Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mpeg_decoder.h « reelmagic « hardware « src - github.com/dosbox-staging/dosbox-staging.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 31a3c8dfd9ccb390286bfa65ee3736a9543a328e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
/*
PL_MPEG - MPEG1 Video decoder, MP2 Audio decoder, MPEG-PS demuxer

Dominic Szablewski - https://phoboslab.org


-- LICENSE: The MIT License(MIT)

Copyright(c) 2019 Dominic Szablewski

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files(the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and / or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions :
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.




-- Synopsis

// Define `PL_MPEG_IMPLEMENTATION` in *one* C/C++ file before including this
// library to create the implementation.

#define PL_MPEG_IMPLEMENTATION
#include "plmpeg.h"

// This function gets called for each decoded video frame
void my_video_callback(plm_t *plm, plm_frame_t *frame, void *user) {
	// Do something with frame->y.data, frame->cr.data, frame->cb.data
}

// This function gets called for each decoded audio frame
void my_audio_callback(plm_t *plm, plm_samples_t *frame, void *user) {
	// Do something with samples->interleaved
}

// Load a .mpg (MPEG Program Stream) file
plm_t *plm = plm_create_with_filename("some-file.mpg");

// Install the video & audio decode callbacks
plm_set_video_decode_callback(plm, my_video_callback, my_data);
plm_set_audio_decode_callback(plm, my_audio_callback, my_data);


// Decode
do {
	plm_decode(plm, time_since_last_call);
} while (!plm_has_ended(plm));

// All done
plm_destroy(plm);



-- Documentation

This library provides several interfaces to load, demux and decode MPEG video
and audio data. A high-level API combines the demuxer, video & audio decoders
in an easy to use wrapper.

Lower-level APIs for accessing the demuxer, video decoder and audio decoder, 
as well as providing different data sources are also available.

Interfaces are written in an object oriented style, meaning you create object 
instances via various different constructor functions (plm_*create()),
do some work on them and later dispose them via plm_*destroy().

plm_* ......... the high-level interface, combining demuxer and decoders
plm_buffer_* .. the data source used by all interfaces
plm_demux_* ... the MPEG-PS demuxer
plm_video_* ... the MPEG1 Video ("mpeg1") decoder
plm_audio_* ... the MPEG1 Audio Layer II ("mp2") decoder


With the high-level interface you have two options to decode video & audio:

 1. Use plm_decode() and just hand over the delta time since the last call.
    It will decode everything needed and call your callbacks (specified through
    plm_set_{video|audio}_decode_callback()) any number of times.

 2. Use plm_decode_video() and plm_decode_audio() to decode exactly one
    frame of video or audio data at a time. How you handle the synchronization 
    of both streams is up to you.

If you only want to decode video *or* audio through these functions, you should
disable the other stream (plm_set_{video|audio}_enabled(FALSE))

Video data is decoded into a struct with all 3 planes (Y, Cr, Cb) stored in
separate buffers. You can either convert this to RGB on the CPU (slow) via the
plm_frame_to_rgb() function or do it on the GPU with the following matrix:

mat4 bt601 = mat4(
	1.16438,  0.00000,  1.59603, -0.87079,
	1.16438, -0.39176, -0.81297,  0.52959,
	1.16438,  2.01723,  0.00000, -1.08139,
	0, 0, 0, 1
);
gl_FragColor = vec4(y, cb, cr, 1.0) * bt601;

Audio data is decoded into a struct with either one single float array with the
samples for the left and right channel interleaved, or if the 
PLM_AUDIO_SEPARATE_CHANNELS is defined *before* including this library, into
two separate float arrays - one for each channel.


Data can be supplied to the high level interface, the demuxer and the decoders
in three different ways:

 1. Using plm_create_from_filename() or with a file handle with 
    plm_create_from_file().

 2. Using plm_create_with_memory() and supplying a pointer to memory that
    contains the whole file.

 3. Using plm_create_with_buffer(), supplying your own plm_buffer_t instance and
    periodically writing to this buffer.

When using your own plm_buffer_t instance, you can fill this buffer using 
plm_buffer_write(). You can either monitor plm_buffer_get_remaining() and push 
data when appropriate, or install a callback on the buffer with 
plm_buffer_set_load_callback() that gets called whenever the buffer needs more 
data.

A buffer created with plm_buffer_create_with_capacity() is treated as a ring
buffer, meaning that data that has already been read, will be discarded. In
contrast, a buffer created with plm_buffer_create_for_appending() will keep all
data written to it in memory. This enables seeking in the already loaded data.


There should be no need to use the lower level plm_demux_*, plm_video_* and 
plm_audio_* functions, if all you want to do is read/decode an MPEG-PS file.
However, if you get raw mpeg1video data or raw mp2 audio data from a different
source, these functions can be used to decode the raw data directly. Similarly, 
if you only want to analyze an MPEG-PS file or extract raw video or audio
packets from it, you can use the plm_demux_* functions.


This library uses malloc(), realloc() and free() to manage memory. Typically 
all allocation happens up-front when creating the interface. However, the
default buffer size may be too small for certain inputs. In these cases plmpeg
will realloc() the buffer with a larger size whenever needed. You can configure
the default buffer size by defining PLM_BUFFER_DEFAULT_SIZE *before* 
including this library.


See below for detailed the API documentation.

*/


#ifndef PL_MPEG_H
#define PL_MPEG_H

#include <assert.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>


#ifdef __cplusplus
extern "C" {
#endif

// -----------------------------------------------------------------------------
// Public Data Types


// Object types for the various interfaces

typedef struct plm_t plm_t;
typedef struct plm_buffer_t plm_buffer_t;
typedef struct plm_demux_t plm_demux_t;
typedef struct plm_video_t plm_video_t;
typedef struct plm_audio_t plm_audio_t;


// Demuxed MPEG PS packet
// The type maps directly to the various MPEG-PES start codes. PTS is the
// presentation time stamp of the packet in seconds. Note that not all packets
// have a PTS value, indicated by PLM_PACKET_INVALID_TS.

#define PLM_PACKET_INVALID_TS -1

typedef struct {
	int type;
	double pts;
	size_t length;
	uint8_t *data;
} plm_packet_t;


// Decoded Video Plane 
// The byte length of the data is width * height. Note that different planes
// have different sizes: the Luma plane (Y) is double the size of each of 
// the two Chroma planes (Cr, Cb) - i.e. 4 times the byte length.
// Also note that the size of the plane does *not* denote the size of the 
// displayed frame. The sizes of planes are always rounded up to the nearest
// macroblock (16px).

typedef struct {
	unsigned int width;
	unsigned int height;
	uint8_t *data;
} plm_plane_t;


// Decoded Video Frame
// width and height denote the desired display size of the frame. This may be
// different from the internal size of the 3 planes.

typedef struct {
	double time;
	unsigned int width;
	unsigned int height;
	plm_plane_t y;
	plm_plane_t cr;
	plm_plane_t cb;
} plm_frame_t;


// Callback function type for decoded video frames used by the high-level
// plm_* interface

typedef void(*plm_video_decode_callback)
	(plm_t *self, plm_frame_t *frame, void *user);

// Callback function for the video decoder once a picture header has been decoded

typedef void(*plm_video_decode_picture_header_callback)
	(plm_video_t *self, void *user);

// Decoded Audio Samples
// Samples are stored as normalized (-1, 1) float either interleaved, or if
// PLM_AUDIO_SEPARATE_CHANNELS is defined, in two separate arrays.
// The `count` is always PLM_AUDIO_SAMPLES_PER_FRAME and just there for
// convenience.

#define PLM_AUDIO_SAMPLES_PER_FRAME 1152

typedef struct {
	double time;
	unsigned int count;
	#ifdef PLM_AUDIO_SEPARATE_CHANNELS
		float left[PLM_AUDIO_SAMPLES_PER_FRAME];
		float right[PLM_AUDIO_SAMPLES_PER_FRAME];
	#else
		float interleaved[PLM_AUDIO_SAMPLES_PER_FRAME * 2];
	#endif
} plm_samples_t;


// Callback function type for decoded audio samples used by the high-level
// plm_* interface

typedef void(*plm_audio_decode_callback)
	(plm_t *self, plm_samples_t *samples, void *user);


// Callback function for plm_buffer when it needs more data

typedef void(*plm_buffer_load_callback)(plm_buffer_t *self, void *user);

// Callback function for plm_buffer when its requested to seek in virtual file mode

typedef void(*plm_buffer_seek_callback)(plm_buffer_t *self, void *user, size_t pos);


// -----------------------------------------------------------------------------
// plm_* public API
// High-Level API for loading/demuxing/decoding MPEG-PS data


// Create a plmpeg instance with a filename. Returns NULL if the file could not
// be opened.

plm_t *plm_create_with_filename(const char *filename);


// Create a plmpeg instance with a file handle. Pass TRUE to close_when_done to
// let plmpeg call fclose() on the handle when plm_destroy() is called.

plm_t *plm_create_with_file(FILE *fh, int close_when_done);


// Create a plmpeg instance with a pointer to memory as source. This assumes the
// whole file is in memory. The memory is not copied. Pass TRUE to 
// free_when_done to let plmpeg call free() on the pointer when plm_destroy() 
// is called.

plm_t *plm_create_with_memory(uint8_t *bytes, size_t length, int free_when_done);


// Create a plmpeg instance with a plm_buffer as source. Pass TRUE to
// destroy_when_done to let plmpeg call plm_buffer_destroy() on the buffer when
// plm_destroy() is called.

plm_t *plm_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done);


// Destroy a plmpeg instance and free all data.

void plm_destroy(plm_t *self);


// Get whether we have headers on all available streams and we can accurately
// report the number of video/audio streams, video dimensions, framerate and
// audio samplerate.
// This returns FALSE if the file is not an MPEG-PS file or - when not using a
// file as source - when not enough data is available yet.

int plm_has_headers(plm_t *self);


// Get or set whether video decoding is enabled. Default TRUE.

int plm_get_video_enabled(plm_t *self);
void plm_set_video_enabled(plm_t *self, int enabled);


// Get the number of video streams (0--1) reported in the system header.

int plm_get_num_video_streams(plm_t *self);


// Get the display width/height of the video stream.

int plm_get_width(plm_t *self);
int plm_get_height(plm_t *self);


// Get the framerate of the video stream in frames per second.

double plm_get_framerate(plm_t *self);


// Get or set whether audio decoding is enabled. Default TRUE.

int plm_get_audio_enabled(plm_t *self);
void plm_set_audio_enabled(plm_t *self, int enabled);


// Get the number of audio streams (0--4) reported in the system header.

int plm_get_num_audio_streams(plm_t *self);


// Set the desired audio stream (0--3). Default 0.

void plm_set_audio_stream(plm_t *self, int stream_index);


// Get the samplerate of the audio stream in samples per second.

int plm_get_samplerate(plm_t *self);


// Get or set the audio lead time in seconds - the time in which audio samples
// are decoded in advance (or behind) the video decode time. Typically this
// should be set to the duration of the buffer of the audio API that you use
// for output. E.g. for SDL2: (SDL_AudioSpec.samples / samplerate)

double plm_get_audio_lead_time(plm_t *self);
void plm_set_audio_lead_time(plm_t *self, double lead_time);


// Get the current internal time in seconds.

double plm_get_time(plm_t *self);


// Get the video duration of the underlying source in seconds.

double plm_get_duration(plm_t *self);


// Rewind all buffers back to the beginning.

void plm_rewind(plm_t *self);


// Get or set looping. Default FALSE.

int plm_get_loop(plm_t *self);
void plm_set_loop(plm_t *self, int loop);


// Get whether the file has ended. If looping is enabled, this will always
// return FALSE.

int plm_has_ended(plm_t *self);


// Set the callback for decoded video frames used with plm_decode(). If no 
// callback is set, video data will be ignored and not be decoded. The *user
// Parameter will be passed to your callback.

void plm_set_video_decode_callback(plm_t *self, plm_video_decode_callback fp, void *user);


// Set the callback for decoded audio samples used with plm_decode(). If no 
// callback is set, audio data will be ignored and not be decoded. The *user
// Parameter will be passed to your callback.

void plm_set_audio_decode_callback(plm_t *self, plm_audio_decode_callback fp, void *user);


// Advance the internal timer by seconds and decode video/audio up to this time.
// This will call the video_decode_callback and audio_decode_callback any number
// of times. A frame-skip is not implemented, i.e. everything up to current time
// will be decoded.

void plm_decode(plm_t *self, double seconds);


// Decode and return one video frame. Returns NULL if no frame could be decoded
// (either because the source ended or data is corrupt). If you only want to 
// decode video, you should disable audio via plm_set_audio_enabled().
// The returned plm_frame_t is valid until the next call to plm_decode_video() 
// or until plm_destroy() is called.

plm_frame_t *plm_decode_video(plm_t *self);


// Decode and return one audio frame. Returns NULL if no frame could be decoded
// (either because the source ended or data is corrupt). If you only want to 
// decode audio, you should disable video via plm_set_video_enabled().
// The returned plm_samples_t is valid until the next call to plm_decode_audio()
// or until plm_destroy() is called.

plm_samples_t *plm_decode_audio(plm_t *self);


// Seek to the specified time, clamped between 0 -- duration. This can only be 
// used when the underlying plm_buffer is seekable, i.e. for files, fixed 
// memory buffers or _for_appending buffers. 
// If seek_exact is TRUE this will seek to the exact time, otherwise it will 
// seek to the last intra frame just before the desired time. Exact seeking can 
// be slow, because all frames up to the seeked one have to be decoded on top of
// the previous intra frame.
// If seeking succeeds, this function will call the video_decode_callback 
// exactly once with the target frame. If audio is enabled, it will also call
// the audio_decode_callback any number of times, until the audio_lead_time is
// satisfied.
// Returns TRUE if seeking succeeded or FALSE if no frame could be found.

int plm_seek(plm_t *self, double time, int seek_exact);


// Similar to plm_seek(), but will not call the video_decode_callback,
// audio_decode_callback or make any attempts to sync audio.
// Returns the found frame or NULL if no frame could be found.

plm_frame_t *plm_seek_frame(plm_t *self, double time, int seek_exact);



// -----------------------------------------------------------------------------
// plm_buffer public API
// Provides the data source for all other plm_* interfaces


// The default size for buffers created from files or by the high-level API

#ifndef PLM_BUFFER_DEFAULT_SIZE
#define PLM_BUFFER_DEFAULT_SIZE (128 * 1024)
#endif


// Create a buffer instance with a filename. Returns NULL if the file could not
// be opened.

plm_buffer_t *plm_buffer_create_with_filename(const char *filename);


// Create a buffer instance with a file handle. Pass TRUE to close_when_done
// to let plmpeg call fclose() on the handle when plm_destroy() is called.

plm_buffer_t *plm_buffer_create_with_file(FILE *fh, int close_when_done);

// Create a buffer instance operating like a file, but instead using callbacks
// in place of the FILE API f*() functions.... Pass TRUE to close_when_done
// to let plmpeg call fclose() on the handle when plm_destroy() is called.

plm_buffer_t *plm_buffer_create_with_virtual_file(plm_buffer_load_callback load_fp, plm_buffer_seek_callback seek_fp, void *user, size_t file_size);

// Create a buffer instance with a pointer to memory as source. This assumes
// the whole file is in memory. The bytes are not copied. Pass 1 to 
// free_when_done to let plmpeg call free() on the pointer when plm_destroy() 
// is called.

plm_buffer_t *plm_buffer_create_with_memory(uint8_t *bytes, size_t length, int free_when_done);


// Create an empty buffer with an initial capacity. The buffer will grow
// as needed. Data that has already been read, will be discarded.

plm_buffer_t *plm_buffer_create_with_capacity(size_t capacity);


// Create an empty buffer with an initial capacity. The buffer will grow
// as needed. Decoded data will *not* be discarded. This can be used when
// loading a file over the network, without needing to throttle the download. 
// It also allows for seeking in the already loaded data.

plm_buffer_t *plm_buffer_create_for_appending(size_t initial_capacity);


// Destroy a buffer instance and free all data

void plm_buffer_destroy(plm_buffer_t *self);


// Copy data into the buffer. If the data to be written is larger than the 
// available space, the buffer will realloc() with a larger capacity. 
// Returns the number of bytes written. This will always be the same as the
// passed in length, except when the buffer was created _with_memory() for
// which _write() is forbidden.

size_t plm_buffer_write(plm_buffer_t *self, uint8_t *bytes, size_t length);


// Mark the current byte length as the end of this buffer and signal that no 
// more data is expected to be written to it. This function should be called
// just after the last plm_buffer_write().
// For _with_capacity buffers, this is cleared on a plm_buffer_rewind().

void plm_buffer_signal_end(plm_buffer_t *self);


// Set a callback that is called whenever the buffer needs more data

void plm_buffer_set_load_callback(plm_buffer_t *self, plm_buffer_load_callback fp, void *user);


// Rewind the buffer back to the beginning. When loading from a file handle,
// this also seeks to the beginning of the file.

void plm_buffer_rewind(plm_buffer_t *self);


// Get the total size. For files, this returns the file size. For all other 
// types it returns the number of bytes currently in the buffer.

size_t plm_buffer_get_size(plm_buffer_t *self);


// Get the number of remaining (yet unread) bytes in the buffer. This can be
// useful to throttle writing.

size_t plm_buffer_get_remaining(plm_buffer_t *self);


// Get whether the read position of the buffer is at the end and no more data 
// is expected.

int plm_buffer_has_ended(plm_buffer_t *self);



// -----------------------------------------------------------------------------
// plm_demux public API
// Demux an MPEG Program Stream (PS) data into separate packages


// Various Packet Types

static const int PLM_DEMUX_PACKET_PRIVATE = 0xBD;
static const int PLM_DEMUX_PACKET_AUDIO_1 = 0xC0;
static const int PLM_DEMUX_PACKET_AUDIO_2 = 0xC1;
static const int PLM_DEMUX_PACKET_AUDIO_3 = 0xC2;
static const int PLM_DEMUX_PACKET_AUDIO_4 = 0xC2;
static const int PLM_DEMUX_PACKET_VIDEO_1 = 0xE0;
static const int PLM_DEMUX_PROGRAM_END    = 0xB9;


// Create a demuxer with a plm_buffer as source. This will also attempt to read
// the pack and system headers from the buffer.

plm_demux_t *plm_demux_create(plm_buffer_t *buffer, int destroy_when_done);


// Destroy a demuxer and free all data.

void plm_demux_destroy(plm_demux_t *self);


// Returns TRUE/FALSE whether pack and system headers have been found. This will
// attempt to read the headers if non are present yet.

int plm_demux_has_headers(plm_demux_t *self);


// Returns the number of video streams found in the system header. This will
// attempt to read the system header if non is present yet.

int plm_demux_get_num_video_streams(plm_demux_t *self);


// Returns the number of audio streams found in the system header. This will
// attempt to read the system header if non is present yet.

int plm_demux_get_num_audio_streams(plm_demux_t *self);


// Rewind the internal buffer. See plm_buffer_rewind().

void plm_demux_rewind(plm_demux_t *self);


// Get whether the file has ended. This will be cleared on seeking or rewind.

int plm_demux_has_ended(plm_demux_t *self);


// Seek to a packet of the specified type with a PTS just before specified time.
// If force_intra is TRUE, only packets containing an intra frame will be 
// considered - this only makes sense when the type is PLM_DEMUX_PACKET_VIDEO_1.
// Note that the specified time is considered 0-based, regardless of the first 
// PTS in the data source.

plm_packet_t *plm_demux_seek(plm_demux_t *self, double time, int type, int force_intra);


// Get the PTS of the first packet of this type. Returns PLM_PACKET_INVALID_TS
// if not packet of this packet type can be found.

double plm_demux_get_start_time(plm_demux_t *self, int type);


// Get the duration for the specified packet type - i.e. the span between the
// the first PTS and the last PTS in the data source. This only makes sense when
// the underlying data source is a file or fixed memory.

double plm_demux_get_duration(plm_demux_t *self, int type);


// Decode and return the next packet. The returned packet_t is valid until
// the next call to plm_demux_decode() or until the demuxer is destroyed.

plm_packet_t *plm_demux_decode(plm_demux_t *self);

// Get whether the demux "stop on program end" flag is set

int plm_demux_get_stop_on_program_end(plm_demux_t *self);

// Sets demux "stop on program end" flag

void plm_demux_set_stop_on_program_end(plm_demux_t *self, int stop_on_program_end);



// -----------------------------------------------------------------------------
// plm_video public API
// Decode MPEG1 Video ("mpeg1") data into raw YCrCb frames


// Create a video decoder with a plm_buffer as source.

plm_video_t *plm_video_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done);


// Destroy a video decoder and free all data.

void plm_video_destroy(plm_video_t *self);


// Get whether a sequence header was found and we can accurately report on
// dimensions and framerate.

int plm_video_has_header(plm_video_t *self);


// Get the framerate in frames per second.

double plm_video_get_framerate(plm_video_t *self);


// Get the display width/height.

int plm_video_get_width(plm_video_t *self);
int plm_video_get_height(plm_video_t *self);


// Set "no delay" mode. When enabled, the decoder assumes that the video does
// *not* contain any B-Frames. This is useful for reducing lag when streaming.
// The default is FALSE.

void plm_video_set_no_delay(plm_video_t *self, int no_delay);


// Get the current internal time in seconds.

double plm_video_get_time(plm_video_t *self);


// Set the current internal time in seconds. This is only useful when you
// manipulate the underlying video buffer and want to enforce a correct
// timestamps.

void plm_video_set_time(plm_video_t *self, double time);


// Rewind the internal buffer. See plm_buffer_rewind().

void plm_video_rewind(plm_video_t *self);


// Get whether the file has ended. This will be cleared on rewind.

int plm_video_has_ended(plm_video_t *self);


// Decode and return one frame of video and advance the internal time by 
// 1/framerate seconds. The returned frame_t is valid until the next call of
// plm_video_decode() or until the video decoder is destroyed.

plm_frame_t *plm_video_decode(plm_video_t *self);


// Set a callback that is called whenever a picture header is decoded

void plm_video_set_decode_picture_header_callback(plm_video_t *self, plm_video_decode_picture_header_callback fp, void *user);


// Convert the YCrCb data of a frame into interleaved R G B data. The stride
// specifies the width in bytes of the destination buffer. I.e. the number of
// bytes from one line to the next. The stride must be at least 
// (frame->width * bytes_per_pixel). The buffer pointed to by *dest must have a
// size of at least (stride * frame->height).
// Note that the alpha component of the dest buffer is always left untouched.

void plm_frame_to_rgb(plm_frame_t *frame, uint8_t *dest, int stride);
void plm_frame_to_bgr(plm_frame_t *frame, uint8_t *dest, int stride);
void plm_frame_to_rgba(plm_frame_t *frame, uint8_t *dest, int stride);
void plm_frame_to_bgra(plm_frame_t *frame, uint8_t *dest, int stride);
void plm_frame_to_argb(plm_frame_t *frame, uint8_t *dest, int stride);
void plm_frame_to_abgr(plm_frame_t *frame, uint8_t *dest, int stride);


// -----------------------------------------------------------------------------
// plm_audio public API
// Decode MPEG-1 Audio Layer II ("mp2") data into raw samples


// Create an audio decoder with a plm_buffer as source.

plm_audio_t *plm_audio_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done);


// Destroy an audio decoder and free all data.

void plm_audio_destroy(plm_audio_t *self);


// Get whether a frame header was found and we can accurately report on
// samplerate.

int plm_audio_has_header(plm_audio_t *self);


// Get the samplerate in samples per second.

int plm_audio_get_samplerate(plm_audio_t *self);


// Get the current internal time in seconds.

double plm_audio_get_time(plm_audio_t *self);


// Set the current internal time in seconds. This is only useful when you
// manipulate the underlying video buffer and want to enforce a correct
// timestamps.

void plm_audio_set_time(plm_audio_t *self, double time);


// Rewind the internal buffer. See plm_buffer_rewind().

void plm_audio_rewind(plm_audio_t *self);


// Get whether the file has ended. This will be cleared on rewind.

int plm_audio_has_ended(plm_audio_t *self);


// Decode and return one "frame" of audio and advance the internal time by 
// (PLM_AUDIO_SAMPLES_PER_FRAME/samplerate) seconds. The returned samples_t 
// is valid until the next call of plm_audio_decode() or until the audio
// decoder is destroyed.

plm_samples_t *plm_audio_decode(plm_audio_t *self);



#ifdef __cplusplus
}
#endif

#endif // PL_MPEG_H





// -----------------------------------------------------------------------------
// -----------------------------------------------------------------------------
// IMPLEMENTATION

#ifdef PL_MPEG_IMPLEMENTATION

#include <string.h>
#include <stdlib.h>

#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif

#define PLM_UNUSED(expr) (void)(expr)


// -----------------------------------------------------------------------------
// plm (high-level interface) implementation

typedef struct plm_t {
	plm_demux_t *demux;
	double time;
	int has_ended;
	int loop;
	int has_decoders;

	int video_enabled;
	int video_packet_type;
	plm_buffer_t *video_buffer;
	plm_video_t *video_decoder;

	int audio_enabled;
	int audio_stream_index;
	int audio_packet_type;
	double audio_lead_time;
	plm_buffer_t *audio_buffer;
	plm_audio_t *audio_decoder;

	plm_video_decode_callback video_decode_callback;
	void *video_decode_callback_user_data;

	plm_audio_decode_callback audio_decode_callback;
	void *audio_decode_callback_user_data;
} plm_t;

int plm_init_decoders(plm_t *self);
void plm_handle_end(plm_t *self);
void plm_read_video_packet(plm_buffer_t *buffer, void *user);
void plm_read_audio_packet(plm_buffer_t *buffer, void *user);
void plm_read_packets(plm_t *self, int requested_type);

plm_t *plm_create_with_filename(const char *filename) {
	plm_buffer_t *buffer = plm_buffer_create_with_filename(filename);
	if (!buffer) {
		return NULL;
	}
	return plm_create_with_buffer(buffer, TRUE);
}

plm_t *plm_create_with_file(FILE *fh, int close_when_done) {
	plm_buffer_t *buffer = plm_buffer_create_with_file(fh, close_when_done);
	return plm_create_with_buffer(buffer, TRUE);
}

plm_t *plm_create_with_memory(uint8_t *bytes, size_t length, int free_when_done) {
	plm_buffer_t *buffer = plm_buffer_create_with_memory(bytes, length, free_when_done);
	return plm_create_with_buffer(buffer, TRUE);
}

plm_t *plm_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done) {
	plm_t *self = (plm_t *)malloc(sizeof(plm_t));
	if (self == NULL)
		return NULL;

	memset(self, 0, sizeof(plm_t));
	self->demux = plm_demux_create(buffer, destroy_when_done);
	self->video_enabled = TRUE;
	self->audio_enabled = TRUE;
	plm_init_decoders(self);

	return self;
}

int plm_init_decoders(plm_t *self) {
	if (self->has_decoders) {
		return TRUE;
	}

	if (!plm_demux_has_headers(self->demux)) {
		return FALSE;
	}

	//always allocate a video decoder regardless how many streams are declared in the MPEG system header
	if (self->video_enabled) {
		self->video_packet_type = PLM_DEMUX_PACKET_VIDEO_1;
	}
	self->video_buffer = plm_buffer_create_with_capacity(PLM_BUFFER_DEFAULT_SIZE);
	plm_buffer_set_load_callback(self->video_buffer, plm_read_video_packet, self);
	self->video_decoder = plm_video_create_with_buffer(self->video_buffer, TRUE);

	//always allocate an audio decoder regardless how many streams are declared in the MPEG system header
	if (self->audio_enabled) {
		self->audio_packet_type = PLM_DEMUX_PACKET_AUDIO_1 + self->audio_stream_index;
	}
	self->audio_buffer = plm_buffer_create_with_capacity(PLM_BUFFER_DEFAULT_SIZE);
	plm_buffer_set_load_callback(self->audio_buffer, plm_read_audio_packet, self);
	self->audio_decoder = plm_audio_create_with_buffer(self->audio_buffer, TRUE);

	self->has_decoders = TRUE;
	return TRUE;
}

void plm_destroy(plm_t *self) {
	if (self->video_decoder) {
		plm_video_destroy(self->video_decoder);
	}
	if (self->audio_decoder) {
		plm_audio_destroy(self->audio_decoder);
	}

	plm_demux_destroy(self->demux);
	free(self);
}

int plm_get_audio_enabled(plm_t *self) {
	return self->audio_enabled;
}

int plm_has_headers(plm_t *self) {
	if (!plm_demux_has_headers(self->demux)) {
		return FALSE;
	}
	
	if (!plm_init_decoders(self)) {
		return FALSE;
	}

	if (
		(self->video_decoder && !plm_video_has_header(self->video_decoder)) ||
		(self->audio_decoder && !plm_audio_has_header(self->audio_decoder))
	) {
		return FALSE;
	}

	return TRUE;
}

void plm_set_audio_enabled(plm_t *self, int enabled) {
	self->audio_enabled = enabled;

	if (!enabled) {
		self->audio_packet_type = 0;
		return;
	}

	self->audio_packet_type = (plm_init_decoders(self) && self->audio_decoder)
		? PLM_DEMUX_PACKET_AUDIO_1 + self->audio_stream_index
		: 0;
}

void plm_set_audio_stream(plm_t *self, int stream_index) {
	if (stream_index < 0 || stream_index > 3) {
		return;
	}
	self->audio_stream_index = stream_index;

	// Set the correct audio_packet_type
	plm_set_audio_enabled(self, self->audio_enabled);
}

int plm_get_video_enabled(plm_t *self) {
	return self->video_enabled;
}

void plm_set_video_enabled(plm_t *self, int enabled) {
	self->video_enabled = enabled;

	if (!enabled) {
		self->video_packet_type = 0;
		return;
	}

	self->video_packet_type = (plm_init_decoders(self) && self->video_decoder)
		? PLM_DEMUX_PACKET_VIDEO_1
		: 0;
}

int plm_get_num_video_streams(plm_t *self) {
	return plm_demux_get_num_video_streams(self->demux);
}

int plm_get_width(plm_t *self) {
	return (plm_init_decoders(self) && self->video_decoder)
		? plm_video_get_width(self->video_decoder)
		: 0;
}

int plm_get_height(plm_t *self) {
	return (plm_init_decoders(self) && self->video_decoder)
		? plm_video_get_height(self->video_decoder)
		: 0;
}

double plm_get_framerate(plm_t *self) {
	return (plm_init_decoders(self) && self->video_decoder)
		? plm_video_get_framerate(self->video_decoder)
		: 0;
}

int plm_get_num_audio_streams(plm_t *self) {
	return plm_demux_get_num_audio_streams(self->demux);
}

int plm_get_samplerate(plm_t *self) {
	return (plm_init_decoders(self) && self->audio_decoder)
		? plm_audio_get_samplerate(self->audio_decoder)
		: 0;
}

double plm_get_audio_lead_time(plm_t *self) {
	return self->audio_lead_time;
}

void plm_set_audio_lead_time(plm_t *self, double lead_time) {
	self->audio_lead_time = lead_time;
}

double plm_get_time(plm_t *self) {
	return self->time;
}

double plm_get_duration(plm_t *self) {
	return plm_demux_get_duration(self->demux, PLM_DEMUX_PACKET_VIDEO_1);
}

void plm_rewind(plm_t *self) {
	if (self->video_decoder) {
		plm_video_rewind(self->video_decoder);
	}

	if (self->audio_decoder) {
		plm_audio_rewind(self->audio_decoder);
	}

	plm_demux_rewind(self->demux);
	self->time = 0;
}

int plm_get_loop(plm_t *self) {
	return self->loop;
}

void plm_set_loop(plm_t *self, int loop) {
	self->loop = loop;
}

int plm_has_ended(plm_t *self) {
	return self->has_ended;
}

void plm_set_video_decode_callback(plm_t *self, plm_video_decode_callback fp, void *user) {
	self->video_decode_callback = fp;
	self->video_decode_callback_user_data = user;
}

void plm_set_audio_decode_callback(plm_t *self, plm_audio_decode_callback fp, void *user) {
	self->audio_decode_callback = fp;
	self->audio_decode_callback_user_data = user;
}

void plm_decode(plm_t *self, double tick) {
	if (!plm_init_decoders(self)) {
		return;
	}

	int decode_video = (self->video_decode_callback && self->video_packet_type);
	int decode_audio = (self->audio_decode_callback && self->audio_packet_type);

	if (!decode_video && !decode_audio) {
		// Nothing to do here
		return;
	}

	int did_decode = FALSE;
	int decode_video_failed = FALSE;
	int decode_audio_failed = FALSE;

	double video_target_time = self->time + tick;
	double audio_target_time = self->time + tick + self->audio_lead_time;

	do {
		did_decode = FALSE;
		
		if (decode_video && plm_video_get_time(self->video_decoder) < video_target_time) {
			plm_frame_t *frame = plm_video_decode(self->video_decoder);
			if (frame) {
				self->video_decode_callback(self, frame, self->video_decode_callback_user_data);
				did_decode = TRUE;
			}
			else {
				decode_video_failed = TRUE;
			}
		}

		if (decode_audio && plm_audio_get_time(self->audio_decoder) < audio_target_time) {
			plm_samples_t *samples = plm_audio_decode(self->audio_decoder);
			if (samples) {
				self->audio_decode_callback(self, samples, self->audio_decode_callback_user_data);
				did_decode = TRUE;
			}
			else {
				decode_audio_failed = TRUE;
			}
		}
	} while (did_decode);
	
	// Did all sources we wanted to decode fail and the demuxer is at the end?
	if (
		(!decode_video || decode_video_failed) && 
		(!decode_audio || decode_audio_failed) &&
		plm_demux_has_ended(self->demux)
	) {
		plm_handle_end(self);
		return;
	}

	self->time += tick;
}

plm_frame_t *plm_decode_video(plm_t *self) {
	if (!plm_init_decoders(self)) {
		return NULL;
	}

	if (!self->video_packet_type) {
		return NULL;
	}

	plm_frame_t *frame = plm_video_decode(self->video_decoder);
	if (frame) {
		self->time = frame->time;
	}
	else if (plm_demux_has_ended(self->demux)) {
		plm_handle_end(self);
	}
	return frame;
}

plm_samples_t *plm_decode_audio(plm_t *self) {
	if (!plm_init_decoders(self)) {
		return NULL;
	}

	if (!self->audio_packet_type) {
		return NULL;
	}

	plm_samples_t *samples = plm_audio_decode(self->audio_decoder);
	if (samples) {
		self->time = samples->time;
	}
	else if (plm_demux_has_ended(self->demux)) {
		plm_handle_end(self);
	}
	return samples;
}

void plm_handle_end(plm_t *self) {
	if (self->loop) {
		plm_rewind(self);
	}
	else {
		self->has_ended = TRUE;
	}
}

void plm_read_video_packet(plm_buffer_t *buffer, void *user) {
	PLM_UNUSED(buffer);
	plm_t *self = (plm_t *)user;
	plm_read_packets(self, self->video_packet_type);
}

void plm_read_audio_packet(plm_buffer_t *buffer, void *user) {
	PLM_UNUSED(buffer);
	plm_t *self = (plm_t *)user;
	plm_read_packets(self, self->audio_packet_type);
}

void plm_read_packets(plm_t *self, int requested_type) {
	plm_packet_t *packet;
	while ((packet = plm_demux_decode(self->demux))) {
		if (packet->type == self->video_packet_type) {
			plm_buffer_write(self->video_buffer, packet->data, packet->length);
		}
		else if (packet->type == self->audio_packet_type) {
			plm_buffer_write(self->audio_buffer, packet->data, packet->length);
		}

		if (packet->type == requested_type) {
			return;
		}
	}

	if (plm_demux_has_ended(self->demux)) {
		if (self->video_buffer) {
			plm_buffer_signal_end(self->video_buffer);
		}
		if (self->audio_buffer) {
			plm_buffer_signal_end(self->audio_buffer);
		}
	}
}

plm_frame_t *plm_seek_frame(plm_t *self, double time, int seek_exact) {
	if (!plm_init_decoders(self)) {
		return NULL;
	}

	if (!self->video_packet_type) {
		return NULL;
	}

	int type = self->video_packet_type;

	double start_time = plm_demux_get_start_time(self->demux, type);
	double duration = plm_demux_get_duration(self->demux, type);

	if (time < 0) {
		time = 0;
	}
	else if (time > duration) {
		time = duration;
	}
	
	plm_packet_t *packet = plm_demux_seek(self->demux, time, type, TRUE);
	if (!packet) {
		return NULL;
	}

	// Disable writing to the audio buffer while decoding video
	int previous_audio_packet_type = self->audio_packet_type;
	self->audio_packet_type = 0;

	// Clear video buffer and decode the found packet
	plm_video_rewind(self->video_decoder);
	plm_video_set_time(self->video_decoder, packet->pts - start_time);
	plm_buffer_write(self->video_buffer, packet->data, packet->length);
	plm_frame_t *frame = plm_video_decode(self->video_decoder);	

	// If we want to seek to an exact frame, we have to decode all frames
	// on top of the intra frame we just jumped to.
	if (seek_exact) {
		while (frame && frame->time < time) {
			frame = plm_video_decode(self->video_decoder);
		}
	}

	// Enable writing to the audio buffer again?
	self->audio_packet_type = previous_audio_packet_type;

	if (frame) {
		self->time = frame->time;
	}

	self->has_ended = FALSE;
	return frame;
}

int plm_seek(plm_t *self, double time, int seek_exact) {
	plm_frame_t *frame = plm_seek_frame(self, time, seek_exact);
	
	if (!frame) {
		return FALSE;
	}

	if (self->video_decode_callback) {
		self->video_decode_callback(self, frame, self->video_decode_callback_user_data);	
	}

	// If audio is not enabled we are done here.
	if (!self->audio_packet_type) {
		return TRUE;
	}

	// Sync up Audio. This demuxes more packets until the first audio packet
	// with a PTS greater than the current time is found. plm_decode() is then
	// called to decode enough audio data to satisfy the audio_lead_time.

	double start_time = plm_demux_get_start_time(self->demux, self->video_packet_type);
	plm_audio_rewind(self->audio_decoder);

	plm_packet_t *packet = NULL;
	while ((packet = plm_demux_decode(self->demux))) {
		if (packet->type == self->video_packet_type) {
			plm_buffer_write(self->video_buffer, packet->data, packet->length);
		}
		else if (
			packet->type == self->audio_packet_type &&
			packet->pts - start_time > self->time
		) {
			plm_audio_set_time(self->audio_decoder, packet->pts - start_time);
			plm_buffer_write(self->audio_buffer, packet->data, packet->length);
			plm_decode(self, 0);
			break;
		}
	}	
	
	return TRUE;
}



// -----------------------------------------------------------------------------
// plm_buffer implementation

enum plm_buffer_mode {
	PLM_BUFFER_MODE_FILE, //if seek_callback != NULL then mode is virtual file...
	PLM_BUFFER_MODE_FIXED_MEM,
	PLM_BUFFER_MODE_RING,
	PLM_BUFFER_MODE_APPEND
};

typedef struct plm_buffer_t {
	size_t bit_index;
	size_t capacity;
	size_t length;
	size_t total_size;
	size_t file_pos;
	int discard_read_bytes;
	int has_ended;
	int free_when_done;
	int close_when_done;
	FILE *fh;
	plm_buffer_load_callback load_callback;
	plm_buffer_seek_callback seek_callback; //not NULL when in "virtual file" mode...
	void *load_callback_user_data;
	uint8_t *bytes;
	enum plm_buffer_mode mode;
} plm_buffer_t;

typedef struct {
	int16_t index;
	int16_t value;
} plm_vlc_t;

typedef struct {
	int16_t index;
	uint16_t value;
} plm_vlc_uint_t;


void plm_buffer_seek(plm_buffer_t *self, size_t pos);
size_t plm_buffer_tell(plm_buffer_t *self);
void plm_buffer_discard_read_bytes(plm_buffer_t *self);
void plm_buffer_load_file_callback(plm_buffer_t *self, void *user);

int plm_buffer_has(plm_buffer_t *self, size_t count);
int plm_buffer_read(plm_buffer_t *self, int count);
void plm_buffer_align(plm_buffer_t *self);
void plm_buffer_skip(plm_buffer_t *self, size_t count);
int plm_buffer_skip_bytes(plm_buffer_t *self, uint8_t v);
int plm_buffer_next_start_code(plm_buffer_t *self);
int plm_buffer_find_start_code(plm_buffer_t *self, int code);
int plm_buffer_no_start_code(plm_buffer_t *self);
int16_t plm_buffer_read_vlc(plm_buffer_t *self, const plm_vlc_t *table);
uint16_t plm_buffer_read_vlc_uint(plm_buffer_t *self, const plm_vlc_uint_t *table);

plm_buffer_t *plm_buffer_create_with_filename(const char *filename) {
	FILE *fh = fopen(filename, "rb");
	if (!fh) {
		return NULL;
	}
	return plm_buffer_create_with_file(fh, TRUE);
}

plm_buffer_t *plm_buffer_create_with_file(FILE *fh, int close_when_done) {
	plm_buffer_t *self = plm_buffer_create_with_capacity(PLM_BUFFER_DEFAULT_SIZE);
	if (self == NULL)
		return NULL;

	self->fh = fh;
	self->close_when_done = close_when_done;
	self->mode = PLM_BUFFER_MODE_FILE;
	self->discard_read_bytes = TRUE;
	
	fseek(self->fh, 0, SEEK_END);
	self->total_size = ftell(self->fh);
	fseek(self->fh, 0, SEEK_SET);

	plm_buffer_set_load_callback(self, plm_buffer_load_file_callback, NULL);
	return self;
}

plm_buffer_t *plm_buffer_create_with_virtual_file(plm_buffer_load_callback load_fp, plm_buffer_seek_callback seek_fp, void *user, size_t file_size) {
	plm_buffer_t *self = plm_buffer_create_with_capacity(PLM_BUFFER_DEFAULT_SIZE);
	if (self == NULL)
		return NULL;

	self->mode = PLM_BUFFER_MODE_FILE;
	self->discard_read_bytes = TRUE;
	self->total_size = file_size;
	plm_buffer_set_load_callback(self, load_fp, user);
	self->seek_callback = seek_fp; //setting this to non-NULL makes it a virtual file
	return self;
}

plm_buffer_t *plm_buffer_create_with_memory(uint8_t *bytes, size_t length, int free_when_done) {
	plm_buffer_t *self = (plm_buffer_t *)malloc(sizeof(plm_buffer_t));
	if (self == NULL)
		return NULL;

	memset(self, 0, sizeof(plm_buffer_t));
	self->capacity = length;
	self->length = length;
	self->total_size = length;
	self->free_when_done = free_when_done;
	self->bytes = bytes;
	self->mode = PLM_BUFFER_MODE_FIXED_MEM;
	self->discard_read_bytes = FALSE;
	return self;
}

plm_buffer_t *plm_buffer_create_with_capacity(size_t capacity) {
	plm_buffer_t *self = (plm_buffer_t *)malloc(sizeof(plm_buffer_t));
	if (self == NULL)
		return NULL;

	memset(self, 0, sizeof(plm_buffer_t));
	self->capacity = capacity;
	self->free_when_done = TRUE;
	self->bytes = (uint8_t *)malloc(capacity);
	self->mode = PLM_BUFFER_MODE_RING;
	self->discard_read_bytes = TRUE;
	return self;
}

plm_buffer_t *plm_buffer_create_for_appending(size_t initial_capacity) {
	plm_buffer_t *self = plm_buffer_create_with_capacity(initial_capacity);
	if (self == NULL)
		return NULL;

	self->mode = PLM_BUFFER_MODE_APPEND;
	self->discard_read_bytes = FALSE;
	return self;
}

void plm_buffer_destroy(plm_buffer_t *self) {
	if (self->fh && self->close_when_done) {
		fclose(self->fh);
	}
	if (self->free_when_done) {
		free(self->bytes);
	}
	free(self);
}

size_t plm_buffer_get_size(plm_buffer_t *self) {
	return (self->mode == PLM_BUFFER_MODE_FILE)
		? self->total_size
		: self->length;
}

size_t plm_buffer_get_remaining(plm_buffer_t *self) {
	return self->length - (self->bit_index >> 3);
}

size_t plm_buffer_write(plm_buffer_t *self, uint8_t *bytes, size_t length) {
	if (self->mode == PLM_BUFFER_MODE_FIXED_MEM) {
		return 0;
	}

	if (self->discard_read_bytes) {
		// This should be a ring buffer, but instead it just shifts all unread 
		// data to the beginning of the buffer and appends new data at the end. 
		// Seems to be good enough.

		plm_buffer_discard_read_bytes(self);
		if (self->mode == PLM_BUFFER_MODE_RING) {
			self->total_size = 0;
		}
	}

	// Do we have to resize to fit the new data?
	size_t bytes_available = self->capacity - self->length;
	if (bytes_available < length) {
		size_t new_size = self->capacity;
		do {
			new_size *= 2;
		} while (new_size - self->length < length);
		const auto tmp = (uint8_t *)realloc(self->bytes, new_size);
		if (tmp == NULL) {
			return 0;
		}
		self->bytes = tmp;
		self->capacity = new_size;
	}

	memcpy(self->bytes + self->length, bytes, length);
	self->length += length;
	self->has_ended = FALSE;
	return length;
}

void plm_buffer_signal_end(plm_buffer_t *self) {
	self->total_size = self->length;
}

void plm_buffer_set_load_callback(plm_buffer_t *self, plm_buffer_load_callback fp, void *user) {
	self->load_callback = fp;
	self->load_callback_user_data = user;
}

void plm_buffer_rewind(plm_buffer_t *self) {
	plm_buffer_seek(self, 0);
}

void plm_buffer_seek(plm_buffer_t *self, size_t pos) {
	self->has_ended = FALSE;

	if (self->mode == PLM_BUFFER_MODE_FILE) {
		if (self->seek_callback)
			(*self->seek_callback)(self, self->load_callback_user_data, pos);
		else
			fseek(self->fh, pos, SEEK_SET);
		self->bit_index = 0;
		self->length = 0;
		self->file_pos = pos;
	}
	else if (self->mode == PLM_BUFFER_MODE_RING) {
		if (pos != 0) {
			// Seeking to non-0 is forbidden for dynamic-mem buffers
			return; 
		}
		self->bit_index = 0;
		self->length = 0;
		self->total_size = 0;
	}
	else if (pos < self->length) {
		self->bit_index = pos << 3;
	}
}

size_t plm_buffer_tell(plm_buffer_t *self) {
	return self->mode == PLM_BUFFER_MODE_FILE
		? self->file_pos + (self->bit_index >> 3)
		: self->bit_index >> 3;
}

void plm_buffer_discard_read_bytes(plm_buffer_t *self) {
	size_t byte_pos = self->bit_index >> 3;
	if (byte_pos >= self->length) {
		self->bit_index = 0;
		self->length = 0;
	}
	else if (byte_pos > 0) {
		memmove(self->bytes, self->bytes + byte_pos, self->length - byte_pos);
		self->bit_index -= byte_pos << 3;
		self->length -= byte_pos;
	}
	self->file_pos += byte_pos;
}

void plm_buffer_load_file_callback(plm_buffer_t *self, void *user) {
	PLM_UNUSED(user);
	
	if (self->discard_read_bytes) {
		plm_buffer_discard_read_bytes(self);
	}

	size_t bytes_available = self->capacity - self->length;
	size_t bytes_read = fread(self->bytes + self->length, 1, bytes_available, self->fh);
	self->length += bytes_read;

	if (bytes_read == 0) {
		self->has_ended = TRUE;
	}
}

int plm_buffer_has_ended(plm_buffer_t *self) {
	return self->has_ended;
}

int plm_buffer_has(plm_buffer_t *self, size_t count) {
	if (((self->length << 3) - self->bit_index) >= count) {
		return TRUE;
	}

	if (self->load_callback) {
		self->load_callback(self, self->load_callback_user_data);
		
		if (((self->length << 3) - self->bit_index) >= count) {
			return TRUE;
		}
	}	
	
	if (self->total_size != 0 && self->length == self->total_size) {
		self->has_ended = TRUE;
	}
	return FALSE;
}

int plm_buffer_read(plm_buffer_t *self, int count) {
	if (!plm_buffer_has(self, count)) {
		return 0;
	}

	int value = 0;
	while (count) {
		int current_byte = self->bytes[self->bit_index >> 3];

		int remaining = 8 - (self->bit_index & 7); // Remaining bits in byte
		int read = remaining < count ? remaining : count; // Bits in self run
		int shift = remaining - read;
		const int mask_shift = read < 8 ? (8 - read) : 0;
		const int mask = 0xff >> mask_shift;
		value = (value << read) | ((current_byte & (mask << shift)) >> shift);

		self->bit_index += read;
		count -= read;
	}

	return value;
}

void plm_buffer_align(plm_buffer_t *self) {
	self->bit_index = ((self->bit_index + 7) >> 3) << 3; // Align to next byte
}

void plm_buffer_skip(plm_buffer_t *self, size_t count) {
	if (plm_buffer_has(self, count)) {
		self->bit_index += count;
	}
}

int plm_buffer_skip_bytes(plm_buffer_t *self, uint8_t v) {
	plm_buffer_align(self);
	int skipped = 0;
	while (plm_buffer_has(self, 8) && self->bytes[self->bit_index >> 3] == v) {
		self->bit_index += 8;
		skipped++;
	}
	return skipped;
}

int plm_buffer_next_start_code(plm_buffer_t *self) {
	plm_buffer_align(self);

	while (plm_buffer_has(self, (5 << 3))) {
		size_t byte_index = (self->bit_index) >> 3;
		if (
			self->bytes[byte_index] == 0x00 &&
			self->bytes[byte_index + 1] == 0x00 &&
			self->bytes[byte_index + 2] == 0x01
		) {
			self->bit_index = (byte_index + 4) << 3;
			return self->bytes[byte_index + 3];
		}
		self->bit_index += 8;
	}
	return -1;
}

int plm_buffer_find_start_code(plm_buffer_t *self, int code) {
	int current = 0;
	while (TRUE) {
		current = plm_buffer_next_start_code(self);
		if (current == code || current == -1) {
			return current;
		}
	}
	return -1;
}

int plm_buffer_has_start_code(plm_buffer_t *self, int code) {
	size_t previous_bit_index = self->bit_index;
	int previous_discard_read_bytes = self->discard_read_bytes;
	
	self->discard_read_bytes = FALSE;
	int current = plm_buffer_find_start_code(self, code);

	self->bit_index = previous_bit_index;
	self->discard_read_bytes = previous_discard_read_bytes;
	return current;
}

int plm_buffer_peek_non_zero(plm_buffer_t *self, int bit_count) {
	if (!plm_buffer_has(self, bit_count)) {
		return FALSE;
	}

	int val = plm_buffer_read(self, bit_count);
	self->bit_index -= bit_count;
	return val != 0;
}

int16_t plm_buffer_read_vlc(plm_buffer_t *self, const plm_vlc_t *table) {
	plm_vlc_t state = {0, 0};
	do {
		state = table[state.index + plm_buffer_read(self, 1)];
	} while (state.index > 0);
	return state.value;
}

uint16_t plm_buffer_read_vlc_uint(plm_buffer_t *self, const plm_vlc_uint_t *table) {
	return (uint16_t)plm_buffer_read_vlc(self, (const plm_vlc_t *)table);
}



// ----------------------------------------------------------------------------
// plm_demux implementation

static const int PLM_START_PACK = 0xBA;
static const int PLM_START_END = 0xB9;
static const int PLM_START_SYSTEM = 0xBB;

typedef struct plm_demux_t {
	plm_buffer_t *buffer;
	int destroy_buffer_when_done;
	int stop_on_program_end;
	double system_clock_ref;

	size_t last_file_size;
	double last_decoded_pts;
	double start_time;
	double duration;

	int start_code;
	int has_pack_header;
	int has_system_header;
	int has_headers;

	int num_audio_streams;
	int num_video_streams;
	plm_packet_t current_packet;
	plm_packet_t next_packet;
} plm_demux_t;


void plm_demux_buffer_seek(plm_demux_t *self, size_t pos);
double plm_demux_decode_time(plm_demux_t *self);
plm_packet_t *plm_demux_decode_packet(plm_demux_t *self, int type);
plm_packet_t *plm_demux_get_packet(plm_demux_t *self);

plm_demux_t *plm_demux_create(plm_buffer_t *buffer, int destroy_when_done) {
	plm_demux_t *self = (plm_demux_t *)malloc(sizeof(plm_demux_t));
	if (self == NULL)
		return NULL;

	memset(self, 0, sizeof(plm_demux_t));

	self->buffer = buffer;
	self->destroy_buffer_when_done = destroy_when_done;

	self->start_time = PLM_PACKET_INVALID_TS;
	self->duration = PLM_PACKET_INVALID_TS;
	self->start_code = -1;

	plm_demux_has_headers(self);
	return self;
}

void plm_demux_destroy(plm_demux_t *self) {
	if (self->destroy_buffer_when_done) {
		plm_buffer_destroy(self->buffer);
	}
	free(self);
}

int plm_demux_has_headers(plm_demux_t *self) {
	if (self->has_headers) {
		return TRUE;
	}

	// Decode pack header
	if (!self->has_pack_header) {
		if (
			self->start_code != PLM_START_PACK &&
			plm_buffer_find_start_code(self->buffer, PLM_START_PACK) == -1
		) {
			return FALSE;
		}

		self->start_code = PLM_START_PACK;
		if (!plm_buffer_has(self->buffer, 64)) {
			return FALSE;
		}
		self->start_code = -1;

		if (plm_buffer_read(self->buffer, 4) != 0x02) {
			return FALSE;
		}

		self->system_clock_ref = plm_demux_decode_time(self);
		plm_buffer_skip(self->buffer, 1);
		plm_buffer_skip(self->buffer, 22); // mux_rate * 50
		plm_buffer_skip(self->buffer, 1);

		self->has_pack_header = TRUE;
	}

	// Decode system header
	if (!self->has_system_header) {
		if (
			self->start_code != PLM_START_SYSTEM &&
			plm_buffer_find_start_code(self->buffer, PLM_START_SYSTEM) == -1
		) {
			return FALSE;
		}

		self->start_code = PLM_START_SYSTEM;
		if (!plm_buffer_has(self->buffer, 56)) {
			return FALSE;
		}
		self->start_code = -1;

		plm_buffer_skip(self->buffer, 16); // header_length
		plm_buffer_skip(self->buffer, 24); // rate bound
		self->num_audio_streams = plm_buffer_read(self->buffer, 6);
		plm_buffer_skip(self->buffer, 5); // misc flags
		self->num_video_streams = plm_buffer_read(self->buffer, 5);

		self->has_system_header = TRUE;
	}

	self->has_headers = TRUE;
	return TRUE;
}

int plm_demux_get_num_video_streams(plm_demux_t *self) {
	return plm_demux_has_headers(self)
		? self->num_video_streams
		: 0;
}

int plm_demux_get_num_audio_streams(plm_demux_t *self) {
	return plm_demux_has_headers(self)
		? self->num_audio_streams
		: 0;
}

void plm_demux_rewind(plm_demux_t *self) {
	plm_buffer_rewind(self->buffer);
	self->current_packet.length = 0;
	self->next_packet.length = 0;
	self->start_code = -1;
}

int plm_demux_has_ended(plm_demux_t *self) {
	return plm_buffer_has_ended(self->buffer);
}

void plm_demux_buffer_seek(plm_demux_t *self, size_t pos) {
	plm_buffer_seek(self->buffer, pos);
	self->current_packet.length = 0;
	self->next_packet.length = 0;
	self->start_code = -1;
}

double plm_demux_get_start_time(plm_demux_t *self, int type) {
	if (self->start_time != PLM_PACKET_INVALID_TS) {
		return self->start_time;
	}

	const auto previous_pos = plm_buffer_tell(self->buffer);
	int previous_start_code = self->start_code;
	
	// Find first video PTS
	plm_demux_rewind(self);
	do {
		plm_packet_t *packet = plm_demux_decode(self);
		if (!packet) {
			break;
		}
		if (packet->type == type) {
			self->start_time = packet->pts;
		}
	} while (self->start_time == PLM_PACKET_INVALID_TS);

	plm_demux_buffer_seek(self, previous_pos);
	self->start_code = previous_start_code;
	return self->start_time;
}

double plm_demux_get_duration(plm_demux_t *self, int type) {
	size_t file_size = plm_buffer_get_size(self->buffer);

	if (
		self->duration != PLM_PACKET_INVALID_TS &&
		self->last_file_size == file_size
	) {
		return self->duration;
	}

	size_t previous_pos = plm_buffer_tell(self->buffer);
	int previous_start_code = self->start_code;
	
	// Find last video PTS. Start searching 64kb from the end and go further 
	// back if needed.
	long start_range = 64 * 1024;
	long max_range = 4096 * 1024;
	for (long range = start_range; range <= max_range; range *= 2) {
		long seek_pos = file_size - range;
		if (seek_pos < 0) {
			seek_pos = 0;
			range = max_range; // Make sure to bail after this round
		}
		plm_demux_buffer_seek(self, seek_pos);
		self->current_packet.length = 0;

		double last_pts = PLM_PACKET_INVALID_TS;
		plm_packet_t *packet = NULL;
		while ((packet = plm_demux_decode(self))) {
			if (packet->pts != PLM_PACKET_INVALID_TS && packet->type == type) {
				last_pts = packet->pts;
			}
		}
		if (last_pts != PLM_PACKET_INVALID_TS) {
			self->duration = last_pts - plm_demux_get_start_time(self, type);
			break;
		}
	}

	plm_demux_buffer_seek(self, previous_pos);
	self->start_code = previous_start_code;
	self->last_file_size = file_size;
	return self->duration;
}

plm_packet_t *plm_demux_seek(plm_demux_t *self, double seek_time, int type, int force_intra) {
	if (!plm_demux_has_headers(self)) {
		return NULL;
	}

	// Using the current time, current byte position and the average bytes per
	// second for this file, try to jump to a byte position that hopefully has
	// packets containing timestamps within one second before to the desired 
	// seek_time.

	// If we hit close to the seek_time scan through all packets to find the
	// last one (just before the seek_time) containing an intra frame.
	// Otherwise we should at least be closer than before. Calculate the bytes
	// per second for the jumped range and jump again.

	// The number of retries here is hard-limited to a generous amount. Usually
	// the correct range is found after 1--5 jumps, even for files with very 
	// variable bitrates. If significantly more jumps are needed, there's
	// probably something wrong with the file and we just avoid getting into an
	// infinite loop. 32 retries should be enough for anybody.

	double duration = plm_demux_get_duration(self, type);
	long file_size = plm_buffer_get_size(self->buffer);
	auto byterate = std::lround(static_cast<double>(file_size) / duration);

	double cur_time = self->last_decoded_pts;
	double scan_span = 1;

	if (seek_time > duration) {
		seek_time = duration;
	}
	else if (seek_time < 0) {
		seek_time = 0;
	}
	seek_time += self->start_time;

	for (int retry = 0; retry < 32; retry++) {
		int found_packet_with_pts = FALSE;
		int found_packet_in_range = FALSE;
		long last_valid_packet_start = -1;
		double first_packet_time = PLM_PACKET_INVALID_TS;

		long cur_pos = plm_buffer_tell(self->buffer);

		// Estimate byte offset and jump to it.
		long offset = std::lround((seek_time - cur_time - scan_span) * static_cast<double>(byterate));
		long seek_pos = cur_pos + offset;
		if (seek_pos < 0) {
			seek_pos = 0;
		}
		else if (seek_pos > file_size - 256) {
			seek_pos = file_size - 256;
		}

		plm_demux_buffer_seek(self, seek_pos);

		// Scan through all packets up to the seek_time to find the last packet
		// containing an intra frame.
		while (plm_buffer_find_start_code(self->buffer, type) != -1) {
			long packet_start = plm_buffer_tell(self->buffer);
			plm_packet_t *packet = plm_demux_decode_packet(self, type);

			// Skip packet if it has no PTS
			if (!packet || packet->pts == PLM_PACKET_INVALID_TS) {
				continue;
			}

			// Bail scanning through packets if we hit one that is outside
			// seek_time - scan_span.
			// We also adjust the cur_time and byterate values here so the next 
			// iteration can be a bit more precise.
			if (packet->pts > seek_time || packet->pts < seek_time - scan_span) {
				found_packet_with_pts = TRUE;
				byterate = std::lround(static_cast<double>(seek_pos - cur_pos) / (packet->pts - cur_time));
				cur_time = packet->pts;
				break;
			}

			// If we are still here, it means this packet is in close range to
			// the seek_time. If this is the first packet for this jump position
			// record the PTS. If we later have to back off, when there was no
			// intra frame in this range, we can lower the seek_time to not scan
			// this range again.
			if (!found_packet_in_range) {
				found_packet_in_range = TRUE;
				first_packet_time = packet->pts;
			}

			// Check if this is an intra frame packet. If so, record the buffer
			// position of the start of this packet. We want to jump back to it 
			// later, when we know it's the last intra frame before desired
			// seek time.
			if (force_intra) {
				for (size_t i = 0; i < packet->length - 6; i++) {
					// Find the START_PICTURE code
					if (
						packet->data[i] == 0x00 &&
						packet->data[i + 1] == 0x00 &&
						packet->data[i + 2] == 0x01 &&
						packet->data[i + 3] == 0x00
					) {
						// Bits 11--13 in the picture header contain the frame 
						// type, where 1=Intra
						if ((packet->data[i + 5] & 0x38) == 8) {
							last_valid_packet_start = packet_start;
						}
						break;
					}
				}
			}

			// If we don't want intra frames, just use the last PTS found.
			else {
				last_valid_packet_start = packet_start;
			}
		}

		// If there was at least one intra frame in the range scanned above,
		// our search is over. Jump back to the packet and decode it again.
		if (last_valid_packet_start != -1) {
			plm_demux_buffer_seek(self, last_valid_packet_start);
			return plm_demux_decode_packet(self, type);
		}

		// If we hit the right range, but still found no intra frame, we have
		// to increases the scan_span. This is done exponentially to also handle
		// video files with very few intra frames.
		else if (found_packet_in_range) {
			scan_span *= 2;
			seek_time = first_packet_time;
		}

		// If we didn't find any packet with a PTS, it probably means we reached
		// the end of the file. Estimate byterate and cur_time accordingly.
		else if (!found_packet_with_pts) {
			byterate = std::lround(static_cast<double>(seek_pos - cur_pos) / (duration - cur_time));
			cur_time = duration;
		}
	}

	return NULL;
}

plm_packet_t *plm_demux_decode(plm_demux_t *self) {
	if (!plm_demux_has_headers(self)) {
		return NULL;
	}

	if (self->current_packet.length) {
		size_t bits_till_next_packet = self->current_packet.length << 3;
		if (!plm_buffer_has(self->buffer, bits_till_next_packet)) {
			return NULL;
		}
		plm_buffer_skip(self->buffer, bits_till_next_packet);
		self->current_packet.length = 0;
	}

	// Pending packet waiting for data?
	if (self->next_packet.length) {
		return plm_demux_get_packet(self);
	}

	// Pending packet waiting for header?
	if (self->start_code != -1) {
		return plm_demux_decode_packet(self, self->start_code);
	}

	do {
		self->start_code = plm_buffer_next_start_code(self->buffer);
		if (
			self->start_code == PLM_DEMUX_PACKET_VIDEO_1 || 
			self->start_code == PLM_DEMUX_PACKET_PRIVATE || (
				self->start_code >= PLM_DEMUX_PACKET_AUDIO_1 && 
				self->start_code <= PLM_DEMUX_PACKET_AUDIO_4
			)
		) {
			return plm_demux_decode_packet(self, self->start_code);
		}
		else if (self->start_code == PLM_DEMUX_PROGRAM_END) {
			if (self->stop_on_program_end) return NULL;
		}
	} while (self->start_code != -1);

	return NULL;
}

int plm_demux_get_stop_on_program_end(plm_demux_t *self) {
	return self->stop_on_program_end;
}

void plm_demux_set_stop_on_program_end(plm_demux_t *self, int stop_on_program_end) {
	self->stop_on_program_end = stop_on_program_end;
}

double plm_demux_decode_time(plm_demux_t *self) {
	int64_t clock = static_cast<int64_t>(plm_buffer_read(self->buffer, 3)) << 30;
	plm_buffer_skip(self->buffer, 1);
	clock |= static_cast<int64_t>(plm_buffer_read(self->buffer, 15)) << 15;
	plm_buffer_skip(self->buffer, 1);
	clock |= plm_buffer_read(self->buffer, 15);
	plm_buffer_skip(self->buffer, 1);
	return (double)clock / 90000.0;
}

plm_packet_t *plm_demux_decode_packet(plm_demux_t *self, int type) {
	if (!plm_buffer_has(self->buffer, 16 << 3)) {
		return NULL;
	}

	self->start_code = -1;

	self->next_packet.type = type;
	self->next_packet.length = plm_buffer_read(self->buffer, 16);
	self->next_packet.length -= plm_buffer_skip_bytes(self->buffer, 0xff); // stuffing

	// skip P-STD
	if (plm_buffer_read(self->buffer, 2) == 0x01) {
		plm_buffer_skip(self->buffer, 16);
		self->next_packet.length -= 2;
	}

	int pts_dts_marker = plm_buffer_read(self->buffer, 2);
	if (pts_dts_marker == 0x03) {
		self->next_packet.pts = plm_demux_decode_time(self);
		self->last_decoded_pts = self->next_packet.pts;
		plm_buffer_skip(self->buffer, 40); // skip dts
		self->next_packet.length -= 10;
	}
	else if (pts_dts_marker == 0x02) {
		self->next_packet.pts = plm_demux_decode_time(self);
		self->last_decoded_pts = self->next_packet.pts;
		self->next_packet.length -= 5;
	}
	else if (pts_dts_marker == 0x00) {
		self->next_packet.pts = PLM_PACKET_INVALID_TS;
		plm_buffer_skip(self->buffer, 4);
		self->next_packet.length -= 1;
	}
	else {
		return NULL; // invalid
	}
	
	return plm_demux_get_packet(self);
}

plm_packet_t *plm_demux_get_packet(plm_demux_t *self) {
	if (!plm_buffer_has(self->buffer, self->next_packet.length << 3)) {
		return NULL;
	}

	self->current_packet.data = self->buffer->bytes + (self->buffer->bit_index >> 3);
	self->current_packet.length = self->next_packet.length;
	self->current_packet.type = self->next_packet.type;
	self->current_packet.pts = self->next_packet.pts;

	self->next_packet.length = 0;
	return &self->current_packet;
}



// -----------------------------------------------------------------------------
// plm_video implementation

// Inspired by Java MPEG-1 Video Decoder and Player by Zoltan Korandi 
// https://sourceforge.net/projects/javampeg1video/

static const int PLM_VIDEO_PICTURE_TYPE_INTRA = 1;
static const int PLM_VIDEO_PICTURE_TYPE_PREDICTIVE = 2;
static const int PLM_VIDEO_PICTURE_TYPE_B = 3;

static const int PLM_START_SEQUENCE = 0xB3;
static const int PLM_START_SLICE_FIRST = 0x01;
static const int PLM_START_SLICE_LAST = 0xAF;
static const int PLM_START_PICTURE = 0x00;
static const int PLM_START_EXTENSION = 0xB5;
static const int PLM_START_USER_DATA = 0xB2;

#define PLM_START_IS_SLICE(c) \
	(c >= PLM_START_SLICE_FIRST && c <= PLM_START_SLICE_LAST)

static const double PLM_VIDEO_PICTURE_RATE[] = {
	0.000, 23.976, 24.000, 25.000, 29.970, 30.000, 50.000, 59.940,
	60.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
};

static const uint8_t PLM_VIDEO_ZIG_ZAG[] = {
	 0,  1,  8, 16,  9,  2,  3, 10,
	17, 24, 32, 25, 18, 11,  4,  5,
	12, 19, 26, 33, 40, 48, 41, 34,
	27, 20, 13,  6,  7, 14, 21, 28,
	35, 42, 49, 56, 57, 50, 43, 36,
	29, 22, 15, 23, 30, 37, 44, 51,
	58, 59, 52, 45, 38, 31, 39, 46,
	53, 60, 61, 54, 47, 55, 62, 63
};

static const uint8_t PLM_VIDEO_INTRA_QUANT_MATRIX[] = {
	 8, 16, 19, 22, 26, 27, 29, 34,
	16, 16, 22, 24, 27, 29, 34, 37,
	19, 22, 26, 27, 29, 34, 34, 38,
	22, 22, 26, 27, 29, 34, 37, 40,
	22, 26, 27, 29, 32, 35, 40, 48,
	26, 27, 29, 32, 35, 40, 48, 58,
	26, 27, 29, 34, 38, 46, 56, 69,
	27, 29, 35, 38, 46, 56, 69, 83
};

static const uint8_t PLM_VIDEO_NON_INTRA_QUANT_MATRIX[] = {
	16, 16, 16, 16, 16, 16, 16, 16,
	16, 16, 16, 16, 16, 16, 16, 16,
	16, 16, 16, 16, 16, 16, 16, 16,
	16, 16, 16, 16, 16, 16, 16, 16,
	16, 16, 16, 16, 16, 16, 16, 16,
	16, 16, 16, 16, 16, 16, 16, 16,
	16, 16, 16, 16, 16, 16, 16, 16,
	16, 16, 16, 16, 16, 16, 16, 16
};

static const uint8_t PLM_VIDEO_PREMULTIPLIER_MATRIX[] = {
	32, 44, 42, 38, 32, 25, 17,  9,
	44, 62, 58, 52, 44, 35, 24, 12,
	42, 58, 55, 49, 42, 33, 23, 12,
	38, 52, 49, 44, 38, 30, 20, 10,
	32, 44, 42, 38, 32, 25, 17,  9,
	25, 35, 33, 30, 25, 20, 14,  7,
	17, 24, 23, 20, 17, 14,  9,  5,
	 9, 12, 12, 10,  9,  7,  5,  2
};

static const plm_vlc_t PLM_VIDEO_MACROBLOCK_ADDRESS_INCREMENT[] = {
	{  1 << 1,    0}, {       0,    1},  //   0: x
	{  2 << 1,    0}, {  3 << 1,    0},  //   1: 0x
	{  4 << 1,    0}, {  5 << 1,    0},  //   2: 00x
	{       0,    3}, {       0,    2},  //   3: 01x
	{  6 << 1,    0}, {  7 << 1,    0},  //   4: 000x
	{       0,    5}, {       0,    4},  //   5: 001x
	{  8 << 1,    0}, {  9 << 1,    0},  //   6: 0000x
	{       0,    7}, {       0,    6},  //   7: 0001x
	{ 10 << 1,    0}, { 11 << 1,    0},  //   8: 0000 0x
	{ 12 << 1,    0}, { 13 << 1,    0},  //   9: 0000 1x
	{ 14 << 1,    0}, { 15 << 1,    0},  //  10: 0000 00x
	{ 16 << 1,    0}, { 17 << 1,    0},  //  11: 0000 01x
	{ 18 << 1,    0}, { 19 << 1,    0},  //  12: 0000 10x
	{       0,    9}, {       0,    8},  //  13: 0000 11x
	{      -1,    0}, { 20 << 1,    0},  //  14: 0000 000x
	{      -1,    0}, { 21 << 1,    0},  //  15: 0000 001x
	{ 22 << 1,    0}, { 23 << 1,    0},  //  16: 0000 010x
	{       0,   15}, {       0,   14},  //  17: 0000 011x
	{       0,   13}, {       0,   12},  //  18: 0000 100x
	{       0,   11}, {       0,   10},  //  19: 0000 101x
	{ 24 << 1,    0}, { 25 << 1,    0},  //  20: 0000 0001x
	{ 26 << 1,    0}, { 27 << 1,    0},  //  21: 0000 0011x
	{ 28 << 1,    0}, { 29 << 1,    0},  //  22: 0000 0100x
	{ 30 << 1,    0}, { 31 << 1,    0},  //  23: 0000 0101x
	{ 32 << 1,    0}, {      -1,    0},  //  24: 0000 0001 0x
	{      -1,    0}, { 33 << 1,    0},  //  25: 0000 0001 1x
	{ 34 << 1,    0}, { 35 << 1,    0},  //  26: 0000 0011 0x
	{ 36 << 1,    0}, { 37 << 1,    0},  //  27: 0000 0011 1x
	{ 38 << 1,    0}, { 39 << 1,    0},  //  28: 0000 0100 0x
	{       0,   21}, {       0,   20},  //  29: 0000 0100 1x
	{       0,   19}, {       0,   18},  //  30: 0000 0101 0x
	{       0,   17}, {       0,   16},  //  31: 0000 0101 1x
	{       0,   35}, {      -1,    0},  //  32: 0000 0001 00x
	{      -1,    0}, {       0,   34},  //  33: 0000 0001 11x
	{       0,   33}, {       0,   32},  //  34: 0000 0011 00x
	{       0,   31}, {       0,   30},  //  35: 0000 0011 01x
	{       0,   29}, {       0,   28},  //  36: 0000 0011 10x
	{       0,   27}, {       0,   26},  //  37: 0000 0011 11x
	{       0,   25}, {       0,   24},  //  38: 0000 0100 00x
	{       0,   23}, {       0,   22},  //  39: 0000 0100 01x
};

static const plm_vlc_t PLM_VIDEO_MACROBLOCK_TYPE_INTRA[] = {
	{  1 << 1,    0}, {       0,  0x01},  //   0: x
	{      -1,    0}, {       0,  0x11},  //   1: 0x
};

static const plm_vlc_t PLM_VIDEO_MACROBLOCK_TYPE_PREDICTIVE[] = {
	{  1 << 1,    0}, {       0, 0x0a},  //   0: x
	{  2 << 1,    0}, {       0, 0x02},  //   1: 0x
	{  3 << 1,    0}, {       0, 0x08},  //   2: 00x
	{  4 << 1,    0}, {  5 << 1,    0},  //   3: 000x
	{  6 << 1,    0}, {       0, 0x12},  //   4: 0000x
	{       0, 0x1a}, {       0, 0x01},  //   5: 0001x
	{      -1,    0}, {       0, 0x11},  //   6: 0000 0x
};

static const plm_vlc_t PLM_VIDEO_MACROBLOCK_TYPE_B[] = {
	{  1 << 1,    0}, {  2 << 1,    0},  //   0: x
	{  3 << 1,    0}, {  4 << 1,    0},  //   1: 0x
	{       0, 0x0c}, {       0, 0x0e},  //   2: 1x
	{  5 << 1,    0}, {  6 << 1,    0},  //   3: 00x
	{       0, 0x04}, {       0, 0x06},  //   4: 01x
	{  7 << 1,    0}, {  8 << 1,    0},  //   5: 000x
	{       0, 0x08}, {       0, 0x0a},  //   6: 001x
	{  9 << 1,    0}, { 10 << 1,    0},  //   7: 0000x
	{       0, 0x1e}, {       0, 0x01},  //   8: 0001x
	{      -1,    0}, {       0, 0x11},  //   9: 0000 0x
	{       0, 0x16}, {       0, 0x1a},  //  10: 0000 1x
};

static const plm_vlc_t *PLM_VIDEO_MACROBLOCK_TYPE[] = {
	NULL,
	PLM_VIDEO_MACROBLOCK_TYPE_INTRA,
	PLM_VIDEO_MACROBLOCK_TYPE_PREDICTIVE,
	PLM_VIDEO_MACROBLOCK_TYPE_B
};

static const plm_vlc_t PLM_VIDEO_CODE_BLOCK_PATTERN[] = {
	{  1 << 1,    0}, {  2 << 1,    0},  //   0: x
	{  3 << 1,    0}, {  4 << 1,    0},  //   1: 0x
	{  5 << 1,    0}, {  6 << 1,    0},  //   2: 1x
	{  7 << 1,    0}, {  8 << 1,    0},  //   3: 00x
	{  9 << 1,    0}, { 10 << 1,    0},  //   4: 01x
	{ 11 << 1,    0}, { 12 << 1,    0},  //   5: 10x
	{ 13 << 1,    0}, {       0,   60},  //   6: 11x
	{ 14 << 1,    0}, { 15 << 1,    0},  //   7: 000x
	{ 16 << 1,    0}, { 17 << 1,    0},  //   8: 001x
	{ 18 << 1,    0}, { 19 << 1,    0},  //   9: 010x
	{ 20 << 1,    0}, { 21 << 1,    0},  //  10: 011x
	{ 22 << 1,    0}, { 23 << 1,    0},  //  11: 100x
	{       0,   32}, {       0,   16},  //  12: 101x
	{       0,    8}, {       0,    4},  //  13: 110x
	{ 24 << 1,    0}, { 25 << 1,    0},  //  14: 0000x
	{ 26 << 1,    0}, { 27 << 1,    0},  //  15: 0001x
	{ 28 << 1,    0}, { 29 << 1,    0},  //  16: 0010x
	{ 30 << 1,    0}, { 31 << 1,    0},  //  17: 0011x
	{       0,   62}, {       0,    2},  //  18: 0100x
	{       0,   61}, {       0,    1},  //  19: 0101x
	{       0,   56}, {       0,   52},  //  20: 0110x
	{       0,   44}, {       0,   28},  //  21: 0111x
	{       0,   40}, {       0,   20},  //  22: 1000x
	{       0,   48}, {       0,   12},  //  23: 1001x
	{ 32 << 1,    0}, { 33 << 1,    0},  //  24: 0000 0x
	{ 34 << 1,    0}, { 35 << 1,    0},  //  25: 0000 1x
	{ 36 << 1,    0}, { 37 << 1,    0},  //  26: 0001 0x
	{ 38 << 1,    0}, { 39 << 1,    0},  //  27: 0001 1x
	{ 40 << 1,    0}, { 41 << 1,    0},  //  28: 0010 0x
	{ 42 << 1,    0}, { 43 << 1,    0},  //  29: 0010 1x
	{       0,   63}, {       0,    3},  //  30: 0011 0x
	{       0,   36}, {       0,   24},  //  31: 0011 1x
	{ 44 << 1,    0}, { 45 << 1,    0},  //  32: 0000 00x
	{ 46 << 1,    0}, { 47 << 1,    0},  //  33: 0000 01x
	{ 48 << 1,    0}, { 49 << 1,    0},  //  34: 0000 10x
	{ 50 << 1,    0}, { 51 << 1,    0},  //  35: 0000 11x
	{ 52 << 1,    0}, { 53 << 1,    0},  //  36: 0001 00x
	{ 54 << 1,    0}, { 55 << 1,    0},  //  37: 0001 01x
	{ 56 << 1,    0}, { 57 << 1,    0},  //  38: 0001 10x
	{ 58 << 1,    0}, { 59 << 1,    0},  //  39: 0001 11x
	{       0,   34}, {       0,   18},  //  40: 0010 00x
	{       0,   10}, {       0,    6},  //  41: 0010 01x
	{       0,   33}, {       0,   17},  //  42: 0010 10x
	{       0,    9}, {       0,    5},  //  43: 0010 11x
	{      -1,    0}, { 60 << 1,    0},  //  44: 0000 000x
	{ 61 << 1,    0}, { 62 << 1,    0},  //  45: 0000 001x
	{       0,   58}, {       0,   54},  //  46: 0000 010x
	{       0,   46}, {       0,   30},  //  47: 0000 011x
	{       0,   57}, {       0,   53},  //  48: 0000 100x
	{       0,   45}, {       0,   29},  //  49: 0000 101x
	{       0,   38}, {       0,   26},  //  50: 0000 110x
	{       0,   37}, {       0,   25},  //  51: 0000 111x
	{       0,   43}, {       0,   23},  //  52: 0001 000x
	{       0,   51}, {       0,   15},  //  53: 0001 001x
	{       0,   42}, {       0,   22},  //  54: 0001 010x
	{       0,   50}, {       0,   14},  //  55: 0001 011x
	{       0,   41}, {       0,   21},  //  56: 0001 100x
	{       0,   49}, {       0,   13},  //  57: 0001 101x
	{       0,   35}, {       0,   19},  //  58: 0001 110x
	{       0,   11}, {       0,    7},  //  59: 0001 111x
	{       0,   39}, {       0,   27},  //  60: 0000 0001x
	{       0,   59}, {       0,   55},  //  61: 0000 0010x
	{       0,   47}, {       0,   31},  //  62: 0000 0011x
};

static const plm_vlc_t PLM_VIDEO_MOTION[] = {
	{  1 << 1,    0}, {       0,    0},  //   0: x
	{  2 << 1,    0}, {  3 << 1,    0},  //   1: 0x
	{  4 << 1,    0}, {  5 << 1,    0},  //   2: 00x
	{       0,    1}, {       0,   -1},  //   3: 01x
	{  6 << 1,    0}, {  7 << 1,    0},  //   4: 000x
	{       0,    2}, {       0,   -2},  //   5: 001x
	{  8 << 1,    0}, {  9 << 1,    0},  //   6: 0000x
	{       0,    3}, {       0,   -3},  //   7: 0001x
	{ 10 << 1,    0}, { 11 << 1,    0},  //   8: 0000 0x
	{ 12 << 1,    0}, { 13 << 1,    0},  //   9: 0000 1x
	{      -1,    0}, { 14 << 1,    0},  //  10: 0000 00x
	{ 15 << 1,    0}, { 16 << 1,    0},  //  11: 0000 01x
	{ 17 << 1,    0}, { 18 << 1,    0},  //  12: 0000 10x
	{       0,    4}, {       0,   -4},  //  13: 0000 11x
	{      -1,    0}, { 19 << 1,    0},  //  14: 0000 001x
	{ 20 << 1,    0}, { 21 << 1,    0},  //  15: 0000 010x
	{       0,    7}, {       0,   -7},  //  16: 0000 011x
	{       0,    6}, {       0,   -6},  //  17: 0000 100x
	{       0,    5}, {       0,   -5},  //  18: 0000 101x
	{ 22 << 1,    0}, { 23 << 1,    0},  //  19: 0000 0011x
	{ 24 << 1,    0}, { 25 << 1,    0},  //  20: 0000 0100x
	{ 26 << 1,    0}, { 27 << 1,    0},  //  21: 0000 0101x
	{ 28 << 1,    0}, { 29 << 1,    0},  //  22: 0000 0011 0x
	{ 30 << 1,    0}, { 31 << 1,    0},  //  23: 0000 0011 1x
	{ 32 << 1,    0}, { 33 << 1,    0},  //  24: 0000 0100 0x
	{       0,   10}, {       0,  -10},  //  25: 0000 0100 1x
	{       0,    9}, {       0,   -9},  //  26: 0000 0101 0x
	{       0,    8}, {       0,   -8},  //  27: 0000 0101 1x
	{       0,   16}, {       0,  -16},  //  28: 0000 0011 00x
	{       0,   15}, {       0,  -15},  //  29: 0000 0011 01x
	{       0,   14}, {       0,  -14},  //  30: 0000 0011 10x
	{       0,   13}, {       0,  -13},  //  31: 0000 0011 11x
	{       0,   12}, {       0,  -12},  //  32: 0000 0100 00x
	{       0,   11}, {       0,  -11},  //  33: 0000 0100 01x
};

static const plm_vlc_t PLM_VIDEO_DCT_SIZE_LUMINANCE[] = {
	{  1 << 1,    0}, {  2 << 1,    0},  //   0: x
	{       0,    1}, {       0,    2},  //   1: 0x
	{  3 << 1,    0}, {  4 << 1,    0},  //   2: 1x
	{       0,    0}, {       0,    3},  //   3: 10x
	{       0,    4}, {  5 << 1,    0},  //   4: 11x
	{       0,    5}, {  6 << 1,    0},  //   5: 111x
	{       0,    6}, {  7 << 1,    0},  //   6: 1111x
	{       0,    7}, {  8 << 1,    0},  //   7: 1111 1x
	{       0,    8}, {      -1,    0},  //   8: 1111 11x
};

static const plm_vlc_t PLM_VIDEO_DCT_SIZE_CHROMINANCE[] = {
	{  1 << 1,    0}, {  2 << 1,    0},  //   0: x
	{       0,    0}, {       0,    1},  //   1: 0x
	{       0,    2}, {  3 << 1,    0},  //   2: 1x
	{       0,    3}, {  4 << 1,    0},  //   3: 11x
	{       0,    4}, {  5 << 1,    0},  //   4: 111x
	{       0,    5}, {  6 << 1,    0},  //   5: 1111x
	{       0,    6}, {  7 << 1,    0},  //   6: 1111 1x
	{       0,    7}, {  8 << 1,    0},  //   7: 1111 11x
	{       0,    8}, {      -1,    0},  //   8: 1111 111x
};

static const plm_vlc_t *PLM_VIDEO_DCT_SIZE[] = {
	PLM_VIDEO_DCT_SIZE_LUMINANCE,
	PLM_VIDEO_DCT_SIZE_CHROMINANCE,
	PLM_VIDEO_DCT_SIZE_CHROMINANCE
};


//  dct_coeff bitmap:
//    0xff00  run
//    0x00ff  level

//  Decoded values are unsigned. Sign bit follows in the stream.

static const plm_vlc_uint_t PLM_VIDEO_DCT_COEFF[] = {
	{  1 << 1,        0}, {       0,   0x0001},  //   0: x
	{  2 << 1,        0}, {  3 << 1,        0},  //   1: 0x
	{  4 << 1,        0}, {  5 << 1,        0},  //   2: 00x
	{  6 << 1,        0}, {       0,   0x0101},  //   3: 01x
	{  7 << 1,        0}, {  8 << 1,        0},  //   4: 000x
	{  9 << 1,        0}, { 10 << 1,        0},  //   5: 001x
	{       0,   0x0002}, {       0,   0x0201},  //   6: 010x
	{ 11 << 1,        0}, { 12 << 1,        0},  //   7: 0000x
	{ 13 << 1,        0}, { 14 << 1,        0},  //   8: 0001x
	{ 15 << 1,        0}, {       0,   0x0003},  //   9: 0010x
	{       0,   0x0401}, {       0,   0x0301},  //  10: 0011x
	{ 16 << 1,        0}, {       0,   0xffff},  //  11: 0000 0x
	{ 17 << 1,        0}, { 18 << 1,        0},  //  12: 0000 1x
	{       0,   0x0701}, {       0,   0x0601},  //  13: 0001 0x
	{       0,   0x0102}, {       0,   0x0501},  //  14: 0001 1x
	{ 19 << 1,        0}, { 20 << 1,        0},  //  15: 0010 0x
	{ 21 << 1,        0}, { 22 << 1,        0},  //  16: 0000 00x
	{       0,   0x0202}, {       0,   0x0901},  //  17: 0000 10x
	{       0,   0x0004}, {       0,   0x0801},  //  18: 0000 11x
	{ 23 << 1,        0}, { 24 << 1,        0},  //  19: 0010 00x
	{ 25 << 1,        0}, { 26 << 1,        0},  //  20: 0010 01x
	{ 27 << 1,        0}, { 28 << 1,        0},  //  21: 0000 000x
	{ 29 << 1,        0}, { 30 << 1,        0},  //  22: 0000 001x
	{       0,   0x0d01}, {       0,   0x0006},  //  23: 0010 000x
	{       0,   0x0c01}, {       0,   0x0b01},  //  24: 0010 001x
	{       0,   0x0302}, {       0,   0x0103},  //  25: 0010 010x
	{       0,   0x0005}, {       0,   0x0a01},  //  26: 0010 011x
	{ 31 << 1,        0}, { 32 << 1,        0},  //  27: 0000 0000x
	{ 33 << 1,        0}, { 34 << 1,        0},  //  28: 0000 0001x
	{ 35 << 1,        0}, { 36 << 1,        0},  //  29: 0000 0010x
	{ 37 << 1,        0}, { 38 << 1,        0},  //  30: 0000 0011x
	{ 39 << 1,        0}, { 40 << 1,        0},  //  31: 0000 0000 0x
	{ 41 << 1,        0}, { 42 << 1,        0},  //  32: 0000 0000 1x
	{ 43 << 1,        0}, { 44 << 1,        0},  //  33: 0000 0001 0x
	{ 45 << 1,        0}, { 46 << 1,        0},  //  34: 0000 0001 1x
	{       0,   0x1001}, {       0,   0x0502},  //  35: 0000 0010 0x
	{       0,   0x0007}, {       0,   0x0203},  //  36: 0000 0010 1x
	{       0,   0x0104}, {       0,   0x0f01},  //  37: 0000 0011 0x
	{       0,   0x0e01}, {       0,   0x0402},  //  38: 0000 0011 1x
	{ 47 << 1,        0}, { 48 << 1,        0},  //  39: 0000 0000 00x
	{ 49 << 1,        0}, { 50 << 1,        0},  //  40: 0000 0000 01x
	{ 51 << 1,        0}, { 52 << 1,        0},  //  41: 0000 0000 10x
	{ 53 << 1,        0}, { 54 << 1,        0},  //  42: 0000 0000 11x
	{ 55 << 1,        0}, { 56 << 1,        0},  //  43: 0000 0001 00x
	{ 57 << 1,        0}, { 58 << 1,        0},  //  44: 0000 0001 01x
	{ 59 << 1,        0}, { 60 << 1,        0},  //  45: 0000 0001 10x
	{ 61 << 1,        0}, { 62 << 1,        0},  //  46: 0000 0001 11x
	{      -1,        0}, { 63 << 1,        0},  //  47: 0000 0000 000x
	{ 64 << 1,        0}, { 65 << 1,        0},  //  48: 0000 0000 001x
	{ 66 << 1,        0}, { 67 << 1,        0},  //  49: 0000 0000 010x
	{ 68 << 1,        0}, { 69 << 1,        0},  //  50: 0000 0000 011x
	{ 70 << 1,        0}, { 71 << 1,        0},  //  51: 0000 0000 100x
	{ 72 << 1,        0}, { 73 << 1,        0},  //  52: 0000 0000 101x
	{ 74 << 1,        0}, { 75 << 1,        0},  //  53: 0000 0000 110x
	{ 76 << 1,        0}, { 77 << 1,        0},  //  54: 0000 0000 111x
	{       0,   0x000b}, {       0,   0x0802},  //  55: 0000 0001 000x
	{       0,   0x0403}, {       0,   0x000a},  //  56: 0000 0001 001x
	{       0,   0x0204}, {       0,   0x0702},  //  57: 0000 0001 010x
	{       0,   0x1501}, {       0,   0x1401},  //  58: 0000 0001 011x
	{       0,   0x0009}, {       0,   0x1301},  //  59: 0000 0001 100x
	{       0,   0x1201}, {       0,   0x0105},  //  60: 0000 0001 101x
	{       0,   0x0303}, {       0,   0x0008},  //  61: 0000 0001 110x
	{       0,   0x0602}, {       0,   0x1101},  //  62: 0000 0001 111x
	{ 78 << 1,        0}, { 79 << 1,        0},  //  63: 0000 0000 0001x
	{ 80 << 1,        0}, { 81 << 1,        0},  //  64: 0000 0000 0010x
	{ 82 << 1,        0}, { 83 << 1,        0},  //  65: 0000 0000 0011x
	{ 84 << 1,        0}, { 85 << 1,        0},  //  66: 0000 0000 0100x
	{ 86 << 1,        0}, { 87 << 1,        0},  //  67: 0000 0000 0101x
	{ 88 << 1,        0}, { 89 << 1,        0},  //  68: 0000 0000 0110x
	{ 90 << 1,        0}, { 91 << 1,        0},  //  69: 0000 0000 0111x
	{       0,   0x0a02}, {       0,   0x0902},  //  70: 0000 0000 1000x
	{       0,   0x0503}, {       0,   0x0304},  //  71: 0000 0000 1001x
	{       0,   0x0205}, {       0,   0x0107},  //  72: 0000 0000 1010x
	{       0,   0x0106}, {       0,   0x000f},  //  73: 0000 0000 1011x
	{       0,   0x000e}, {       0,   0x000d},  //  74: 0000 0000 1100x
	{       0,   0x000c}, {       0,   0x1a01},  //  75: 0000 0000 1101x
	{       0,   0x1901}, {       0,   0x1801},  //  76: 0000 0000 1110x
	{       0,   0x1701}, {       0,   0x1601},  //  77: 0000 0000 1111x
	{ 92 << 1,        0}, { 93 << 1,        0},  //  78: 0000 0000 0001 0x
	{ 94 << 1,        0}, { 95 << 1,        0},  //  79: 0000 0000 0001 1x
	{ 96 << 1,        0}, { 97 << 1,        0},  //  80: 0000 0000 0010 0x
	{ 98 << 1,        0}, { 99 << 1,        0},  //  81: 0000 0000 0010 1x
	{100 << 1,        0}, {101 << 1,        0},  //  82: 0000 0000 0011 0x
	{102 << 1,        0}, {103 << 1,        0},  //  83: 0000 0000 0011 1x
	{       0,   0x001f}, {       0,   0x001e},  //  84: 0000 0000 0100 0x
	{       0,   0x001d}, {       0,   0x001c},  //  85: 0000 0000 0100 1x
	{       0,   0x001b}, {       0,   0x001a},  //  86: 0000 0000 0101 0x
	{       0,   0x0019}, {       0,   0x0018},  //  87: 0000 0000 0101 1x
	{       0,   0x0017}, {       0,   0x0016},  //  88: 0000 0000 0110 0x
	{       0,   0x0015}, {       0,   0x0014},  //  89: 0000 0000 0110 1x
	{       0,   0x0013}, {       0,   0x0012},  //  90: 0000 0000 0111 0x
	{       0,   0x0011}, {       0,   0x0010},  //  91: 0000 0000 0111 1x
	{104 << 1,        0}, {105 << 1,        0},  //  92: 0000 0000 0001 00x
	{106 << 1,        0}, {107 << 1,        0},  //  93: 0000 0000 0001 01x
	{108 << 1,        0}, {109 << 1,        0},  //  94: 0000 0000 0001 10x
	{110 << 1,        0}, {111 << 1,        0},  //  95: 0000 0000 0001 11x
	{       0,   0x0028}, {       0,   0x0027},  //  96: 0000 0000 0010 00x
	{       0,   0x0026}, {       0,   0x0025},  //  97: 0000 0000 0010 01x
	{       0,   0x0024}, {       0,   0x0023},  //  98: 0000 0000 0010 10x
	{       0,   0x0022}, {       0,   0x0021},  //  99: 0000 0000 0010 11x
	{       0,   0x0020}, {       0,   0x010e},  // 100: 0000 0000 0011 00x
	{       0,   0x010d}, {       0,   0x010c},  // 101: 0000 0000 0011 01x
	{       0,   0x010b}, {       0,   0x010a},  // 102: 0000 0000 0011 10x
	{       0,   0x0109}, {       0,   0x0108},  // 103: 0000 0000 0011 11x
	{       0,   0x0112}, {       0,   0x0111},  // 104: 0000 0000 0001 000x
	{       0,   0x0110}, {       0,   0x010f},  // 105: 0000 0000 0001 001x
	{       0,   0x0603}, {       0,   0x1002},  // 106: 0000 0000 0001 010x
	{       0,   0x0f02}, {       0,   0x0e02},  // 107: 0000 0000 0001 011x
	{       0,   0x0d02}, {       0,   0x0c02},  // 108: 0000 0000 0001 100x
	{       0,   0x0b02}, {       0,   0x1f01},  // 109: 0000 0000 0001 101x
	{       0,   0x1e01}, {       0,   0x1d01},  // 110: 0000 0000 0001 110x
	{       0,   0x1c01}, {       0,   0x1b01},  // 111: 0000 0000 0001 111x
};

typedef struct {
	int full_px;
	int is_set;
	int r_size;
	int h;
	int v;
} plm_video_motion_t;

typedef struct plm_video_t {
	double framerate;
	double time;
	int frames_decoded;
	int width;
	int height;
	int mb_width;
	int mb_height;
	int mb_size;

	int luma_width;
	int luma_height;

	int chroma_width;
	int chroma_height;

	int start_code;
	int picture_temporal_reference;
	int picture_type;
	int picture_extension_count;
	int picture_user_data_count;

	plm_video_motion_t motion_forward;
	plm_video_motion_t motion_backward;

	int has_sequence_header;
	int seqh_picture_rate;

	int quantizer_scale;
	int slice_begin;
	int macroblock_address;

	int mb_row;
	int mb_col;

	int macroblock_type;
	int macroblock_intra;

	int dc_predictor[3];

	plm_buffer_t *buffer;
	int destroy_buffer_when_done;

	plm_frame_t frame_current;
	plm_frame_t frame_forward;
	plm_frame_t frame_backward;

	uint8_t *frames_data;

	int block_data[64];
	uint8_t intra_quant_matrix[64];
	uint8_t non_intra_quant_matrix[64];

	int has_reference_frame;
	int assume_no_b_frames;

	plm_video_decode_picture_header_callback decode_picture_header_callback;
	void *decode_picture_header_callback_user_data;
} plm_video_t;

static inline uint8_t plm_clamp(int n) {
	if (n > 255) {
		n = 255;
	}
	else if (n < 0) {
		n = 0;
	}
	return static_cast<uint8_t>(n);
}

int plm_video_decode_sequence_header(plm_video_t *self);
void plm_video_init_frame(plm_video_t *self, plm_frame_t *frame, uint8_t *base);
void plm_video_decode_picture(plm_video_t *self);
void plm_video_decode_slice(plm_video_t *self, int slice);
void plm_video_decode_macroblock(plm_video_t *self);
void plm_video_decode_motion_vectors(plm_video_t *self);
int plm_video_decode_motion_vector(plm_video_t *self, int r_size, int motion);
void plm_video_predict_macroblock(plm_video_t *self);
void plm_video_copy_macroblock(plm_video_t *self, plm_frame_t *s, int motion_h, int motion_v);
void plm_video_interpolate_macroblock(plm_video_t *self, plm_frame_t *s, int motion_h, int motion_v);
void plm_video_process_macroblock(plm_video_t *self, uint8_t *s, uint8_t *d, int mh, int mb, int bs, int interp);
void plm_video_decode_block(plm_video_t *self, int block);
void plm_video_idct(int *block);

plm_video_t * plm_video_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done) {
	plm_video_t *self = (plm_video_t *)malloc(sizeof(plm_video_t));
	if (self == NULL)
		return NULL;

	memset(self, 0, sizeof(plm_video_t));
	
	self->buffer = buffer;
	self->destroy_buffer_when_done = destroy_when_done;

	// Attempt to decode the sequence header
	self->start_code = plm_buffer_find_start_code(self->buffer, PLM_START_SEQUENCE);
	if (self->start_code != -1) {
		plm_video_decode_sequence_header(self);
	}
	return self;
}

void plm_video_destroy(plm_video_t *self) {
	if (self->destroy_buffer_when_done) {
		plm_buffer_destroy(self->buffer);
	}

	if (self->has_sequence_header) {
		free(self->frames_data);
	}

	free(self);
}

double plm_video_get_framerate(plm_video_t *self) {
	return plm_video_has_header(self)
		? self->framerate
		: 0;
}

int plm_video_get_width(plm_video_t *self) {
	return plm_video_has_header(self)
		? self->width
		: 0;
}

int plm_video_get_height(plm_video_t *self) {
	return plm_video_has_header(self)
		? self->height
		: 0;
}

void plm_video_set_no_delay(plm_video_t *self, int no_delay) {
	self->assume_no_b_frames = no_delay;
}

double plm_video_get_time(plm_video_t *self) {
	return self->time;
}

void plm_video_set_time(plm_video_t *self, double time) {
	const auto frames_decoded = std::lround(self->framerate * time);
	assert(frames_decoded <= INT_MAX);
	self->frames_decoded = static_cast<int>(frames_decoded);
	self->time = time;
}

void plm_video_rewind(plm_video_t *self) {
	plm_buffer_rewind(self->buffer);
	self->time = 0;
	self->frames_decoded = 0;
	self->has_reference_frame = FALSE;
	self->start_code = -1;
}

int plm_video_has_ended(plm_video_t *self) {
	return plm_buffer_has_ended(self->buffer);
}

plm_frame_t *plm_video_decode(plm_video_t *self) {
	if (!plm_video_has_header(self)) {
		return NULL;
	}
	
	plm_frame_t *frame = NULL;
	do {
		if (self->start_code != PLM_START_PICTURE) {
			self->start_code = plm_buffer_find_start_code(self->buffer, PLM_START_PICTURE);
			
			if (self->start_code == -1) {
				// If we reached the end of the file and the previously decoded
				// frame was a reference frame, we still have to return it.
				if (
					self->has_reference_frame &&
					!self->assume_no_b_frames &&
					plm_buffer_has_ended(self->buffer) && (
						self->picture_type == PLM_VIDEO_PICTURE_TYPE_INTRA ||
						self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE
					)
				) {
					self->has_reference_frame = FALSE;
					frame = &self->frame_backward;
					break;
				}

				return NULL;
			}
		}

		// Make sure we have a full picture in the buffer before attempting to
		// decode it. Sadly, this can only be done by seeking for the start code
		// of the next picture. Also, if we didn't find the start code for the
		// next picture, but the source has ended, we assume that this last
		// picture is in the buffer.
		if (
			plm_buffer_has_start_code(self->buffer, PLM_START_PICTURE) == -1 &&
			!plm_buffer_has_ended(self->buffer)
		) {
			return NULL;
		}
		plm_buffer_discard_read_bytes(self->buffer);
		
		plm_video_decode_picture(self);

		if (self->assume_no_b_frames) {
			frame = &self->frame_backward;
		}
		else if (self->picture_type == PLM_VIDEO_PICTURE_TYPE_B) {
			frame = &self->frame_current;
		}
		else if (self->has_reference_frame) {
			frame = &self->frame_forward;
		}
		else {
			if (self->frames_decoded == 0) frame = &self->frame_backward; //to capture first i picture
			self->has_reference_frame = TRUE;
		}
	} while (!frame);
	
	frame->time = self->time;
	self->frames_decoded++;
	self->time = (double)self->frames_decoded / self->framerate;
	
	return frame;
}

void plm_video_set_decode_picture_header_callback(plm_video_t *self, plm_video_decode_picture_header_callback fp, void *user) {
	self->decode_picture_header_callback = fp;
	self->decode_picture_header_callback_user_data = user;
}

int plm_video_has_header(plm_video_t *self) {
	if (self->has_sequence_header) {
		return TRUE;
	}

	if (self->start_code != PLM_START_SEQUENCE) {
		self->start_code = plm_buffer_find_start_code(self->buffer, PLM_START_SEQUENCE);
	}
	if (self->start_code == -1) {
		return FALSE;
	}
	
	if (!plm_video_decode_sequence_header(self)) {
		return FALSE;
	}

	return TRUE;
}

int plm_video_decode_sequence_header(plm_video_t *self) {
	int max_header_size = 64 + 2 * 64 * 8; // 64 bit header + 2x 64 byte matrix
	if (!plm_buffer_has(self->buffer, max_header_size)) {
		return FALSE;
	}

	self->width = plm_buffer_read(self->buffer, 12);
	self->height = plm_buffer_read(self->buffer, 12);

	if (self->width <= 0 || self->height <= 0) {
		return FALSE;
	}

	// Skip pixel aspect ratio
	plm_buffer_skip(self->buffer, 4);

	self->seqh_picture_rate = plm_buffer_read(self->buffer, 4);
	self->framerate = PLM_VIDEO_PICTURE_RATE[self->seqh_picture_rate];

	// Skip bit_rate, marker, buffer_size and constrained bit
	plm_buffer_skip(self->buffer, 18 + 1 + 10 + 1);

	// Load custom intra quant matrix?
	if (plm_buffer_read(self->buffer, 1)) { 
		for (int i = 0; i < 64; i++) {
			int idx = PLM_VIDEO_ZIG_ZAG[i];
			self->intra_quant_matrix[idx] = plm_buffer_read(self->buffer, 8);
		}
	}
	else {
		memcpy(self->intra_quant_matrix, PLM_VIDEO_INTRA_QUANT_MATRIX, 64);
	}

	// Load custom non intra quant matrix?
	if (plm_buffer_read(self->buffer, 1)) { 
		for (int i = 0; i < 64; i++) {
			int idx = PLM_VIDEO_ZIG_ZAG[i];
			self->non_intra_quant_matrix[idx] = plm_buffer_read(self->buffer, 8);
		}
	}
	else {
		memcpy(self->non_intra_quant_matrix, PLM_VIDEO_NON_INTRA_QUANT_MATRIX, 64);
	}

	self->mb_width = (self->width + 15) >> 4;
	self->mb_height = (self->height + 15) >> 4;
	self->mb_size = self->mb_width * self->mb_height;

	self->luma_width = self->mb_width << 4;
	self->luma_height = self->mb_height << 4;

	self->chroma_width = self->mb_width << 3;
	self->chroma_height = self->mb_height << 3;


	// Allocate one big chunk of data for all 3 frames = 9 planes
	size_t luma_plane_size = self->luma_width * self->luma_height;
	size_t chroma_plane_size = self->chroma_width * self->chroma_height;
	size_t frame_data_size = (luma_plane_size + 2 * chroma_plane_size);

	self->frames_data = (uint8_t*)malloc(frame_data_size * 3);
	if (self->frames_data == NULL)
		return FALSE;
	
	plm_video_init_frame(self, &self->frame_current, self->frames_data + frame_data_size * 0);
	plm_video_init_frame(self, &self->frame_forward, self->frames_data + frame_data_size * 1);
	plm_video_init_frame(self, &self->frame_backward, self->frames_data + frame_data_size * 2);

	self->has_sequence_header = TRUE;
	return TRUE;
}

void plm_video_init_frame(plm_video_t *self, plm_frame_t *frame, uint8_t *base) {
	size_t luma_plane_size = self->luma_width * self->luma_height;
	size_t chroma_plane_size = self->chroma_width * self->chroma_height;

	frame->width = self->width;
	frame->height = self->height;
	frame->y.width = self->luma_width;
	frame->y.height = self->luma_height;
	frame->y.data = base;

	frame->cr.width = self->chroma_width;
	frame->cr.height = self->chroma_height;
	frame->cr.data = base + luma_plane_size;

	frame->cb.width = self->chroma_width;
	frame->cb.height = self->chroma_height;
	frame->cb.data = base + luma_plane_size + chroma_plane_size;
}

void plm_video_decode_picture(plm_video_t *self) {
	self->picture_temporal_reference = plm_buffer_read(self->buffer, 10);
	self->picture_type = plm_buffer_read(self->buffer, 3);
	plm_buffer_skip(self->buffer, 16); // skip vbv_delay
	self->picture_extension_count = 0;
	self->picture_user_data_count = 0;

	// D frames or unknown coding type
	if (self->picture_type <= 0 || self->picture_type > PLM_VIDEO_PICTURE_TYPE_B) {
		return;
	}

	// Forward full_px, f_code
	if (
		self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE ||
		self->picture_type == PLM_VIDEO_PICTURE_TYPE_B
	) {
		self->motion_forward.full_px = plm_buffer_read(self->buffer, 1);
		int f_code = plm_buffer_read(self->buffer, 3);
		if (f_code == 0) {
			// Ignore picture with zero f_code
			return;
		}
		self->motion_forward.r_size = f_code - 1;
	}

	// Backward full_px, f_code
	if (self->picture_type == PLM_VIDEO_PICTURE_TYPE_B) {
		self->motion_backward.full_px = plm_buffer_read(self->buffer, 1);
		int f_code = plm_buffer_read(self->buffer, 3);
		if (f_code == 0) {
			// Ignore picture with zero f_code
			return;
		}
		self->motion_backward.r_size = f_code - 1;
	}

	plm_frame_t frame_temp = self->frame_forward;
	if (
		self->picture_type == PLM_VIDEO_PICTURE_TYPE_INTRA ||
		self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE
	) {
		self->frame_forward = self->frame_backward;
	}


	// Find first slice start code; skip extension and user data
	do {
		self->start_code = plm_buffer_next_start_code(self->buffer);
		switch(self->start_code) {
		case PLM_START_EXTENSION: ++self->picture_extension_count; break;
		case PLM_START_USER_DATA: ++self->picture_user_data_count; break;
		}
	} while (
		self->start_code == PLM_START_EXTENSION || 
		self->start_code == PLM_START_USER_DATA
	);

	// Call the decode picture header callback if it needs to make
	// any modifications before slice decoding...
	if (self->decode_picture_header_callback) {
		(*self->decode_picture_header_callback)(self, self->decode_picture_header_callback_user_data);
	}

	// Decode all slices
	while (PLM_START_IS_SLICE(self->start_code)) {
		plm_video_decode_slice(self, self->start_code & 0x000000FF);
		if (self->macroblock_address >= self->mb_size - 2) {
			break;
		}
		self->start_code = plm_buffer_next_start_code(self->buffer);
	}

	// If this is a reference picture rotate the prediction pointers
	if (
		self->picture_type == PLM_VIDEO_PICTURE_TYPE_INTRA ||
		self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE
	) {
		self->frame_backward = self->frame_current;
		self->frame_current = frame_temp;
	}
}

void plm_video_decode_slice(plm_video_t *self, int slice) {
	self->slice_begin = TRUE;
	self->macroblock_address = (slice - 1) * self->mb_width - 1;

	// Reset motion vectors and DC predictors
	self->motion_backward.h = self->motion_forward.h = 0;
	self->motion_backward.v = self->motion_forward.v = 0;
	self->dc_predictor[0] = 128;
	self->dc_predictor[1] = 128;
	self->dc_predictor[2] = 128;

	self->quantizer_scale = plm_buffer_read(self->buffer, 5);

	// Skip extra
	while (plm_buffer_read(self->buffer, 1)) {
		plm_buffer_skip(self->buffer, 8);
	}

	do {
		plm_video_decode_macroblock(self);
	} while (
		self->macroblock_address < self->mb_size - 1 &&
		plm_buffer_peek_non_zero(self->buffer, 23)
	);
}

void plm_video_decode_macroblock(plm_video_t *self) {
	// Decode increment
	int increment = 0;
	int t = plm_buffer_read_vlc(self->buffer, PLM_VIDEO_MACROBLOCK_ADDRESS_INCREMENT);

	while (t == 34) {
		// macroblock_stuffing
		t = plm_buffer_read_vlc(self->buffer, PLM_VIDEO_MACROBLOCK_ADDRESS_INCREMENT);
	}
	while (t == 35) {
		// macroblock_escape
		increment += 33;
		t = plm_buffer_read_vlc(self->buffer, PLM_VIDEO_MACROBLOCK_ADDRESS_INCREMENT);
	}
	increment += t;

	// Process any skipped macroblocks
	if (self->slice_begin) {
		// The first increment of each slice is relative to beginning of the
		// previous row, not the previous macroblock
		self->slice_begin = FALSE;
		self->macroblock_address += increment;
	}
	else {
		if (self->macroblock_address + increment >= self->mb_size) {
			return; // invalid
		}
		if (increment > 1) {
			// Skipped macroblocks reset DC predictors
			self->dc_predictor[0] = 128;
			self->dc_predictor[1] = 128;
			self->dc_predictor[2] = 128;

			// Skipped macroblocks in P-pictures reset motion vectors
			if (self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE) {
				self->motion_forward.h = 0;
				self->motion_forward.v = 0;
			}
		}

		// Predict skipped macroblocks
		while (increment > 1) {
			self->macroblock_address++;
			self->mb_row = self->macroblock_address / self->mb_width;
			self->mb_col = self->macroblock_address % self->mb_width;

			plm_video_predict_macroblock(self);
			increment--;
		}
		self->macroblock_address++;
	}

	self->mb_row = self->macroblock_address / self->mb_width;
	self->mb_col = self->macroblock_address % self->mb_width;

	if (self->mb_col >= self->mb_width || self->mb_row >= self->mb_height) {
		return; // corrupt stream;
	}

	// Process the current macroblock
	const plm_vlc_t *table = PLM_VIDEO_MACROBLOCK_TYPE[self->picture_type];
	self->macroblock_type = plm_buffer_read_vlc(self->buffer, table);

	self->macroblock_intra = (self->macroblock_type & 0x01);
	self->motion_forward.is_set = (self->macroblock_type & 0x08);
	self->motion_backward.is_set = (self->macroblock_type & 0x04);

	// Quantizer scale
	if ((self->macroblock_type & 0x10) != 0) {
		self->quantizer_scale = plm_buffer_read(self->buffer, 5);
	}

	if (self->macroblock_intra) {
		// Intra-coded macroblocks reset motion vectors
		self->motion_backward.h = self->motion_forward.h = 0;
		self->motion_backward.v = self->motion_forward.v = 0;
	}
	else {
		// Non-intra macroblocks reset DC predictors
		self->dc_predictor[0] = 128;
		self->dc_predictor[1] = 128;
		self->dc_predictor[2] = 128;

		plm_video_decode_motion_vectors(self);
		plm_video_predict_macroblock(self);
	}

	// Decode blocks
	int cbp = ((self->macroblock_type & 0x02) != 0)
		? plm_buffer_read_vlc(self->buffer, PLM_VIDEO_CODE_BLOCK_PATTERN)
		: (self->macroblock_intra ? 0x3f : 0);

	for (int block = 0, mask = 0x20; block < 6; block++) {
		if ((cbp & mask) != 0) {
			plm_video_decode_block(self, block);
		}
		mask >>= 1;
	}
}

void plm_video_decode_motion_vectors(plm_video_t *self) {

	// Forward
	if (self->motion_forward.is_set) {
		int r_size = self->motion_forward.r_size;
		self->motion_forward.h = plm_video_decode_motion_vector(self, r_size, self->motion_forward.h);
		self->motion_forward.v = plm_video_decode_motion_vector(self, r_size, self->motion_forward.v);
	}
	else if (self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE) {
		// No motion information in P-picture, reset vectors
		self->motion_forward.h = 0;
		self->motion_forward.v = 0;
	}

	if (self->motion_backward.is_set) {
		int r_size = self->motion_backward.r_size;
		self->motion_backward.h = plm_video_decode_motion_vector(self, r_size, self->motion_backward.h);
		self->motion_backward.v = plm_video_decode_motion_vector(self, r_size, self->motion_backward.v);
	}
}

int plm_video_decode_motion_vector(plm_video_t *self, int r_size, int motion) {
	int fscale = 1 << r_size;
	int m_code = plm_buffer_read_vlc(self->buffer, PLM_VIDEO_MOTION);
	int r = 0;
	int d;

	if ((m_code != 0) && (fscale != 1)) {
		r = plm_buffer_read(self->buffer, r_size);
		d = ((abs(m_code) - 1) << r_size) + r + 1;
		if (m_code < 0) {
			d = -d;
		}
	}
	else {
		d = m_code;
	}

	motion += d;
	if (motion > (fscale << 4) - 1) {
		motion -= fscale << 5;
	}
	// avoid left-shifting negative values
	else if (motion < ((-fscale) * (1 << 4))) {
		motion += fscale << 5;
	}

	return motion;
}

void plm_video_predict_macroblock(plm_video_t *self) {
	int fw_h = self->motion_forward.h;
	int fw_v = self->motion_forward.v;

	if (self->motion_forward.full_px) {
		fw_h <<= 1;
		fw_v <<= 1;
	}

	if (self->picture_type == PLM_VIDEO_PICTURE_TYPE_B) {
		int bw_h = self->motion_backward.h;
		int bw_v = self->motion_backward.v;

		if (self->motion_backward.full_px) {
			bw_h <<= 1;
			bw_v <<= 1;
		}

		if (self->motion_forward.is_set) {
			plm_video_copy_macroblock(self, &self->frame_forward, fw_h, fw_v);
			if (self->motion_backward.is_set) {
				plm_video_interpolate_macroblock(self, &self->frame_backward, bw_h, bw_v);
			}
		}
		else {
			plm_video_copy_macroblock(self, &self->frame_backward, bw_h, bw_v);
		}
	}
	else {
		plm_video_copy_macroblock(self, &self->frame_forward, fw_h, fw_v);
	}
}

void plm_video_copy_macroblock(plm_video_t *self, plm_frame_t *s, int motion_h, int motion_v) {
	plm_frame_t *d = &self->frame_current;
	plm_video_process_macroblock(self, s->y.data, d->y.data, motion_h, motion_v, 16, FALSE);
	plm_video_process_macroblock(self, s->cr.data, d->cr.data, motion_h / 2, motion_v / 2, 8, FALSE);
	plm_video_process_macroblock(self, s->cb.data, d->cb.data, motion_h / 2, motion_v / 2, 8, FALSE);
}

void plm_video_interpolate_macroblock(plm_video_t *self, plm_frame_t *s, int motion_h, int motion_v) {
	plm_frame_t *d = &self->frame_current;
	plm_video_process_macroblock(self, s->y.data, d->y.data, motion_h, motion_v, 16, TRUE);
	plm_video_process_macroblock(self, s->cr.data, d->cr.data, motion_h / 2, motion_v / 2, 8, TRUE);
	plm_video_process_macroblock(self, s->cb.data, d->cb.data, motion_h / 2, motion_v / 2, 8, TRUE);
}

#define PLM_BLOCK_SET(DEST, DEST_INDEX, DEST_WIDTH, SOURCE_INDEX, SOURCE_WIDTH, BLOCK_SIZE, OP) do { \
	int dest_scan = DEST_WIDTH - BLOCK_SIZE; \
	int source_scan = SOURCE_WIDTH - BLOCK_SIZE; \
	for (int y = 0; y < BLOCK_SIZE; y++) { \
		for (int x = 0; x < BLOCK_SIZE; x++) { \
			DEST[DEST_INDEX] = OP; \
			SOURCE_INDEX++; DEST_INDEX++; \
		} \
		SOURCE_INDEX += source_scan; \
		DEST_INDEX += dest_scan; \
	}} while(FALSE)

void plm_video_process_macroblock(
	plm_video_t *self, uint8_t *s, uint8_t *d,
	int motion_h, int motion_v, int block_size, int interpolate
) {
	int dw = self->mb_width * block_size;

	int hp = motion_h >> 1;
	int vp = motion_v >> 1;
	int odd_h = (motion_h & 1) == 1;
	int odd_v = (motion_v & 1) == 1;

	unsigned int si = ((self->mb_row * block_size) + vp) * dw + (self->mb_col * block_size) + hp;
	unsigned int di = (self->mb_row * dw + self->mb_col) * block_size;
	
	unsigned int max_address = (dw * (self->mb_height * block_size - block_size + 1) - block_size);
	if (si > max_address || di > max_address) {
		return; // corrupt video
	}

	#define PLM_MB_CASE(INTERPOLATE, ODD_H, ODD_V, OP) \
		case ((INTERPOLATE << 2) | (ODD_H << 1) | (ODD_V)): \
			PLM_BLOCK_SET(d, di, dw, si, dw, block_size, OP); \
			break

	switch ((interpolate << 2) | (odd_h << 1) | (odd_v)) {
		PLM_MB_CASE(0, 0, 0, (s[si]));
		PLM_MB_CASE(0, 0, 1, (s[si] + s[si + dw] + 1) >> 1);
		PLM_MB_CASE(0, 1, 0, (s[si] + s[si + 1] + 1) >> 1);
		PLM_MB_CASE(0, 1, 1, (s[si] + s[si + 1] + s[si + dw] + s[si + dw + 1] + 2) >> 2);

		PLM_MB_CASE(1, 0, 0, (d[di] + (s[si]) + 1) >> 1);
		PLM_MB_CASE(1, 0, 1, (d[di] + ((s[si] + s[si + dw] + 1) >> 1) + 1) >> 1);
		PLM_MB_CASE(1, 1, 0, (d[di] + ((s[si] + s[si + 1] + 1) >> 1) + 1) >> 1);
		PLM_MB_CASE(1, 1, 1, (d[di] + ((s[si] + s[si + 1] + s[si + dw] + s[si + dw + 1] + 2) >> 2) + 1) >> 1);
	}

	#undef PLM_MB_CASE
}

void plm_video_decode_block(plm_video_t *self, int block) {

	int n = 0;
	uint8_t *quant_matrix;

	// Decode DC coefficient of intra-coded blocks
	if (self->macroblock_intra) {
		int predictor;
		int dct_size;

		// DC prediction
		int plane_index = block > 3 ? block - 3 : 0;
		predictor = self->dc_predictor[plane_index];
		dct_size = plm_buffer_read_vlc(self->buffer, PLM_VIDEO_DCT_SIZE[plane_index]);

		// Read DC coeff
		if (dct_size > 0) {
			int differential = plm_buffer_read(self->buffer, dct_size);
			if ((differential & (1 << (dct_size - 1))) != 0) {
				self->block_data[0] = predictor + differential;
			}
			else {
				self->block_data[0] = predictor + (-(1 << dct_size) | (differential + 1));
			}
		}
		else {
			self->block_data[0] = predictor;
		}

		// Save predictor value
		self->dc_predictor[plane_index] = self->block_data[0];

		// Dequantize + premultiply
		self->block_data[0] <<= (3 + 5);

		quant_matrix = self->intra_quant_matrix;
		n = 1;
	}
	else {
		quant_matrix = self->non_intra_quant_matrix;
	}

	// Decode AC coefficients (+DC for non-intra)
	int level = 0;
	while (TRUE) {
		int run = 0;
		uint16_t coeff = plm_buffer_read_vlc_uint(self->buffer, PLM_VIDEO_DCT_COEFF);

		if ((coeff == 0x0001) && (n > 0) && (plm_buffer_read(self->buffer, 1) == 0)) {
			// end_of_block
			break;
		}
		if (coeff == 0xffff) {
			// escape
			run = plm_buffer_read(self->buffer, 6);
			level = plm_buffer_read(self->buffer, 8);
			if (level == 0) {
				level = plm_buffer_read(self->buffer, 8);
			}
			else if (level == 128) {
				level = plm_buffer_read(self->buffer, 8) - 256;
			}
			else if (level > 128) {
				level = level - 256;
			}
		}
		else {
			run = coeff >> 8;
			level = coeff & 0xff;
			if (plm_buffer_read(self->buffer, 1)) {
				level = -level;
			}
		}

		n += run;
		if (n < 0 || n >= 64) {
			return; // invalid
		}

		int de_zig_zagged = PLM_VIDEO_ZIG_ZAG[n];
		n++;

		// Dequantize, oddify, clip
		level *= (1 << 1); // avoid left-shifting negative values
		if (!self->macroblock_intra) {
			level += (level < 0 ? -1 : 1);
		}
		level = (level * self->quantizer_scale * quant_matrix[de_zig_zagged]) >> 4;
		if ((level & 1) == 0) {
			level -= level > 0 ? 1 : -1;
		}
		if (level > 2047) {
			level = 2047;
		}
		else if (level < -2048) {
			level = -2048;
		}

		// Save premultiplied coefficient
		self->block_data[de_zig_zagged] = level * PLM_VIDEO_PREMULTIPLIER_MATRIX[de_zig_zagged];
	}

	// Move block to its place
	uint8_t *d;
	int dw;
	int di;

	if (block < 4) {
		d = self->frame_current.y.data;
		dw = self->luma_width;
		di = (self->mb_row * self->luma_width + self->mb_col) << 4;
		if ((block & 1) != 0) {
			di += 8;
		}
		if ((block & 2) != 0) {
			di += self->luma_width << 3;
		}
	}
	else {
		d = (block == 4) ? self->frame_current.cb.data : self->frame_current.cr.data;
		dw = self->chroma_width;
		di = ((self->mb_row * self->luma_width) << 2) + (self->mb_col << 3);
	}

	int *s = self->block_data;
	int si = 0;
	if (self->macroblock_intra) {
		// Overwrite (no prediction)
		if (n == 1) {
			const auto clamped = plm_clamp((s[0] + 128) >> 8);
			PLM_BLOCK_SET(d, di, dw, si, 8, 8, clamped);
			s[0] = 0;
		}
		else {
			plm_video_idct(s);
			PLM_BLOCK_SET(d, di, dw, si, 8, 8, plm_clamp(s[si]));
			memset(self->block_data, 0, sizeof(self->block_data));
		}
	}
	else {
		// Add data to the predicted macroblock
		if (n == 1) {
			int value = (s[0] + 128) >> 8;
			PLM_BLOCK_SET(d, di, dw, si, 8, 8, plm_clamp(d[di] + value));
			s[0] = 0;
		}
		else {
			plm_video_idct(s);
			PLM_BLOCK_SET(d, di, dw, si, 8, 8, plm_clamp(d[di] + s[si]));
			memset(self->block_data, 0, sizeof(self->block_data));
		}
	}
}

void plm_video_idct(int *block) {
	int
		b1, b3, b4, b6, b7, tmp1, tmp2, m0,
		x0, x1, x2, x3, x4, y3, y4, y5, y6, y7;

	// Transform columns
	for (int i = 0; i < 8; ++i) {
		b1 = block[4 * 8 + i];
		b3 = block[2 * 8 + i] + block[6 * 8 + i];
		b4 = block[5 * 8 + i] - block[3 * 8 + i];
		tmp1 = block[1 * 8 + i] + block[7 * 8 + i];
		tmp2 = block[3 * 8 + i] + block[5 * 8 + i];
		b6 = block[1 * 8 + i] - block[7 * 8 + i];
		b7 = tmp1 + tmp2;
		m0 = block[0 * 8 + i];
		x4 = ((b6 * 473 - b4 * 196 + 128) >> 8) - b7;
		x0 = x4 - (((tmp1 - tmp2) * 362 + 128) >> 8);
		x1 = m0 - b1;
		x2 = (((block[2 * 8 + i] - block[6 * 8 + i]) * 362 + 128) >> 8) - b3;
		x3 = m0 + b1;
		y3 = x1 + x2;
		y4 = x3 + b3;
		y5 = x1 - x2;
		y6 = x3 - b3;
		y7 = -x0 - ((b4 * 473 + b6 * 196 + 128) >> 8);
		block[0 * 8 + i] = b7 + y4;
		block[1 * 8 + i] = x4 + y3;
		block[2 * 8 + i] = y5 - x0;
		block[3 * 8 + i] = y6 - y7;
		block[4 * 8 + i] = y6 + y7;
		block[5 * 8 + i] = x0 + y5;
		block[6 * 8 + i] = y3 - x4;
		block[7 * 8 + i] = y4 - b7;
	}

	// Transform rows
	for (int i = 0; i < 64; i += 8) {
		b1 = block[4 + i];
		b3 = block[2 + i] + block[6 + i];
		b4 = block[5 + i] - block[3 + i];
		tmp1 = block[1 + i] + block[7 + i];
		tmp2 = block[3 + i] + block[5 + i];
		b6 = block[1 + i] - block[7 + i];
		b7 = tmp1 + tmp2;
		m0 = block[0 + i];
		x4 = ((b6 * 473 - b4 * 196 + 128) >> 8) - b7;
		x0 = x4 - (((tmp1 - tmp2) * 362 + 128) >> 8);
		x1 = m0 - b1;
		x2 = (((block[2 + i] - block[6 + i]) * 362 + 128) >> 8) - b3;
		x3 = m0 + b1;
		y3 = x1 + x2;
		y4 = x3 + b3;
		y5 = x1 - x2;
		y6 = x3 - b3;
		y7 = -x0 - ((b4 * 473 + b6 * 196 + 128) >> 8);
		block[0 + i] = (b7 + y4 + 128) >> 8;
		block[1 + i] = (x4 + y3 + 128) >> 8;
		block[2 + i] = (y5 - x0 + 128) >> 8;
		block[3 + i] = (y6 - y7 + 128) >> 8;
		block[4 + i] = (y6 + y7 + 128) >> 8;
		block[5 + i] = (x0 + y5 + 128) >> 8;
		block[6 + i] = (y3 - x4 + 128) >> 8;
		block[7 + i] = (y4 - b7 + 128) >> 8;
	}
}

// YCbCr conversion following the BT.601 standard:
// https://infogalactic.com/info/YCbCr#ITU-R_BT.601_conversion

#define PLM_PUT_PIXEL(RI, GI, BI, Y_OFFSET, DEST_OFFSET) \
	y = ((frame->y.data[y_index + Y_OFFSET]-16) * 76309) >> 16; \
	dest[d_index + DEST_OFFSET + RI] = plm_clamp(y + r); \
	dest[d_index + DEST_OFFSET + GI] = plm_clamp(y - g); \
	dest[d_index + DEST_OFFSET + BI] = plm_clamp(y + b);

#define PLM_DEFINE_FRAME_CONVERT_FUNCTION(NAME, BYTES_PER_PIXEL, RI, GI, BI) \
	void NAME(plm_frame_t *frame, uint8_t *dest, int stride) { \
		int cols = frame->width >> 1; \
		int rows = frame->height >> 1; \
		int yw = frame->y.width; \
		int cw = frame->cb.width; \
		for (int row = 0; row < rows; row++) { \
			int c_index = row * cw; \
			int y_index = row * 2 * yw; \
			int d_index = row * 2 * stride; \
			for (int col = 0; col < cols; col++) { \
				int y; \
				int cr = frame->cr.data[c_index] - 128; \
				int cb = frame->cb.data[c_index] - 128; \
				int r = (cr * 104597) >> 16; \
				int g = (cb * 25674 + cr * 53278) >> 16; \
				int b = (cb * 132201) >> 16; \
				PLM_PUT_PIXEL(RI, GI, BI, 0,      0); \
				PLM_PUT_PIXEL(RI, GI, BI, 1,      BYTES_PER_PIXEL); \
				PLM_PUT_PIXEL(RI, GI, BI, yw,     stride); \
				PLM_PUT_PIXEL(RI, GI, BI, yw + 1, stride + BYTES_PER_PIXEL); \
				c_index += 1; \
				y_index += 2; \
				d_index += 2 * BYTES_PER_PIXEL; \
			} \
		} \
	}

PLM_DEFINE_FRAME_CONVERT_FUNCTION(plm_frame_to_rgb,  3, 0, 1, 2)
PLM_DEFINE_FRAME_CONVERT_FUNCTION(plm_frame_to_bgr,  3, 2, 1, 0)
PLM_DEFINE_FRAME_CONVERT_FUNCTION(plm_frame_to_rgba, 4, 0, 1, 2)
PLM_DEFINE_FRAME_CONVERT_FUNCTION(plm_frame_to_bgra, 4, 2, 1, 0)
PLM_DEFINE_FRAME_CONVERT_FUNCTION(plm_frame_to_argb, 4, 1, 2, 3)
PLM_DEFINE_FRAME_CONVERT_FUNCTION(plm_frame_to_abgr, 4, 3, 2, 1)


#undef PLM_PUT_PIXEL
#undef PLM_DEFINE_FRAME_CONVERT_FUNCTION



// -----------------------------------------------------------------------------
// plm_audio implementation

// Based on kjmp2 by Martin J. Fiedler
// http://keyj.emphy.de/kjmp2/

static const int PLM_AUDIO_FRAME_SYNC = 0x7ff;

static const int PLM_AUDIO_MPEG_2_5 = 0x0;
static const int PLM_AUDIO_MPEG_2 = 0x2;
static const int PLM_AUDIO_MPEG_1 = 0x3;

static const int PLM_AUDIO_LAYER_III = 0x1;
static const int PLM_AUDIO_LAYER_II = 0x2;
static const int PLM_AUDIO_LAYER_I = 0x3;

static const int PLM_AUDIO_MODE_STEREO = 0x0;
static const int PLM_AUDIO_MODE_JOINT_STEREO = 0x1;
static const int PLM_AUDIO_MODE_DUAL_CHANNEL = 0x2;
static const int PLM_AUDIO_MODE_MONO = 0x3;

static const unsigned short PLM_AUDIO_SAMPLE_RATE[] = {
	44100, 48000, 32000, 0, // MPEG-1
	22050, 24000, 16000, 0  // MPEG-2
};

static const short PLM_AUDIO_BIT_RATE[] = {
	32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, // MPEG-1
	 8, 16, 24, 32, 40, 48,  56,  64,  80,  96, 112, 128, 144, 160  // MPEG-2
};

static const int PLM_AUDIO_SCALEFACTOR_BASE[] = {
	0x02000000, 0x01965FEA, 0x01428A30
};

static const float PLM_AUDIO_SYNTHESIS_WINDOW[] = {
	     0.0,     -0.5,     -0.5,     -0.5,     -0.5,     -0.5,
	    -0.5,     -1.0,     -1.0,     -1.0,     -1.0,     -1.5,
	    -1.5,     -2.0,     -2.0,     -2.5,     -2.5,     -3.0,
	    -3.5,     -3.5,     -4.0,     -4.5,     -5.0,     -5.5,
	    -6.5,     -7.0,     -8.0,     -8.5,     -9.5,    -10.5,
	   -12.0,    -13.0,    -14.5,    -15.5,    -17.5,    -19.0,
	   -20.5,    -22.5,    -24.5,    -26.5,    -29.0,    -31.5,
	   -34.0,    -36.5,    -39.5,    -42.5,    -45.5,    -48.5,
	   -52.0,    -55.5,    -58.5,    -62.5,    -66.0,    -69.5,
	   -73.5,    -77.0,    -80.5,    -84.5,    -88.0,    -91.5,
	   -95.0,    -98.0,   -101.0,   -104.0,    106.5,    109.0,
	   111.0,    112.5,    113.5,    114.0,    114.0,    113.5,
	   112.0,    110.5,    107.5,    104.0,    100.0,     94.5,
	    88.5,     81.5,     73.0,     63.5,     53.0,     41.5,
	    28.5,     14.5,     -1.0,    -18.0,    -36.0,    -55.5,
	   -76.5,    -98.5,   -122.0,   -147.0,   -173.5,   -200.5,
	  -229.5,   -259.5,   -290.5,   -322.5,   -355.5,   -389.5,
	  -424.0,   -459.5,   -495.5,   -532.0,   -568.5,   -605.0,
	  -641.5,   -678.0,   -714.0,   -749.0,   -783.5,   -817.0,
	  -849.0,   -879.5,   -908.5,   -935.0,   -959.5,   -981.0,
	 -1000.5,  -1016.0,  -1028.5,  -1037.5,  -1042.5,  -1043.5,
	 -1040.0,  -1031.5,   1018.5,   1000.0,    976.0,    946.5,
	   911.0,    869.5,    822.0,    767.5,    707.0,    640.0,
	   565.5,    485.0,    397.0,    302.5,    201.0,     92.5,
	   -22.5,   -144.0,   -272.5,   -407.0,   -547.5,   -694.0,
	  -846.0,  -1003.0,  -1165.0,  -1331.5,  -1502.0,  -1675.5,
	 -1852.5,  -2031.5,  -2212.5,  -2394.0,  -2576.5,  -2758.5,
	 -2939.5,  -3118.5,  -3294.5,  -3467.5,  -3635.5,  -3798.5,
	 -3955.0,  -4104.5,  -4245.5,  -4377.5,  -4499.0,  -4609.5,
	 -4708.0,  -4792.5,  -4863.5,  -4919.0,  -4958.0,  -4979.5,
	 -4983.0,  -4967.5,  -4931.5,  -4875.0,  -4796.0,  -4694.5,
	 -4569.5,  -4420.0,  -4246.0,  -4046.0,  -3820.0,  -3567.0,
	  3287.0,   2979.5,   2644.0,   2280.5,   1888.0,   1467.5,
	  1018.5,    541.0,     35.0,   -499.0,  -1061.0,  -1650.0,
	 -2266.5,  -2909.0,  -3577.0,  -4270.0,  -4987.5,  -5727.5,
	 -6490.0,  -7274.0,  -8077.5,  -8899.5,  -9739.0, -10594.5,
	-11464.5, -12347.0, -13241.0, -14144.5, -15056.0, -15973.5,
	-16895.5, -17820.0, -18744.5, -19668.0, -20588.0, -21503.0,
	-22410.5, -23308.5, -24195.0, -25068.5, -25926.5, -26767.0,
	-27589.0, -28389.0, -29166.5, -29919.0, -30644.5, -31342.0,
	-32009.5, -32645.0, -33247.0, -33814.5, -34346.0, -34839.5,
	-35295.0, -35710.0, -36084.5, -36417.5, -36707.5, -36954.0,
	-37156.5, -37315.0, -37428.0, -37496.0,  37519.0,  37496.0,
	 37428.0,  37315.0,  37156.5,  36954.0,  36707.5,  36417.5,
	 36084.5,  35710.0,  35295.0,  34839.5,  34346.0,  33814.5,
	 33247.0,  32645.0,  32009.5,  31342.0,  30644.5,  29919.0,
	 29166.5,  28389.0,  27589.0,  26767.0,  25926.5,  25068.5,
	 24195.0,  23308.5,  22410.5,  21503.0,  20588.0,  19668.0,
	 18744.5,  17820.0,  16895.5,  15973.5,  15056.0,  14144.5,
	 13241.0,  12347.0,  11464.5,  10594.5,   9739.0,   8899.5,
	  8077.5,   7274.0,   6490.0,   5727.5,   4987.5,   4270.0,
	  3577.0,   2909.0,   2266.5,   1650.0,   1061.0,    499.0,
	   -35.0,   -541.0,  -1018.5,  -1467.5,  -1888.0,  -2280.5,
	 -2644.0,  -2979.5,   3287.0,   3567.0,   3820.0,   4046.0,
	  4246.0,   4420.0,   4569.5,   4694.5,   4796.0,   4875.0,
	  4931.5,   4967.5,   4983.0,   4979.5,   4958.0,   4919.0,
	  4863.5,   4792.5,   4708.0,   4609.5,   4499.0,   4377.5,
	  4245.5,   4104.5,   3955.0,   3798.5,   3635.5,   3467.5,
	  3294.5,   3118.5,   2939.5,   2758.5,   2576.5,   2394.0,
	  2212.5,   2031.5,   1852.5,   1675.5,   1502.0,   1331.5,
	  1165.0,   1003.0,    846.0,    694.0,    547.5,    407.0,
	   272.5,    144.0,     22.5,    -92.5,   -201.0,   -302.5,
	  -397.0,   -485.0,   -565.5,   -640.0,   -707.0,   -767.5,
	  -822.0,   -869.5,   -911.0,   -946.5,   -976.0,  -1000.0,
	  1018.5,   1031.5,   1040.0,   1043.5,   1042.5,   1037.5,
	  1028.5,   1016.0,   1000.5,    981.0,    959.5,    935.0,
	   908.5,    879.5,    849.0,    817.0,    783.5,    749.0,
	   714.0,    678.0,    641.5,    605.0,    568.5,    532.0,
	   495.5,    459.5,    424.0,    389.5,    355.5,    322.5,
	   290.5,    259.5,    229.5,    200.5,    173.5,    147.0,
	   122.0,     98.5,     76.5,     55.5,     36.0,     18.0,
	     1.0,    -14.5,    -28.5,    -41.5,    -53.0,    -63.5,
	   -73.0,    -81.5,    -88.5,    -94.5,   -100.0,   -104.0,
	  -107.5,   -110.5,   -112.0,   -113.5,   -114.0,   -114.0,
	  -113.5,   -112.5,   -111.0,   -109.0,    106.5,    104.0,
	   101.0,     98.0,     95.0,     91.5,     88.0,     84.5,
	    80.5,     77.0,     73.5,     69.5,     66.0,     62.5,
	    58.5,     55.5,     52.0,     48.5,     45.5,     42.5,
	    39.5,     36.5,     34.0,     31.5,     29.0,     26.5,
	    24.5,     22.5,     20.5,     19.0,     17.5,     15.5,
	    14.5,     13.0,     12.0,     10.5,      9.5,      8.5,
	     8.0,      7.0,      6.5,      5.5,      5.0,      4.5,
	     4.0,      3.5,      3.5,      3.0,      2.5,      2.5,
	     2.0,      2.0,      1.5,      1.5,      1.0,      1.0,
	     1.0,      1.0,      0.5,      0.5,      0.5,      0.5,
	     0.5,      0.5
};

// Quantizer lookup, step 1: bitrate classes
static const uint8_t PLM_AUDIO_QUANT_LUT_STEP_1[2][16] = {
	// 32, 48, 56, 64, 80, 96,112,128,160,192,224,256,320,384 <- bitrate
	{ 0,  0,  1,  1,  1,  2,  2,  2,  2,  2,  2,  2,  2,  2 }, // mono
	// 16, 24, 28, 32, 40, 48, 56, 64, 80, 96,112,128,160,192 <- bitrate / chan
	{ 0,  0,  0,  0,  0,  0,  1,  1,  1,  2,  2,  2,  2,  2 } // stereo
};

// Quantizer lookup, step 2: bitrate class, sample rate -> B2 table idx, sblimit
#define PLM_AUDIO_QUANT_TAB_A (27 | 64)   // Table 3-B.2a: high-rate, sblimit = 27
#define PLM_AUDIO_QUANT_TAB_B (30 | 64)   // Table 3-B.2b: high-rate, sblimit = 30
#define PLM_AUDIO_QUANT_TAB_C (8)           // Table 3-B.2c:  low-rate, sblimit =  8
#define PLM_AUDIO_QUANT_TAB_D (12)          // Table 3-B.2d:  low-rate, sblimit = 12

static const uint8_t QUANT_LUT_STEP_2[3][3] = {
	//44.1 kHz,              48 kHz,                32 kHz
	{ PLM_AUDIO_QUANT_TAB_C, PLM_AUDIO_QUANT_TAB_C, PLM_AUDIO_QUANT_TAB_D }, // 32 - 48 kbit/sec/ch
	{ PLM_AUDIO_QUANT_TAB_A, PLM_AUDIO_QUANT_TAB_A, PLM_AUDIO_QUANT_TAB_A }, // 56 - 80 kbit/sec/ch
	{ PLM_AUDIO_QUANT_TAB_B, PLM_AUDIO_QUANT_TAB_A, PLM_AUDIO_QUANT_TAB_B }  // 96+	 kbit/sec/ch
};

// Quantizer lookup, step 3: B2 table, subband -> nbal, row index
// (upper 4 bits: nbal, lower 4 bits: row index)
static const uint8_t PLM_AUDIO_QUANT_LUT_STEP_3[3][32] = {
	// Low-rate table (3-B.2c and 3-B.2d)
	{
		0x44,0x44,
		0x34,0x34,0x34,0x34,0x34,0x34,0x34,0x34,0x34,0x34
	},
	// High-rate table (3-B.2a and 3-B.2b)
	{
		0x43,0x43,0x43,
		0x42,0x42,0x42,0x42,0x42,0x42,0x42,0x42,
		0x31,0x31,0x31,0x31,0x31,0x31,0x31,0x31,0x31,0x31,0x31,0x31,
		0x20,0x20,0x20,0x20,0x20,0x20,0x20
	},
	// MPEG-2 LSR table (B.2 in ISO 13818-3)
	{
		0x45,0x45,0x45,0x45,
		0x34,0x34,0x34,0x34,0x34,0x34,0x34,
		0x24,0x24,0x24,0x24,0x24,0x24,0x24,0x24,0x24,0x24,
		0x24,0x24,0x24,0x24,0x24,0x24,0x24,0x24,0x24
	}
};

// Quantizer lookup, step 4: table row, allocation[] value -> quant table index
static const uint8_t PLM_AUDIO_QUANT_LUT_STEP_4[6][16] = {
	{ 0, 1, 2, 17 },
	{ 0, 1, 2,  3, 4, 5, 6, 17 },
	{ 0, 1, 2,  3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14, 17 },
	{ 0, 1, 3,  5, 6, 7, 8,  9, 10, 11, 12, 13, 14, 15, 16, 17 },
	{ 0, 1, 2,  4, 5, 6, 7,  8,  9, 10, 11, 12, 13, 14, 15, 17 },
	{ 0, 1, 2,  3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14, 15 }
};

typedef struct plm_quantizer_spec_t {
	unsigned short levels;
	unsigned char group;
	unsigned char bits;
} plm_quantizer_spec_t;

static const plm_quantizer_spec_t PLM_AUDIO_QUANT_TAB[] = {
	{     3, 1,  5 },  //  1
	{     5, 1,  7 },  //  2
	{     7, 0,  3 },  //  3
	{     9, 1, 10 },  //  4
	{    15, 0,  4 },  //  5
	{    31, 0,  5 },  //  6
	{    63, 0,  6 },  //  7
	{   127, 0,  7 },  //  8
	{   255, 0,  8 },  //  9
	{   511, 0,  9 },  // 10
	{  1023, 0, 10 },  // 11
	{  2047, 0, 11 },  // 12
	{  4095, 0, 12 },  // 13
	{  8191, 0, 13 },  // 14
	{ 16383, 0, 14 },  // 15
	{ 32767, 0, 15 },  // 16
	{ 65535, 0, 16 }   // 17
};

typedef struct plm_audio_t {
	double time;
	int samples_decoded;
	int samplerate_index;
	int bitrate_index;
	int version;
	int layer;
	int mode;
	int bound;
	int v_pos;
	int next_frame_data_size;
	int has_header;
	
	plm_buffer_t *buffer;
	int destroy_buffer_when_done;

	const plm_quantizer_spec_t *allocation[2][32];
	uint8_t scale_factor_info[2][32];
	int scale_factor[2][32][3];
	int sample[2][32][3];

	plm_samples_t samples;
	float D[1024];
	float V[2][1024];
	float U[32];
} plm_audio_t;

int plm_audio_find_frame_sync(plm_audio_t *self);
int plm_audio_decode_header(plm_audio_t *self);
void plm_audio_decode_frame(plm_audio_t *self);
const plm_quantizer_spec_t *plm_audio_read_allocation(plm_audio_t *self, int sb, int tab3);
void plm_audio_read_samples(plm_audio_t *self, int ch, int sb, int part); 
void plm_audio_idct36(int s[32][3], int ss, float *d, int dp);

plm_audio_t *plm_audio_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done) {
	plm_audio_t *self = (plm_audio_t *)malloc(sizeof(plm_audio_t));
	if (self == NULL)
		return NULL;

	memset(self, 0, sizeof(plm_audio_t));

	self->samples.count = PLM_AUDIO_SAMPLES_PER_FRAME;
	self->buffer = buffer;
	self->destroy_buffer_when_done = destroy_when_done;
	self->samplerate_index = 3; // Indicates 0

	memcpy(self->D, PLM_AUDIO_SYNTHESIS_WINDOW, 512 * sizeof(float));
	memcpy(self->D + 512, PLM_AUDIO_SYNTHESIS_WINDOW, 512 * sizeof(float));

	// Attempt to decode first header
	self->next_frame_data_size = plm_audio_decode_header(self);

	return self;
}

void plm_audio_destroy(plm_audio_t *self) {
	if (self->destroy_buffer_when_done) {
		plm_buffer_destroy(self->buffer);
	}
	free(self);
}

int plm_audio_has_header(plm_audio_t *self) {
	if (self->has_header) {
		return TRUE;
	}
	
	self->next_frame_data_size = plm_audio_decode_header(self);
	return self->has_header;
}

int plm_audio_get_samplerate(plm_audio_t *self) {
	return plm_audio_has_header(self)
		? PLM_AUDIO_SAMPLE_RATE[self->samplerate_index]
		: 0;
}

double plm_audio_get_time(plm_audio_t *self) {
	return self->time;
}

void plm_audio_set_time(plm_audio_t *self, double time) {
	const auto samples_decoded = std::lround(time * PLM_AUDIO_SAMPLE_RATE[self->samplerate_index]);
	assert(samples_decoded >= INT_MIN);
	assert(samples_decoded <= INT_MAX);
	self->samples_decoded = static_cast<int>(samples_decoded);
	self->time = time;
}

void plm_audio_rewind(plm_audio_t *self) {
	plm_buffer_rewind(self->buffer);
	self->time = 0;
	self->samples_decoded = 0;
	self->next_frame_data_size = 0;
}

int plm_audio_has_ended(plm_audio_t *self) {
	return plm_buffer_has_ended(self->buffer);
}

plm_samples_t *plm_audio_decode(plm_audio_t *self) {
	// Do we have at least enough information to decode the frame header?
	if (!self->next_frame_data_size) {
		if (!plm_buffer_has(self->buffer, 48)) {
			return NULL;
		}
		self->next_frame_data_size = plm_audio_decode_header(self);
	}

	if (
		self->next_frame_data_size == 0 ||
		!plm_buffer_has(self->buffer, static_cast<size_t>(self->next_frame_data_size) << 3)
	) {
		return NULL;
	}

	plm_audio_decode_frame(self);
	self->next_frame_data_size = 0;
	
	self->samples.time = self->time;

	self->samples_decoded += PLM_AUDIO_SAMPLES_PER_FRAME;
	self->time = (double)self->samples_decoded / 
		(double)PLM_AUDIO_SAMPLE_RATE[self->samplerate_index];
	
	return &self->samples;
}

int plm_audio_find_frame_sync(plm_audio_t *self) {
	size_t i;
	for (i = self->buffer->bit_index >> 3; i < self->buffer->length-1; i++) {
		if (
			self->buffer->bytes[i] == 0xFF &&
			(self->buffer->bytes[i+1] & 0xFE) == 0xFC
		) {
			self->buffer->bit_index = ((i+1) << 3) + 3;
			return TRUE;
		}
	}
	self->buffer->bit_index = self->buffer->length << 3;
	return FALSE;
}

int plm_audio_decode_header(plm_audio_t *self) {
	plm_buffer_skip_bytes(self->buffer, 0x00);
	if (!plm_buffer_has(self->buffer, 48)) {
		return 0;
	}
	int sync = plm_buffer_read(self->buffer, 11);


	// Attempt to resync if no syncword was found. This sucks balls. The MP2 
	// stream contains a syncword just before every frame (11 bits set to 1).
	// However, this syncword is not guaranteed to not occur elsewhere in the
	// stream. So, if we have to resync, we also have to check if the header 
	// (samplerate, bitrate) differs from the one we had before. This all
	// may still lead to garbage data being decoded :/

	if (sync != PLM_AUDIO_FRAME_SYNC && !plm_audio_find_frame_sync(self)) {
		return 0;
	}

	self->version = plm_buffer_read(self->buffer, 2);
	self->layer = plm_buffer_read(self->buffer, 2);
	int hasCRC = !plm_buffer_read(self->buffer, 1);

	if (
		self->version != PLM_AUDIO_MPEG_1 ||
		self->layer != PLM_AUDIO_LAYER_II
	) {
		return 0;
	}

	int bitrate_index = plm_buffer_read(self->buffer, 4) - 1;
	if (bitrate_index > 13) {
		return 0;
	}

	int samplerate_index = plm_buffer_read(self->buffer, 2);
	if (samplerate_index == 3) {
		return 0;
	}

	int padding = plm_buffer_read(self->buffer, 1);
	plm_buffer_skip(self->buffer, 1); // f_private
	int mode = plm_buffer_read(self->buffer, 2);

	// If we already have a header, make sure the samplerate, bitrate and mode
	// are still the same, otherwise we might have missed sync.
	if (
		self->has_header && (
			self->bitrate_index != bitrate_index ||
			self->samplerate_index != samplerate_index ||
			self->mode != mode
		)
	) {
		return 0;
	}

	self->bitrate_index = bitrate_index;
	self->samplerate_index = samplerate_index;
	self->mode = mode;
	self->has_header = TRUE;

	// Parse the mode_extension, set up the stereo bound
	if (mode == PLM_AUDIO_MODE_JOINT_STEREO) {
		self->bound = (plm_buffer_read(self->buffer, 2) + 1) << 2;
	}
	else {
		plm_buffer_skip(self->buffer, 2);
		self->bound = (mode == PLM_AUDIO_MODE_MONO) ? 0 : 32;
	}

	// Discard the last 4 bits of the header and the CRC value, if present
	plm_buffer_skip(self->buffer, 4); // copyright(1), original(1), emphasis(2)
	if (hasCRC) {
		plm_buffer_skip(self->buffer, 16);
	}

	// Compute frame size, check if we have enough data to decode the whole
	// frame.
	int bitrate = PLM_AUDIO_BIT_RATE[self->bitrate_index];
	int samplerate = PLM_AUDIO_SAMPLE_RATE[self->samplerate_index];
	int frame_size = (144000 * bitrate / samplerate) + padding;
	return frame_size - (hasCRC ? 6 : 4);
}

void plm_audio_decode_frame(plm_audio_t *self) {
	// Prepare the quantizer table lookups
	int tab3 = 0;
	int sblimit = 0;
	
	int tab1 = (self->mode == PLM_AUDIO_MODE_MONO) ? 0 : 1;
	int tab2 = PLM_AUDIO_QUANT_LUT_STEP_1[tab1][self->bitrate_index];
	tab3 = QUANT_LUT_STEP_2[tab2][self->samplerate_index];
	sblimit = tab3 & 63;
	tab3 >>= 6;

	if (self->bound > sblimit) {
		self->bound = sblimit;
	}

	// Read the allocation information
	for (int sb = 0; sb < self->bound; sb++) {
		self->allocation[0][sb] = plm_audio_read_allocation(self, sb, tab3);
		self->allocation[1][sb] = plm_audio_read_allocation(self, sb, tab3);
	}

	for (int sb = self->bound; sb < sblimit; sb++) {
		self->allocation[0][sb] =
			self->allocation[1][sb] =
			plm_audio_read_allocation(self, sb, tab3);
	}

	// Read scale factor selector information
	int channels = (self->mode == PLM_AUDIO_MODE_MONO) ? 1 : 2;
	for (int sb = 0; sb < sblimit; sb++) {
		for (int ch = 0; ch < channels; ch++) {
			if (self->allocation[ch][sb]) {
				self->scale_factor_info[ch][sb] = static_cast<uint8_t>(plm_buffer_read(self->buffer, 2));
			}
		}
		if (self->mode == PLM_AUDIO_MODE_MONO) {
			self->scale_factor_info[1][sb] = self->scale_factor_info[0][sb];
		}
	}

	// Read scale factors
	for (int sb = 0; sb < sblimit; sb++) {
		for (int ch = 0; ch < channels; ch++) {
			if (self->allocation[ch][sb]) {
				int *sf = self->scale_factor[ch][sb];
				switch (self->scale_factor_info[ch][sb]) {
					case 0:
						sf[0] = plm_buffer_read(self->buffer, 6);
						sf[1] = plm_buffer_read(self->buffer, 6);
						sf[2] = plm_buffer_read(self->buffer, 6);
						break;
					case 1:
						sf[0] = 
						sf[1] = plm_buffer_read(self->buffer, 6);
						sf[2] = plm_buffer_read(self->buffer, 6);
						break;
					case 2:
						sf[0] = 
						sf[1] = 
						sf[2] = plm_buffer_read(self->buffer, 6);
						break;
					case 3:
						sf[0] = plm_buffer_read(self->buffer, 6);
						sf[1] = 
						sf[2] = plm_buffer_read(self->buffer, 6);
						break;
				}
			}
		}
		if (self->mode == PLM_AUDIO_MODE_MONO) {
			self->scale_factor[1][sb][0] = self->scale_factor[0][sb][0];
			self->scale_factor[1][sb][1] = self->scale_factor[0][sb][1];
			self->scale_factor[1][sb][2] = self->scale_factor[0][sb][2];
		}
	}

	// Coefficient input and reconstruction
	int out_pos = 0;
	for (int part = 0; part < 3; part++) {
		for (int granule = 0; granule < 4; granule++) {

			// Read the samples
			for (int sb = 0; sb < self->bound; sb++) {
				plm_audio_read_samples(self, 0, sb, part);
				plm_audio_read_samples(self, 1, sb, part);
			}
			for (int sb = self->bound; sb < sblimit; sb++) {
				plm_audio_read_samples(self, 0, sb, part);
				self->sample[1][sb][0] = self->sample[0][sb][0];
				self->sample[1][sb][1] = self->sample[0][sb][1];
				self->sample[1][sb][2] = self->sample[0][sb][2];
			}
			for (int sb = sblimit; sb < 32; sb++) {
				self->sample[0][sb][0] = 0;
				self->sample[0][sb][1] = 0;
				self->sample[0][sb][2] = 0;
				self->sample[1][sb][0] = 0;
				self->sample[1][sb][1] = 0;
				self->sample[1][sb][2] = 0;
			}

			// Synthesis loop
			for (int p = 0; p < 3; p++) {
				// Shifting step
				self->v_pos = (self->v_pos - 64) & 1023;

				for (int ch = 0; ch < 2; ch++) {
					plm_audio_idct36(self->sample[ch], p, self->V[ch], self->v_pos);

					// Build U, windowing, calculate output
					memset(self->U, 0, sizeof(self->U));

					int d_index = 512 - (self->v_pos >> 1);
					int v_index = (self->v_pos % 128) >> 1;
					while (v_index < 1024) {
						for (int i = 0; i < 32; ++i) {
							self->U[i] += self->D[d_index++] * self->V[ch][v_index++];
						}

						v_index += 128 - 32;
						d_index += 64 - 32;
					}

					d_index -= (512 - 32);
					v_index = (128 - 32 + 1024) - v_index;
					while (v_index < 1024) {
						for (int i = 0; i < 32; ++i) {
							self->U[i] += self->D[d_index++] * self->V[ch][v_index++];
						}

						v_index += 128 - 32;
						d_index += 64 - 32;
					}

					// Output samples
					#ifdef PLM_AUDIO_SEPARATE_CHANNELS
						float *out_channel = ch == 0
							? self->samples.left
							: self->samples.right;
						for (int j = 0; j < 32; j++) {
							out_channel[out_pos + j] = self->U[j] / 2147418112.0f;
						}
					#else
						for (int j = 0; j < 32; j++) {
							self->samples.interleaved[((out_pos + j) << 1) + ch] = 
								self->U[j] / 2147418112.0f;
						}
					#endif
				} // End of synthesis channel loop
				out_pos += 32;
			} // End of synthesis sub-block loop

		} // Decoding of the granule finished
	}

	plm_buffer_align(self->buffer);
}

const plm_quantizer_spec_t *plm_audio_read_allocation(plm_audio_t *self, int sb, int tab3) {
	int tab4 = PLM_AUDIO_QUANT_LUT_STEP_3[tab3][sb];
	int qtab = PLM_AUDIO_QUANT_LUT_STEP_4[tab4 & 15][plm_buffer_read(self->buffer, tab4 >> 4)];
	return qtab ? (&PLM_AUDIO_QUANT_TAB[qtab - 1]) : 0;
}

void plm_audio_read_samples(plm_audio_t *self, int ch, int sb, int part) {
	const plm_quantizer_spec_t *q = self->allocation[ch][sb];
	int sf = self->scale_factor[ch][sb][part];
	int *sample = self->sample[ch][sb];
	int val = 0;

	if (!q) {
		// No bits allocated for this subband
		sample[0] = sample[1] = sample[2] = 0;
		return;
	}

	// Resolve scalefactor
	if (sf == 63) {
		sf = 0;
	}
	else {
		int shift = (sf / 3) | 0;
		sf = (PLM_AUDIO_SCALEFACTOR_BASE[sf % 3] + ((1 << shift) >> 1)) >> shift;
	}

	// Decode samples
	int adj = q->levels;
	if (q->group) {
		// Decode grouped samples
		val = plm_buffer_read(self->buffer, q->bits);
		sample[0] = val % adj;
		val /= adj;
		sample[1] = val % adj;
		sample[2] = val / adj;
	}
	else {
		// Decode direct samples
		sample[0] = plm_buffer_read(self->buffer, q->bits);
		sample[1] = plm_buffer_read(self->buffer, q->bits);
		sample[2] = plm_buffer_read(self->buffer, q->bits);
	}

	// Postmultiply samples
	int scale = 65536 / (adj + 1);
	adj = ((adj + 1) >> 1) - 1;

	val = (adj - sample[0]) * scale;
	sample[0] = (val * (sf >> 12) + ((val * (sf & 4095) + 2048) >> 12)) >> 12;

	val = (adj - sample[1]) * scale;
	sample[1] = (val * (sf >> 12) + ((val * (sf & 4095) + 2048) >> 12)) >> 12;

	val = (adj - sample[2]) * scale;
	sample[2] = (val * (sf >> 12) + ((val * (sf & 4095) + 2048) >> 12)) >> 12;
}

void plm_audio_idct36(int s[32][3], int ss, float *d, int dp) {
	float t01, t02, t03, t04, t05, t06, t07, t08, t09, t10, t11, t12,
		t13, t14, t15, t16, t17, t18, t19, t20, t21, t22, t23, t24,
		t25, t26, t27, t28, t29, t30, t31, t32, t33;

	t01 = (float)(s[0][ss] + s[31][ss]); t02 = (float)(s[0][ss] - s[31][ss]) * 0.500602998235f;
	t03 = (float)(s[1][ss] + s[30][ss]); t04 = (float)(s[1][ss] - s[30][ss]) * 0.505470959898f;
	t05 = (float)(s[2][ss] + s[29][ss]); t06 = (float)(s[2][ss] - s[29][ss]) * 0.515447309923f;
	t07 = (float)(s[3][ss] + s[28][ss]); t08 = (float)(s[3][ss] - s[28][ss]) * 0.53104259109f;
	t09 = (float)(s[4][ss] + s[27][ss]); t10 = (float)(s[4][ss] - s[27][ss]) * 0.553103896034f;
	t11 = (float)(s[5][ss] + s[26][ss]); t12 = (float)(s[5][ss] - s[26][ss]) * 0.582934968206f;
	t13 = (float)(s[6][ss] + s[25][ss]); t14 = (float)(s[6][ss] - s[25][ss]) * 0.622504123036f;
	t15 = (float)(s[7][ss] + s[24][ss]); t16 = (float)(s[7][ss] - s[24][ss]) * 0.674808341455f;
	t17 = (float)(s[8][ss] + s[23][ss]); t18 = (float)(s[8][ss] - s[23][ss]) * 0.744536271002f;
	t19 = (float)(s[9][ss] + s[22][ss]); t20 = (float)(s[9][ss] - s[22][ss]) * 0.839349645416f;
	t21 = (float)(s[10][ss] + s[21][ss]); t22 = (float)(s[10][ss] - s[21][ss]) * 0.972568237862f;
	t23 = (float)(s[11][ss] + s[20][ss]); t24 = (float)(s[11][ss] - s[20][ss]) * 1.16943993343f;
	t25 = (float)(s[12][ss] + s[19][ss]); t26 = (float)(s[12][ss] - s[19][ss]) * 1.48416461631f;
	t27 = (float)(s[13][ss] + s[18][ss]); t28 = (float)(s[13][ss] - s[18][ss]) * 2.05778100995f;
	t29 = (float)(s[14][ss] + s[17][ss]); t30 = (float)(s[14][ss] - s[17][ss]) * 3.40760841847f;
	t31 = (float)(s[15][ss] + s[16][ss]); t32 = (float)(s[15][ss] - s[16][ss]) * 10.1900081235f;

	t33 = t01 + t31; t31 = (t01 - t31) * 0.502419286188f;
	t01 = t03 + t29; t29 = (t03 - t29) * 0.52249861494f;
	t03 = t05 + t27; t27 = (t05 - t27) * 0.566944034816f;
	t05 = t07 + t25; t25 = (t07 - t25) * 0.64682178336f;
	t07 = t09 + t23; t23 = (t09 - t23) * 0.788154623451f;
	t09 = t11 + t21; t21 = (t11 - t21) * 1.06067768599f;
	t11 = t13 + t19; t19 = (t13 - t19) * 1.72244709824f;
	t13 = t15 + t17; t17 = (t15 - t17) * 5.10114861869f;
	t15 = t33 + t13; t13 = (t33 - t13) * 0.509795579104f;
	t33 = t01 + t11; t01 = (t01 - t11) * 0.601344886935f;
	t11 = t03 + t09; t09 = (t03 - t09) * 0.899976223136f;
	t03 = t05 + t07; t07 = (t05 - t07) * 2.56291544774f;
	t05 = t15 + t03; t15 = (t15 - t03) * 0.541196100146f;
	t03 = t33 + t11; t11 = (t33 - t11) * 1.30656296488f;
	t33 = t05 + t03; t05 = (t05 - t03) * 0.707106781187f;
	t03 = t15 + t11; t15 = (t15 - t11) * 0.707106781187f;
	t03 += t15;
	t11 = t13 + t07; t13 = (t13 - t07) * 0.541196100146f;
	t07 = t01 + t09; t09 = (t01 - t09) * 1.30656296488f;
	t01 = t11 + t07; t07 = (t11 - t07) * 0.707106781187f;
	t11 = t13 + t09; t13 = (t13 - t09) * 0.707106781187f;
	t11 += t13; t01 += t11;
	t11 += t07; t07 += t13;
	t09 = t31 + t17; t31 = (t31 - t17) * 0.509795579104f;
	t17 = t29 + t19; t29 = (t29 - t19) * 0.601344886935f;
	t19 = t27 + t21; t21 = (t27 - t21) * 0.899976223136f;
	t27 = t25 + t23; t23 = (t25 - t23) * 2.56291544774f;
	t25 = t09 + t27; t09 = (t09 - t27) * 0.541196100146f;
	t27 = t17 + t19; t19 = (t17 - t19) * 1.30656296488f;
	t17 = t25 + t27; t27 = (t25 - t27) * 0.707106781187f;
	t25 = t09 + t19; t19 = (t09 - t19) * 0.707106781187f;
	t25 += t19;
	t09 = t31 + t23; t31 = (t31 - t23) * 0.541196100146f;
	t23 = t29 + t21; t21 = (t29 - t21) * 1.30656296488f;
	t29 = t09 + t23; t23 = (t09 - t23) * 0.707106781187f;
	t09 = t31 + t21; t31 = (t31 - t21) * 0.707106781187f;
	t09 += t31;	t29 += t09;	t09 += t23;	t23 += t31;
	t17 += t29;	t29 += t25;	t25 += t09;	t09 += t27;
	t27 += t23;	t23 += t19; t19 += t31;
	t21 = t02 + t32; t02 = (t02 - t32) * 0.502419286188f;
	t32 = t04 + t30; t04 = (t04 - t30) * 0.52249861494f;
	t30 = t06 + t28; t28 = (t06 - t28) * 0.566944034816f;
	t06 = t08 + t26; t08 = (t08 - t26) * 0.64682178336f;
	t26 = t10 + t24; t10 = (t10 - t24) * 0.788154623451f;
	t24 = t12 + t22; t22 = (t12 - t22) * 1.06067768599f;
	t12 = t14 + t20; t20 = (t14 - t20) * 1.72244709824f;
	t14 = t16 + t18; t16 = (t16 - t18) * 5.10114861869f;
	t18 = t21 + t14; t14 = (t21 - t14) * 0.509795579104f;
	t21 = t32 + t12; t32 = (t32 - t12) * 0.601344886935f;
	t12 = t30 + t24; t24 = (t30 - t24) * 0.899976223136f;
	t30 = t06 + t26; t26 = (t06 - t26) * 2.56291544774f;
	t06 = t18 + t30; t18 = (t18 - t30) * 0.541196100146f;
	t30 = t21 + t12; t12 = (t21 - t12) * 1.30656296488f;
	t21 = t06 + t30; t30 = (t06 - t30) * 0.707106781187f;
	t06 = t18 + t12; t12 = (t18 - t12) * 0.707106781187f;
	t06 += t12;
	t18 = t14 + t26; t26 = (t14 - t26) * 0.541196100146f;
	t14 = t32 + t24; t24 = (t32 - t24) * 1.30656296488f;
	t32 = t18 + t14; t14 = (t18 - t14) * 0.707106781187f;
	t18 = t26 + t24; t24 = (t26 - t24) * 0.707106781187f;
	t18 += t24; t32 += t18;
	t18 += t14; t26 = t14 + t24;
	t14 = t02 + t16; t02 = (t02 - t16) * 0.509795579104f;
	t16 = t04 + t20; t04 = (t04 - t20) * 0.601344886935f;
	t20 = t28 + t22; t22 = (t28 - t22) * 0.899976223136f;
	t28 = t08 + t10; t10 = (t08 - t10) * 2.56291544774f;
	t08 = t14 + t28; t14 = (t14 - t28) * 0.541196100146f;
	t28 = t16 + t20; t20 = (t16 - t20) * 1.30656296488f;
	t16 = t08 + t28; t28 = (t08 - t28) * 0.707106781187f;
	t08 = t14 + t20; t20 = (t14 - t20) * 0.707106781187f;
	t08 += t20;
	t14 = t02 + t10; t02 = (t02 - t10) * 0.541196100146f;
	t10 = t04 + t22; t22 = (t04 - t22) * 1.30656296488f;
	t04 = t14 + t10; t10 = (t14 - t10) * 0.707106781187f;
	t14 = t02 + t22; t02 = (t02 - t22) * 0.707106781187f;
	t14 += t02;	t04 += t14;	t14 += t10;	t10 += t02;
	t16 += t04;	t04 += t08;	t08 += t14;	t14 += t28;
	t28 += t10;	t10 += t20;	t20 += t02;	t21 += t16;
	t16 += t32;	t32 += t04;	t04 += t06;	t06 += t08;
	t08 += t18;	t18 += t14;	t14 += t30;	t30 += t28;
	t28 += t26;	t26 += t10;	t10 += t12;	t12 += t20;
	t20 += t24;	t24 += t02;

	d[dp + 48] = -t33;
	d[dp + 49] = d[dp + 47] = -t21;
	d[dp + 50] = d[dp + 46] = -t17;
	d[dp + 51] = d[dp + 45] = -t16;
	d[dp + 52] = d[dp + 44] = -t01;
	d[dp + 53] = d[dp + 43] = -t32;
	d[dp + 54] = d[dp + 42] = -t29;
	d[dp + 55] = d[dp + 41] = -t04;
	d[dp + 56] = d[dp + 40] = -t03;
	d[dp + 57] = d[dp + 39] = -t06;
	d[dp + 58] = d[dp + 38] = -t25;
	d[dp + 59] = d[dp + 37] = -t08;
	d[dp + 60] = d[dp + 36] = -t11;
	d[dp + 61] = d[dp + 35] = -t18;
	d[dp + 62] = d[dp + 34] = -t09;
	d[dp + 63] = d[dp + 33] = -t14;
	d[dp + 32] = -t05;
	d[dp + 0] = t05; d[dp + 31] = -t30;
	d[dp + 1] = t30; d[dp + 30] = -t27;
	d[dp + 2] = t27; d[dp + 29] = -t28;
	d[dp + 3] = t28; d[dp + 28] = -t07;
	d[dp + 4] = t07; d[dp + 27] = -t26;
	d[dp + 5] = t26; d[dp + 26] = -t23;
	d[dp + 6] = t23; d[dp + 25] = -t10;
	d[dp + 7] = t10; d[dp + 24] = -t15;
	d[dp + 8] = t15; d[dp + 23] = -t12;
	d[dp + 9] = t12; d[dp + 22] = -t19;
	d[dp + 10] = t19; d[dp + 21] = -t20;
	d[dp + 11] = t20; d[dp + 20] = -t13;
	d[dp + 12] = t13; d[dp + 19] = -t24;
	d[dp + 13] = t24; d[dp + 18] = -t31;
	d[dp + 14] = t31; d[dp + 17] = -t02;
	d[dp + 15] = t02; d[dp + 16] = 0.0;
}


#endif // PL_MPEG_IMPLEMENTATION