prime_polygon.translate(prime_x, prime_y)
            result[extruder.getId()] = [prime_polygon]

        return result

    ##  Computes the disallowed areas that are statically placed in the machine.
    #
    #   It computes different disallowed areas depending on the offset of the
    #   extruder. The resulting dictionary will therefore have an entry for each
    #   extruder that is used.
    #
    #   \param border_size The size with which to offset the disallowed areas
    #   due to skirt, brim, travel avoid distance, etc.
    #   \param used_extruders The extruder stacks to generate disallowed areas
    #   for.
    #   \return A dictionary with for each used extruder ID the disallowed areas
    #   where that extruder may not print.
    def _computeDisallowedAreasStatic(self, border_size, used_extruders):
        #Convert disallowed areas to polygons and dilate them.
        machine_disallowed_polygons = []
        for area in self._global_container_stack.getProperty("machine_disallowed_areas", "value"):
            polygon = Polygon(numpy.array(area, numpy.float32))
            polygon = polygon.getMinkowskiHull(Polygon.approximatedCircle(border_size))
            machine_disallowed_polygons.append(polygon)

        result = {}
        for extruder in used_extruders:
            extruder_id = extruder.getId()
            offset_x = extruder.getProperty("machine_nozzle_offset_x", "value")
            if offset_x is None:
                offset_x = 0
            offset_y = extruder.getProperty("machine_nozzle_offset_y", "value")
            if offset_y is None:
                offset_y = 0
            result[extruder_id] = []

            for polygon in machine_disallowed_polygons:
                result[extruder_id].append(polygon.translate(offset_x, offset_y)) #Compensate for the nozzle offset of this extruder.

            #Add the border around the edge of the build volume.
            left_unreachable_border = 0
            right_unreachable_border = 0
            top_unreachable_border = 0
            bottom_unreachable_border = 0
            #The build volume is defined as the union of the area that all extruders can reach, so we need to know the relative offset to all extruders.
            for other_extruder in ExtruderManager.getInstance().getActiveExtruderStacks():
                other_offset_x = other_extruder.getProperty("machine_nozzle_offset_x", "value")
                other_offset_y = other_extruder.getProperty("machine_nozzle_offset_y", "value")
                left_unreachable_border = min(left_unreachable_border, other_offset_x - offset_x)
                right_unreachable_border = max(right_unreachable_border, other_offset_x - offset_x)
                top_unreachable_border = min(top_unreachable_border, other_offset_y - offset_y)
                bottom_unreachable_border = max(bottom_unreachable_border, other_offset_y - offset_y)
            half_machine_width = self._global_container_stack.getProperty("machine_width", "value") / 2
            half_machine_depth = self._global_container_stack.getProperty("machine_depth", "value") / 2

            if self._shape != "elliptic":
                if border_size - left_unreachable_border > 0:
                    result[extruder_id].append(Polygon(numpy.array([
                        [-half_machine_width, -half_machine_depth],
                        [-half_machine_width, half_machine_depth],
                        [-half_machine_width + border_size - left_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border],
                        [-half_machine_width + border_size - left_unreachable_border, -half_machine_depth + border_size - top_unreachable_border]
                    ], numpy.float32)))
                if border_size + right_unreachable_border > 0:
                    result[extruder_id].append(Polygon(numpy.array([
                        [half_machine_width, half_machine_depth],
                        [half_machine_width, -half_machine_depth],
                        [half_machine_width - border_size - right_unreachable_border, -half_machine_depth + border_size - top_unreachable_border],
                        [half_machine_width - border_size - right_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border]
                    ], numpy.float32)))
                if border_size + bottom_unreachable_border > 0:
                    result[extruder_id].append(Polygon(numpy.array([
                        [-half_machine_width, half_machine_depth],
                        [half_machine_width, half_machine_depth],
                        [half_machine_width - border_size - right_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border],
                        [-half_machine_width + border_size - left_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border]
                    ], numpy.float32)))
                if border_size - top_unreachable_border > 0:
                    result[extruder_id].append(Polygon(numpy.array([
                        [half_machine_width, -half_machine_depth],
                        [-half_machine_width, -half_machine_depth],
                        [-half_machine_width + border_size - left_unreachable_border, -half_machine_depth + border_size - top_unreachable_border],
                        [half_machine_width - border_size - right_unreachable_border, -half_machine_depth + border_size - top_unreachable_border]
                    ], numpy.float32)))
            else:
                sections = 32
                arc_vertex = [0, half_machine_depth - border_size]
                for i in range(0, sections):
                    quadrant = math.floor(4 * i / sections)
                    vertices = []
                    if quadrant == 0:
                        vertices.append([-half_machine_width, half_machine_depth])
                    elif quadrant == 1:
                        vertices.append([-half_machine_width, -half_machine_depth])
                    elif quadrant == 2:
                        vertices.append([half_machine_width, -half_machine_depth])
                    elif quadrant == 3:
                        vertices.append([half_machine_width, half_machine_depth])
                    vertices.append(arc_vertex)

                    angle = 2 * math.pi * (i + 1) / sections
                    arc_vertex = [-(half_machine_width - border_size) * math.sin(angle), (half_machine_depth - border_size) * math.cos(angle)]
                    vertices.append(arc_vertex)

                    result[extruder_id].append(Polygon(numpy.array(vertices, numpy.float32)))

                if border_size > 0:
                    result[extruder_id].append(Polygon(numpy.array([
                        [-half_machine_width, -half_machine_depth],
                        [-half_machine_width, half_machine_depth],
                        [-half_machine_width + border_size, 0]
                    ], numpy.float32)))
                    result[extruder_id].append(Polygon(numpy.array([
                        [-half_machine_width, half_machine_depth],
                        [ half_machine_width, half_machine_depth],
                        [ 0, half_machine_depth - border_size]
                    ], numpy.float32)))
                    result[extruder_id].append(Polygon(numpy.array([
                        [ half_machine_width, half_machine_depth],
                        [ half_machine_width, -half_machine_depth],
                        [ half_machine_width - border_size, 0]
                    ], numpy.float32)))
                    result[extruder_id].append(Polygon(numpy.array([
                        [ half_machine_width,-half_machine_depth],
                        [-half_machine_width,-half_machine_depth],
                        [ 0, -half_machine_depth + border_size]
                    ], numpy.float32)))

        return result

    ##  Private convenience function to get a setting from the adhesion
    #   extruder.
    #
    #   \param setting_key The key of the setting to get.
    #   \param property The property to get from the setting.
    #   \return The property of the specified setting in the adhesion extruder.
    def _getSettingFromAdhesionExtruder(self, setting_key, property = "value"):
        return self._getSettingFromExtruder(setting_key, "adhesion_extruder_nr", property)

    ##  Private convenience function to get a setting from every extruder.
    #
    #   For single extrusion machines, this gets the setting from the global
    #   stack.
    #
    #   \return A sequence of setting values, one for each extruder.
    def _getSettingFromAllExtruders(self, setting_key, property = "value"):
        all_values = ExtruderManager.getInstance().getAllExtruderSettings(setting_key, property)
        all_types = ExtruderManager.getInstance().getAllExtruderSettings(setting_key, "type")
        for i in range(len(all_values)):
            if not all_values[i] and (all_types[i] == "int" or all_types[i] == "float"):
                all_values[i] = 0
        return all_values

    ##  Private convenience function to get a setting from the support infill
    #   extruder.
    #
    #   \param setting_key The key of the setting to get.
    #   \param property The property to get from the setting.
    #   \return The property of the specified setting in the support infill
    #   extruder.
    def _getSettingFromSupportInfillExtruder(self, setting_key, property = "value"):
        return self._getSettingFromExtruder(setting_key, "support_infill_extruder_nr", property)

    ##  Helper function to get a setting from an extruder specified in another
    #   setting.
    #
    #   \param setting_key The key of the setting to get.
    #   \param extruder_setting_key The key of the setting that specifies from
    #   which extruder to get the setting, if there are multiple extruders.
    #   \param property The property to get from the setting.
    #   \return The property of the specified setting in the specified extruder.
    def _getSettingFromExtruder(self, setting_key, extruder_setting_key, property = "value"):
        multi_extrusion = self._global_container_stack.getProperty("machine_extruder_count", "value") > 1

        if not multi_extrusion:
            stack = self._global_container_stack
        else:
            extruder_index = self._global_container_stack.getProperty(extruder_setting_key, "value")

            if extruder_index == "-1":  # If extruder index is -1 use global instead
                stack = self._global_container_stack
            else:
                extruder_stack_id = ExtruderManager.getInstance().extruderIds[str(extruder_index)]
                stack = ContainerRegistry.getInstance().findContainerStacks(id = extruder_stack_id)[0]

        value = stack.getProperty(setting_key, property)
        setting_type = stack.getProperty(setting_key, "type")
        if not value and (setting_type == "int" or setting_type == "float"):
            return 0
        return value

    ##  Convenience function to calculate the disallowed radius around the edge.
    #
    #   This disallowed radius is to allow for space around the models that is
    #   not part of the collision radius, such as bed adhesion (skirt/brim/raft)
    #   and travel avoid distance.
    def _getEdgeDisallowedSize(self):
        if not self._global_container_stack:
            return 0
        container_stack = self._global_container_stack

        # If we are printing one at a time, we need to add the bed adhesion size to the disallowed areas of the objects
        if container_stack.getProperty("print_sequence", "value") == "one_at_a_time":
            return 0.1  # Return a very small value, so we do draw disallowed area's near the edges.

        adhesion_type = container_stack.getProperty("adhesion_type", "value")
        if adhesion_type == "skirt":
            skirt_distance = self._getSettingFromAdhesionExtruder("skirt_gap")
            skirt_line_count = self._getSettingFromAdhesionExtruder("skirt_line_count")
            bed_adhesion_size = skirt_distance + (skirt_line_count * self._getSettingFromAdhesionExtruder("skirt_brim_line_width"))
            if len(ExtruderManager.getInstance().getUsedExtruderStacks()) > 1:
                adhesion_extruder_nr = int(self._global_container_stack.getProperty("adhesion_extruder_nr", "value"))
                extruder_values = ExtruderManager.getInstance().getAllExtruderValues("skirt_brim_line_width")
                del extruder_values[adhesion_extruder_nr]  # Remove the value of the adhesion extruder nr.
                for value in extruder_values:
                    bed_adhesion_size += value
        elif adhesion_type == "brim":
            bed_adhesion_size = self._getSettingFromAdhesionExtruder("brim_line_count") * self._getSettingFromAdhesionExtruder("skirt_brim_line_width")
            if self._global_container_stack.getProperty("machine_extruder_count", "value") > 1:
                adhesion_extruder_nr = int(self._global_container_stack.getProperty("adhesion_extruder_nr", "value"))
                extruder_values = ExtruderManager.getInstance().getAllExtruderValues("skirt_brim_line_width")
                del extruder_values[adhesion_extruder_nr]  # Remove the value of the adhesion extruder nr.
                for value in extruder_values:
                    bed_adhesion_size += value
        elif adhesion_type == "raft":
            bed_adhesion_size = self._getSettingFromAdhesionExtruder("raft_margin")
        elif adhesion_type == "none":
            bed_adhesion_size = 0
        else:
            raise Exception("Unknown bed adhesion type. Did you forget to update the build volume calculations for your new bed adhesion type?")

        support_expansion = 0
        if self._getSettingFromSupportInfillExtruder("support_offset") and self._global_container_stack.getProperty("support_enable", "value"):
            support_expansion += self._getSettingFromSupportInfillExtruder("support_offset")

        farthest_shield_distance = 0
        if container_stack.getProperty("draft_shield_enabled", "value"):
            farthest_shield_distance = max(farthest_shield_distance, container_stack.getProperty("draft_shield_dist", "value"))
        if container_stack.getProperty("ooze_shield_enabled", "value"):
            farthest_shield_distance = max(farthest_shield_distance, container_stack.getProperty("ooze_shield_dist", "value"))

        move_from_wall_radius = 0  # Moves that start from outer wall.
        move_from_wall_radius = max(move_from_wall_radius, max(self._getSettingFromAllExtruders("infill_wipe_dist")))
        used_extruders = ExtruderManager.getInstance().getUsedExtruderStacks()
        avoid_enabled_per_extruder = [stack.getProperty("travel_avoid_other_parts","value") for stack in used_extruders]
        travel_avoid_distance_per_extruder = [stack.getProperty("travel_avoid_distance", "value") for stack in used_extruders]
        for avoid_other_parts_enabled, avoid_distance in zip(avoid_enabled_per_extruder, travel_avoid_distance_per_extruder): #For each extruder (or just global).
            if avoid_other_parts_enabled:
                move_from_wall_radius = max(move_from_wall_radius, avoid_distance)

        # Now combine our different pieces of data to get the final border size.
        # Support expansion is added to the bed adhesion, since the bed adhesion goes around support.
        # Support expansion is added to farthest shield distance, since the shields go around support.
        border_size = max(move_from_wall_radius, support_expansion + farthest_shield_distance, support_expansion + bed_adhesion_size)
        return border_size

    def _clamp(self, value, min_value, max_value):
        return max(min(value, max_value), min_value)

    _skirt_settings = ["adhesion_type", "skirt_gap", "skirt_line_count", "skirt_brim_line_width", "brim_width", "brim_line_count", "raft_margin", "draft_shield_enabled", "draft_shield_dist"]
    _raft_settings = ["adhesion_type", "raft_base_thickness", "raft_interface_thickness", "raft_surface_layers", "raft_surface_thickness", "raft_airgap"]
    _extra_z_settings = ["retraction_hop_enabled", "retraction_hop"]
    _prime_settings = ["extruder_prime_pos_x", "extruder_prime_pos_y", "extruder_prime_pos_z"]
    _tower_settings = ["prime_tower_enable", "prime_tower_size", "prime_tower_position_x", "prime_tower_position_y"]
    _ooze_shield_settings = ["ooze_shield_enabled", "ooze_shield_dist"]
    _distance_settings = ["infill_wipe_dist", "travel_avoid_distance", "support_offset", "support_enable", "travel_avoid_other_parts"]
    _extruder_settings = ["support_enable", "support_interface_enable", "support_infill_extruder_nr", "support_extruder_nr_layer_0", "support_interface_extruder_nr", "brim_line_count", "adhesion_extruder_nr", "adhesion_type"] #Settings that can affect which extruders are used.