local SpatialClassNLLCriterion, parent = torch.class('nn.SpatialClassNLLCriterion', 'nn.ClassNLLCriterion') function SpatialClassNLLCriterion:__init(...) parent.__init(self,...) xlua.unpack_class(self, {...}, 'nn.SpatialClassNLLCriterion', 'A spatial extension of the NLLCriterion class.\n' ..' Provides a set of parameters to deal with spatial mini-batch training.', {arg='resampleTarget', type='number', help='ratio to resample target (target is a KxHxW tensor)', default=1}, {arg='nbGradients', type='number', help='number of gradients to backpropagate (-1:all, >=1:nb)', default=-1}, {arg='sizeAverage', type='number', help='if true, forward() returns an average instead of a sum of errors', default=true} ) end function SpatialClassNLLCriterion:adjustTarget(input, target) -- (1) if the target map has an incorrect size, it is assumed -- to be at the original scale of the data (e.g. for dense -- classification problems, like scene parsing, the target -- map is at the resolution of the input image. Now the input -- of this criterion is the output of some neural network, -- and might have a smaller size/resolution than the original -- input). Step (2) corrects for convolutional-induced losses, -- while step (3) corrects for downsampling/strides. local sratio = self.resampleTarget if (target:size(1)*sratio) ~= input:size(2) then local h = input:size(1)/sratio local y = math.floor((target:size(1) - (input:size(1)-1)*1/sratio)/2) + 1 local w = input:size(2)/sratio local x = math.floor((target:size(2) - (input:size(2)-1)*1/sratio)/2) + 1 target = target:narrow(1,y,h):narrow(2,x,w) end -- (2) correct target by resampling it to the size of the -- input. this is to compensate for downsampling/pooling -- operations. if sratio ~= 1 then local target_scaled = torch.Tensor(input:size(2), input:size(3)) image.scale(target, target_scaled, 'simple') target = target_scaled end self.target = target return target end function SpatialClassNLLCriterion:forward(input,target) -- (1) adjust target: class -> distributions of classes -- compensate for convolution losses -- compensate for striding effects -- ignore a classe target = self:adjustTarget(input, target) -- (2) the full output contains as many errors as input -- vectors, whereas the self.output is a scalar that -- prunes all the errors self.fullOutput = self.fullOutput or torch.Tensor() self.fullOutput:resizeAs(target) -- (3) compute the dense errors: input.nn.SpatialClassNLLCriterion_forward(self,input,target) -- (4) prune the errors, either by averaging, or accumulation: if self.sizeAverage then self.output = self.fullOutput:mean() else self.output = self.fullOutput:sum() end return self.output end function SpatialClassNLLCriterion:backward(input,target) -- (1) retrieve adjusted target target = self.target -- (2) resize input gradient map self.gradInput:resizeAs(input):zero() -- (3) compute input gradients, based on the nbGradients param if self.nbGradients == -1 then -- dense gradients input.nn.SpatialClassNLLCriterion_backward(self,input,target,self.gradInput) elseif self.nbGradients == 1 then -- only 1 gradient is computed, sampled in the center self.fullGradInput = torch.Tensor() or self.fullGradInput self.fullGradInput:resizeAs(input):zero() input.nn.SpatialClassNLLCriterion_backward(self,input,target,self.fullGradInput) local y = math.ceil(self.gradInput:size(2)/2) local x = math.ceil(self.gradInput:size(3)/2) self.gradInput:select(3,x):select(2,y):copy(self.fullGradInput:select(3,x):select(2,y)) else -- only N gradients are computed, sampled in random locations self.fullGradInput = torch.Tensor() or self.fullGradInput self.fullGradInput:resizeAs(input):zero() input.nn.SpatialClassNLLCriterion_backward(self,input,target,self.fullGradInput) for i = 1,self.nbGradients do local x = math.random(1,self.gradInput:size(1)) local y = math.random(1,self.gradInput:size(2)) self.gradInput:select(3,x):select(2,y):copy(self.fullGradInput:select(3,x):select(2,y)) end end return self.gradInput end function SpatialClassNLLCriterion:write(file) parent.write(self, file) file:writeDouble(self.resampleTarget) file:writeInt(self.nbGradients) file:writeBool(self.sizeAverage) end function SpatialClassNLLCriterion:read(file) parent.read(self, file) self.resampleTarget= file:readDouble() self.nbGradients = file:readInt() self.fullOutput = torch.Tensor() self.sizeAverage = file:readBool() end