Welcome to mirror list, hosted at ThFree Co, Russian Federation.

SpatialConvolutionTable.lua - github.com/clementfarabet/lua---nnx.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: eb15e288c22b46b032c83079276713cde4582c2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
local SpatialConvolutionTable, parent = torch.class('nn.SpatialConvolutionTable', 'nn.Module')

local help_desc =
[[Applies a 2D convolution over an input image composed of 
several input planes. The input tensor in forward(input) 
is expected to be a 3D tensor (width x height x nInputPlane).

A table of connections is used to specify the topology of the 
layer. If a plain fully connected module is enough, 
nn.SpatialConvolution should be used. This table should be
a 2D tensor (2 x nb_kernels), where table[k][1] points to an
input, and table[k][2] points to an output.

Note that depending of the size of your kernel, several 
(of the last) columns or rows of the input image might be lost. 
It is up to the user to add proper padding in images.

If the input image is a 3D tensor width x height x nInputPlane, 
the output image size will be owidth x oheight x nOutputPlane where

owidth  = (width  - kW) / dW + 1
oheight = (height - kH) / dH + 1 .

The parameters of the convolution can be found in self.weight 
(Tensor of size kH x kW x nInputPlane x nOutputPlane) and 
self.bias (Tensor of size nOutputPlane). The corresponding 
gradients can be found in self.gradWeight and self.gradBias.]]

local help_example =
[[-- create a filter bank with 8 inputs, 32 outputs, and
-- random connections with a fanin of 4, filters are 9x9
stimulus = lab.randn(8,500,500)
randTable = nn.SpatialConvolutionTable:RandomTable(8,32,4)
mod = nn.SpatialConvolutionTable(randTable, 9, 9)
result = mod:forward(stimulus)]]

nn.tables = nn.tables or {}

function nn.tables.full(nin, nout)
   local ft = torch.Tensor(nin*nout,2)
   local p = 1
   for j=1,nout do
      for i=1,nin do
	 ft[p][1] = i
	 ft[p][2] = j
	 p = p + 1
      end
   end
   return ft
end

function nn.tables.oneToOne(nfeat)
   local ft = torch.Tensor(nfeat,2)
   for i=1,nfeat do
      ft[i][1] = i
      ft[i][2] = i
   end
   return ft
end

function nn.tables.random(nin, nout, nto)
   local nker = nto * nout
   local tbl = torch.Tensor(nker, 2)
   local fi = lab.randperm(nin)
   local frcntr = 1
   local tocntr = 1
   local nfi = math.floor(nin/nto) -- number of distinct nto chunks 
   local rfi = math.mod(nin,nto) -- number of remaining from maps
   local totbl = tbl:select(2,2)
   local frtbl = tbl:select(2,1)
   local fitbl = fi:narrow(1, 1, (nfi * nto)) -- part of fi that covers distinct chunks
   local ufrtbl= frtbl:unfold(1, nto, nto)
   local utotbl= totbl:unfold(1, nto, nto)
   local ufitbl= fitbl:unfold(1, nto, nto)
   
   -- start filling frtbl
   for i=1,nout do -- fro each unit in target map
      ufrtbl:select(1,i):copy(ufitbl:select(1,frcntr))
      frcntr = frcntr + 1
      if frcntr-1 ==  nfi then -- reset fi
	 fi:copy(lab.randperm(nin))
	 frcntr = 1
      end
   end
   for tocntr=1,utotbl:size(1) do
      utotbl:select(1,tocntr):fill(tocntr)
   end
   return tbl
end

function SpatialConvolutionTable:__init(conMatrix, kW, kH, dW, dH)
   parent.__init(self)

   -- usage
   if not conMatrix or not kW or not kH or type(conMatrix) ~= 'userdata' then
      error(xlua.usage('nn.SpatialConvolutionTable', help_desc, help_example,
                          {type='torch.Tensor', help='a Nx2 array, N being the number of kernels',
                                                req=true},
                          {type='number', help='kernel width', req=true},
                          {type='number', help='kernel height', req=true},
                          {type='number', help='stride width'},
                          {type='number', help='stride height'}))
   end

   dW = dW or 1
   dH = dH or 1

   self.kW = kW
   self.kH = kH
   self.dW = dW
   self.dH = dH
   self.connTable = conMatrix
   self.nInputPlane = self.connTable:select(2,1):max()
   self.nOutputPlane = self.connTable:select(2,2):max()

   self.weight = torch.Tensor(self.connTable:size(1), kH, kW)
   self.bias = torch.Tensor(self.nOutputPlane)
   self.gradWeight = torch.Tensor(self.connTable:size(1), kH, kW)
   self.gradBias = torch.Tensor(self.nOutputPlane)
   
   self:reset()
end

function SpatialConvolutionTable:reset(stdv)
   if stdv then
      stdv = stdv * math.sqrt(3)
      self.weight:apply(function()
			   return random.uniform(-stdv, stdv)
			end)
      self.bias:apply(function()
			 return random.uniform(-stdv, stdv)
		      end)
   else
      local ninp = torch.Tensor(self.nOutputPlane):zero()
      for i=1,self.connTable:size(1) do ninp[self.connTable[i][2]] =  ninp[self.connTable[i][2]]+1 end
      for k=1,self.connTable:size(1) do
	 stdv = 1/math.sqrt(self.kW*self.kH*ninp[self.connTable[k][2]])
	 self.weight:select(1,k):apply(function() return random.uniform(-stdv,stdv) end)
      end
      for k=1,self.bias:size(1) do
	 stdv = 1/math.sqrt(self.kW*self.kH*ninp[k])
	 self.bias[k] = random.uniform(-stdv,stdv)
      end
   end
end

function SpatialConvolutionTable:forward(input)
   input.nn.SpatialConvolutionTable_forward(self, input)
   return self.output
end

function SpatialConvolutionTable:backward(input, gradOutput)
   input.nn.SpatialConvolutionTable_backward(self, input, gradOutput)
   return self.gradInput
end

function SpatialConvolutionTable:zeroGradParameters(momentum)
   if momentum then
      self.gradWeight:mul(momentum)
      self.gradBias:mul(momentum)
   else
      self.gradWeight:zero()
      self.gradBias:zero()
   end
end

function SpatialConvolutionTable:updateParameters(learningRate)
   self.weight:add(-learningRate, self.gradWeight)
   self.bias:add(-learningRate, self.gradBias)
end

function SpatialConvolutionTable:decayParameters(decay)
   self.weight:add(-decay, self.weight)
   self.bias:add(-decay, self.bias)
end

function SpatialConvolutionTable:write(file)
   parent.write(self, file)
   file:writeInt(self.kW)
   file:writeInt(self.kH)
   file:writeInt(self.dW)
   file:writeInt(self.dH)
   file:writeInt(self.nInputPlane)
   file:writeInt(self.nOutputPlane)
   file:writeObject(self.weight)
   file:writeObject(self.bias)
   file:writeObject(self.gradWeight)
   file:writeObject(self.gradBias)
   file:writeObject(self.connTable)
end

function SpatialConvolutionTable:read(file)
   parent.read(self, file)
   self.kW = file:readInt()
   self.kH = file:readInt()
   self.dW = file:readInt()
   self.dH = file:readInt()
   self.nInputPlane = file:readInt()
   self.nOutputPlane = file:readInt()
   self.weight = file:readObject()
   self.bias = file:readObject()
   self.gradWeight = file:readObject()
   self.gradBias = file:readObject()
   self.connTable = file:readObject()
end