Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/google/ruy.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'ruy/pack_avx2_fma.cc')
-rw-r--r--ruy/pack_avx2_fma.cc812
1 files changed, 812 insertions, 0 deletions
diff --git a/ruy/pack_avx2_fma.cc b/ruy/pack_avx2_fma.cc
new file mode 100644
index 0000000..ebb0b33
--- /dev/null
+++ b/ruy/pack_avx2_fma.cc
@@ -0,0 +1,812 @@
+/* Copyright 2019 Google LLC. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#include <cstdint>
+#include <cstring>
+
+#include "ruy/check_macros.h"
+#include "ruy/opt_set.h"
+#include "ruy/pack_x86.h"
+#include "ruy/path.h"
+#include "ruy/platform.h"
+#include "ruy/profiler/instrumentation.h"
+
+#if RUY_PLATFORM_AVX2_FMA && RUY_OPT(INTRINSICS)
+#include <immintrin.h> // IWYU pragma: keep
+#endif
+
+namespace ruy {
+
+#if !(RUY_PLATFORM_AVX2_FMA && RUY_OPT(ASM))
+
+void Pack8bitAvx2(const std::int8_t*, std::int8_t, const std::int8_t*, int, int,
+ int, std::int8_t*, std::int32_t*) {
+ // CPU-ID-based checks should disable the path that would reach this point.
+ RUY_DCHECK(false);
+}
+
+void PackFloatAvx2(const float*, const float*, int, int, int, float*) {
+ // CPU-ID-based checks should disable the path that would reach this point.
+ RUY_DCHECK(false);
+}
+
+#else // RUY_PLATFORM_AVX2_FMA && RUY_OPT(ASM)
+
+// The first int8_t template parameter is arbitrary: this routine is common to
+// all 8-bit source matrix types.
+using PackImpl8bitAvx2 =
+ PackImpl<Path::kAvx2Fma, FixedKernelLayout<Order::kColMajor, 4, 8>,
+ std::int8_t, std::int8_t, std::int32_t>;
+
+using PackImplFloatAvx2 =
+ PackImpl<Path::kAvx2Fma, FixedKernelLayout<Order::kRowMajor, 1, 8>, float,
+ float, float>;
+
+namespace {
+
+inline __m256i MaskLoadu(int available_src_rows, std::int8_t zero_point,
+ const std::int8_t* addr) {
+ RUY_DCHECK_LT(available_src_rows, 32);
+ __m256i padded_data;
+
+ if (available_src_rows >= 16) {
+ __m128i load_hi = _mm_set1_epi8(zero_point);
+ __m128i load_lo = _mm_loadu_si128(reinterpret_cast<const __m128i*>(addr));
+ memcpy(&load_hi, addr + 16, available_src_rows - 16);
+ padded_data = _mm256_set_m128i(load_hi, load_lo);
+ } else {
+ __m128i load_hi = _mm_set1_epi8(zero_point);
+ __m128i load_lo = load_hi;
+ memcpy(&load_lo, addr, available_src_rows);
+ padded_data = _mm256_set_m128i(load_hi, load_lo);
+ }
+ return padded_data;
+}
+
+inline void Pack8bitAvx2Packer(const std::int8_t* src_ptr,
+ std::int8_t input_xor,
+ const std::int8_t* zerobuf, int src_stride,
+ int remaining_src_cols, int src_rows,
+ std::int8_t* packed_ptr, std::int32_t* sums_ptr,
+ std::int8_t* trailing_buf) {
+ using Layout = PackImpl8bitAvx2::Layout;
+ RUY_DCHECK_EQ(Layout::kCols, 8);
+ RUY_DCHECK_EQ(Layout::kRows, 4);
+ // Each Layout::Rows is 4 contiguous input, contiguous packed elements.
+ // We process 8 of these chunks at a time, padding short input chunks.
+ constexpr int kNumRowChunks = 8;
+ constexpr int kNumChunkedSrcRows = kNumRowChunks * Layout::kRows;
+
+ const std::int8_t* src_ptr0 = src_ptr;
+ const std::int8_t* src_ptr1 = src_ptr0 + src_stride;
+ const std::int8_t* src_ptr2 = src_ptr1 + src_stride;
+ const std::int8_t* src_ptr3 = src_ptr2 + src_stride;
+ const std::int8_t* src_ptr4 = src_ptr3 + src_stride;
+ const std::int8_t* src_ptr5 = src_ptr4 + src_stride;
+ const std::int8_t* src_ptr6 = src_ptr5 + src_stride;
+ const std::int8_t* src_ptr7 = src_ptr6 + src_stride;
+ std::int64_t src_inc0 = kNumChunkedSrcRows;
+ std::int64_t src_inc1 = kNumChunkedSrcRows;
+ std::int64_t src_inc2 = kNumChunkedSrcRows;
+ std::int64_t src_inc3 = kNumChunkedSrcRows;
+ std::int64_t src_inc4 = kNumChunkedSrcRows;
+ std::int64_t src_inc5 = kNumChunkedSrcRows;
+ std::int64_t src_inc6 = kNumChunkedSrcRows;
+ std::int64_t src_inc7 = kNumChunkedSrcRows;
+ // Handle cases where source does not have Layout::kCols (8) columns.
+ if (remaining_src_cols < 8) {
+ if (remaining_src_cols <= 0) {
+ src_ptr0 = zerobuf;
+ src_inc0 = 0;
+ }
+ if (remaining_src_cols <= 1) {
+ src_ptr1 = zerobuf;
+ src_inc1 = 0;
+ }
+ if (remaining_src_cols <= 2) {
+ src_ptr2 = zerobuf;
+ src_inc2 = 0;
+ }
+ if (remaining_src_cols <= 3) {
+ src_ptr3 = zerobuf;
+ src_inc3 = 0;
+ }
+ if (remaining_src_cols <= 4) {
+ src_ptr4 = zerobuf;
+ src_inc4 = 0;
+ }
+ if (remaining_src_cols <= 5) {
+ src_ptr5 = zerobuf;
+ src_inc5 = 0;
+ }
+ if (remaining_src_cols <= 6) {
+ src_ptr6 = zerobuf;
+ src_inc6 = 0;
+ }
+ src_ptr7 = zerobuf;
+ src_inc7 = 0;
+ }
+
+ const std::int8_t zero_point = zerobuf[0];
+
+ if (sums_ptr) {
+ // i: Layout::kCols.
+ for (int i = 0; i < 8; ++i) {
+ sums_ptr[i] = 0;
+ }
+ }
+ std::int32_t sums_adjustment = 0;
+ const __m256i ones_16bit = _mm256_set1_epi16(1);
+ __m256i sums_4x2_32bit_lo = _mm256_set1_epi32(0);
+ __m256i sums_4x2_32bit_hi = _mm256_set1_epi32(0);
+
+ // The overall packing effectively pads the source rows to
+ // (src_rows + 63) & ~63. The iteration over k may skip when m=1, and then we
+ // only pack for (src_rows + 31) & ~31. When there is an incomplete
+ // destination block, this is stored into trailing_buf instead of packed_ptr.
+ for (int k = 0; k < src_rows; k += kNumChunkedSrcRows) {
+ // Available source rows.
+ // If this is less than 0 (for m=1), we skip, having filled trailing
+ // buffer for m=0. Also, if source rows is zero on m=1, then we filled
+ // exactly to the end of the column in the packed buffer.
+ const int available_src_rows = src_rows - k;
+ // Effectively,
+ // available rows = std::max(0, std::min(8, src_rows - k));
+ // treat each case separately.
+ if (available_src_rows >= kNumChunkedSrcRows) {
+ if (sums_ptr) {
+ __m256i t0, t1, t2, t3, t4, t5, t6, t7;
+ __m256i r0, r1, r2, r3, r4, r5, r6, r7;
+ const __m256i input_xor_v = _mm256_set1_epi8(input_xor);
+
+ t0 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src_ptr0));
+ t4 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src_ptr4));
+ t1 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src_ptr1));
+ t5 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src_ptr5));
+ t2 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src_ptr2));
+ t6 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src_ptr6));
+ t3 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src_ptr3));
+ t7 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src_ptr7));
+
+ r0 = _mm256_unpacklo_epi32(t0, t1);
+ r4 = _mm256_unpacklo_epi32(t4, t5);
+ r2 = _mm256_unpackhi_epi32(t0, t1);
+ r6 = _mm256_unpackhi_epi32(t4, t5);
+ r1 = _mm256_unpacklo_epi32(t2, t3);
+ r5 = _mm256_unpacklo_epi32(t6, t7);
+ r3 = _mm256_unpackhi_epi32(t2, t3);
+ r7 = _mm256_unpackhi_epi32(t6, t7);
+
+ t0 = _mm256_unpacklo_epi64(r0, r1);
+ t4 = _mm256_unpacklo_epi64(r4, r5);
+ t2 = _mm256_unpackhi_epi64(r0, r1);
+ t6 = _mm256_unpackhi_epi64(r4, r5);
+ t1 = _mm256_unpacklo_epi64(r2, r3);
+ t5 = _mm256_unpacklo_epi64(r6, r7);
+ t3 = _mm256_unpackhi_epi64(r2, r3);
+ t7 = _mm256_unpackhi_epi64(r6, r7);
+
+ // The preceding sets of rearrangement operations interleaved by 4 bytes
+ // and then by 8 bytes *within* lanes. The following set interleave by
+ // 16 bytes (128-bit), operating *between* AVX lanes. For instance (t0,
+ // t4) are interleaved to create (r0, r1). This complexity follows from
+ // the way that AVX is centered around MM 128-bit lanes.
+ r0 = _mm256_permute2x128_si256(t0, t4, 0x20);
+ r4 = _mm256_permute2x128_si256(t1, t5, 0x20);
+ r1 = _mm256_permute2x128_si256(t0, t4, 0x31);
+ r5 = _mm256_permute2x128_si256(t1, t5, 0x31);
+ r2 = _mm256_permute2x128_si256(t2, t6, 0x20);
+ r6 = _mm256_permute2x128_si256(t3, t7, 0x20);
+ r3 = _mm256_permute2x128_si256(t2, t6, 0x31);
+ r7 = _mm256_permute2x128_si256(t3, t7, 0x31);
+
+ r0 = _mm256_xor_si256(r0, input_xor_v);
+ r1 = _mm256_xor_si256(r1, input_xor_v);
+ r2 = _mm256_xor_si256(r2, input_xor_v);
+ r3 = _mm256_xor_si256(r3, input_xor_v);
+ r4 = _mm256_xor_si256(r4, input_xor_v);
+ r5 = _mm256_xor_si256(r5, input_xor_v);
+ r6 = _mm256_xor_si256(r6, input_xor_v);
+ r7 = _mm256_xor_si256(r7, input_xor_v);
+
+ __m256i sums_4x4_16bit_lo;
+ sums_4x4_16bit_lo = _mm256_cvtepi8_epi16(_mm256_castsi256_si128(r0));
+ sums_4x4_16bit_lo =
+ _mm256_add_epi16(sums_4x4_16bit_lo,
+ _mm256_cvtepi8_epi16(_mm256_castsi256_si128(r1)));
+ sums_4x4_16bit_lo =
+ _mm256_add_epi16(sums_4x4_16bit_lo,
+ _mm256_cvtepi8_epi16(_mm256_castsi256_si128(r2)));
+ sums_4x4_16bit_lo =
+ _mm256_add_epi16(sums_4x4_16bit_lo,
+ _mm256_cvtepi8_epi16(_mm256_castsi256_si128(r3)));
+ sums_4x4_16bit_lo =
+ _mm256_add_epi16(sums_4x4_16bit_lo,
+ _mm256_cvtepi8_epi16(_mm256_castsi256_si128(r4)));
+ sums_4x4_16bit_lo =
+ _mm256_add_epi16(sums_4x4_16bit_lo,
+ _mm256_cvtepi8_epi16(_mm256_castsi256_si128(r5)));
+ sums_4x4_16bit_lo =
+ _mm256_add_epi16(sums_4x4_16bit_lo,
+ _mm256_cvtepi8_epi16(_mm256_castsi256_si128(r6)));
+ sums_4x4_16bit_lo =
+ _mm256_add_epi16(sums_4x4_16bit_lo,
+ _mm256_cvtepi8_epi16(_mm256_castsi256_si128(r7)));
+
+ // The sums have been performed across columns, and now we have 4x16-bit
+ // sums packed together. We use madd for pairwise 32-bit sums.
+ const __m256i sums_4x2_32bit_lo_new =
+ _mm256_madd_epi16(sums_4x4_16bit_lo, ones_16bit);
+ sums_4x2_32bit_lo =
+ _mm256_add_epi32(sums_4x2_32bit_lo, sums_4x2_32bit_lo_new);
+
+ __m256i sums_4x4_16bit_hi;
+ sums_4x4_16bit_hi =
+ _mm256_cvtepi8_epi16(_mm256_extracti128_si256(r0, 1));
+ sums_4x4_16bit_hi = _mm256_add_epi16(
+ sums_4x4_16bit_hi,
+ _mm256_cvtepi8_epi16(_mm256_extracti128_si256(r1, 1)));
+ sums_4x4_16bit_hi = _mm256_add_epi16(
+ sums_4x4_16bit_hi,
+ _mm256_cvtepi8_epi16(_mm256_extracti128_si256(r2, 1)));
+ sums_4x4_16bit_hi = _mm256_add_epi16(
+ sums_4x4_16bit_hi,
+ _mm256_cvtepi8_epi16(_mm256_extracti128_si256(r3, 1)));
+ sums_4x4_16bit_hi = _mm256_add_epi16(
+ sums_4x4_16bit_hi,
+ _mm256_cvtepi8_epi16(_mm256_extracti128_si256(r4, 1)));
+ sums_4x4_16bit_hi = _mm256_add_epi16(
+ sums_4x4_16bit_hi,
+ _mm256_cvtepi8_epi16(_mm256_extracti128_si256(r5, 1)));
+ sums_4x4_16bit_hi = _mm256_add_epi16(
+ sums_4x4_16bit_hi,
+ _mm256_cvtepi8_epi16(_mm256_extracti128_si256(r6, 1)));
+ sums_4x4_16bit_hi = _mm256_add_epi16(
+ sums_4x4_16bit_hi,
+ _mm256_cvtepi8_epi16(_mm256_extracti128_si256(r7, 1)));
+
+ const __m256i sums_4x2_32bit_hi_new =
+ _mm256_madd_epi16(sums_4x4_16bit_hi, ones_16bit);
+ sums_4x2_32bit_hi =
+ _mm256_add_epi32(sums_4x2_32bit_hi, sums_4x2_32bit_hi_new);
+
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(packed_ptr + 0 * 8 * 4),
+ r0);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(packed_ptr + 2 * 8 * 4),
+ r4);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(packed_ptr + 4 * 8 * 4),
+ r1);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(packed_ptr + 6 * 8 * 4),
+ r5);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(packed_ptr + 1 * 8 * 4),
+ r2);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(packed_ptr + 3 * 8 * 4),
+ r6);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(packed_ptr + 5 * 8 * 4),
+ r3);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(packed_ptr + 7 * 8 * 4),
+ r7);
+ } else {
+ __m256i t0, t1, t2, t3, t4, t5, t6, t7;
+ __m256i r0, r1, r2, r3, r4, r5, r6, r7;
+ const __m256i input_xor_v = _mm256_set1_epi8(input_xor);
+
+ t0 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src_ptr0));
+ t4 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src_ptr4));
+ t1 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src_ptr1));
+ t5 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src_ptr5));
+ t2 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src_ptr2));
+ t6 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src_ptr6));
+ t3 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src_ptr3));
+ t7 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src_ptr7));
+
+ r0 = _mm256_unpacklo_epi32(t0, t1);
+ r4 = _mm256_unpacklo_epi32(t4, t5);
+ r2 = _mm256_unpackhi_epi32(t0, t1);
+ r6 = _mm256_unpackhi_epi32(t4, t5);
+ r1 = _mm256_unpacklo_epi32(t2, t3);
+ r5 = _mm256_unpacklo_epi32(t6, t7);
+ r3 = _mm256_unpackhi_epi32(t2, t3);
+ r7 = _mm256_unpackhi_epi32(t6, t7);
+
+ t0 = _mm256_unpacklo_epi64(r0, r1);
+ t4 = _mm256_unpacklo_epi64(r4, r5);
+ t2 = _mm256_unpackhi_epi64(r0, r1);
+ t6 = _mm256_unpackhi_epi64(r4, r5);
+ t1 = _mm256_unpacklo_epi64(r2, r3);
+ t5 = _mm256_unpacklo_epi64(r6, r7);
+ t3 = _mm256_unpackhi_epi64(r2, r3);
+ t7 = _mm256_unpackhi_epi64(r6, r7);
+
+ // The preceding sets of rearrangement operations interleaved by 4 bytes
+ // and then by 8 bytes *within* lanes. The following set interleave by
+ // 16 bytes (128-bit), operating *between* AVX lanes. For instance (t0,
+ // t4) are interleaved to create (r0, r1). This complexity follows from
+ // the way that AVX is centered around MM 128-bit lanes.
+ r0 = _mm256_permute2x128_si256(t0, t4, 0x20);
+ r4 = _mm256_permute2x128_si256(t1, t5, 0x20);
+ r1 = _mm256_permute2x128_si256(t0, t4, 0x31);
+ r5 = _mm256_permute2x128_si256(t1, t5, 0x31);
+ r2 = _mm256_permute2x128_si256(t2, t6, 0x20);
+ r6 = _mm256_permute2x128_si256(t3, t7, 0x20);
+ r3 = _mm256_permute2x128_si256(t2, t6, 0x31);
+ r7 = _mm256_permute2x128_si256(t3, t7, 0x31);
+
+ r0 = _mm256_xor_si256(r0, input_xor_v);
+ r1 = _mm256_xor_si256(r1, input_xor_v);
+ r2 = _mm256_xor_si256(r2, input_xor_v);
+ r3 = _mm256_xor_si256(r3, input_xor_v);
+ r4 = _mm256_xor_si256(r4, input_xor_v);
+ r5 = _mm256_xor_si256(r5, input_xor_v);
+ r6 = _mm256_xor_si256(r6, input_xor_v);
+ r7 = _mm256_xor_si256(r7, input_xor_v);
+
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(packed_ptr + 0 * 8 * 4),
+ r0);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(packed_ptr + 2 * 8 * 4),
+ r4);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(packed_ptr + 4 * 8 * 4),
+ r1);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(packed_ptr + 6 * 8 * 4),
+ r5);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(packed_ptr + 1 * 8 * 4),
+ r2);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(packed_ptr + 3 * 8 * 4),
+ r6);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(packed_ptr + 5 * 8 * 4),
+ r3);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(packed_ptr + 7 * 8 * 4),
+ r7);
+ }
+ } else if (available_src_rows > 0) {
+ RUY_DCHECK_LT(available_src_rows, kNumChunkedSrcRows);
+ // We do not care what goes into the trailing buffer, but we want
+ // in_data[...] ^ input_xor == 0 for irrelevant values in the summation.
+ //
+ // We compensate for padding-with-zero_point by initializing the
+ // summations with the compensating offset, effectively
+ // ((input_xor ^ input_xor) - (zero_point ^ input_xor)) *
+ // 4 * (8 - ((available_src_rows + 3) >> 2)).
+ //
+ // Note that (zero_point ^ input_xor) is performed in 8-bits and then
+ // cast.
+ sums_adjustment +=
+ -(zero_point ^ input_xor) * 4 * (8 - ((available_src_rows + 3) >> 2));
+
+ __m256i t0, t1, t2, t3, t4, t5, t6, t7;
+ __m256i r0, r1, r2, r3, r4, r5, r6, r7;
+ const __m256i input_xor_v = _mm256_set1_epi8(input_xor);
+
+ t0 = MaskLoadu(available_src_rows, zero_point, src_ptr0);
+ t4 = MaskLoadu(available_src_rows, zero_point, src_ptr4);
+ t1 = MaskLoadu(available_src_rows, zero_point, src_ptr1);
+ t5 = MaskLoadu(available_src_rows, zero_point, src_ptr5);
+ t2 = MaskLoadu(available_src_rows, zero_point, src_ptr2);
+ t6 = MaskLoadu(available_src_rows, zero_point, src_ptr6);
+ t3 = MaskLoadu(available_src_rows, zero_point, src_ptr3);
+ t7 = MaskLoadu(available_src_rows, zero_point, src_ptr7);
+
+ r0 = _mm256_unpacklo_epi32(t0, t1);
+ r4 = _mm256_unpacklo_epi32(t4, t5);
+ r2 = _mm256_unpackhi_epi32(t0, t1);
+ r6 = _mm256_unpackhi_epi32(t4, t5);
+ r1 = _mm256_unpacklo_epi32(t2, t3);
+ r5 = _mm256_unpacklo_epi32(t6, t7);
+ r3 = _mm256_unpackhi_epi32(t2, t3);
+ r7 = _mm256_unpackhi_epi32(t6, t7);
+
+ t0 = _mm256_unpacklo_epi64(r0, r1);
+ t4 = _mm256_unpacklo_epi64(r4, r5);
+ t2 = _mm256_unpackhi_epi64(r0, r1);
+ t6 = _mm256_unpackhi_epi64(r4, r5);
+ t1 = _mm256_unpacklo_epi64(r2, r3);
+ t5 = _mm256_unpacklo_epi64(r6, r7);
+ t3 = _mm256_unpackhi_epi64(r2, r3);
+ t7 = _mm256_unpackhi_epi64(r6, r7);
+
+ // The preceding sets of rearrangement operations interleaved by 4 bytes
+ // and then by 8 bytes *within* lanes. The following set interleave by
+ // 16 bytes (128-bit), operating *between* AVX lanes. For instance (t0,
+ // t4) are interleaved to create (r0, r1). This complexity follows from
+ // the way that AVX is centered around MM 128-bit lanes.
+ r0 = _mm256_permute2x128_si256(t0, t4, 0x20);
+ r4 = _mm256_permute2x128_si256(t1, t5, 0x20);
+ r1 = _mm256_permute2x128_si256(t0, t4, 0x31);
+ r5 = _mm256_permute2x128_si256(t1, t5, 0x31);
+ r2 = _mm256_permute2x128_si256(t2, t6, 0x20);
+ r6 = _mm256_permute2x128_si256(t3, t7, 0x20);
+ r3 = _mm256_permute2x128_si256(t2, t6, 0x31);
+ r7 = _mm256_permute2x128_si256(t3, t7, 0x31);
+
+ r0 = _mm256_xor_si256(r0, input_xor_v);
+ r1 = _mm256_xor_si256(r1, input_xor_v);
+ r2 = _mm256_xor_si256(r2, input_xor_v);
+ r3 = _mm256_xor_si256(r3, input_xor_v);
+ r4 = _mm256_xor_si256(r4, input_xor_v);
+ r5 = _mm256_xor_si256(r5, input_xor_v);
+ r6 = _mm256_xor_si256(r6, input_xor_v);
+ r7 = _mm256_xor_si256(r7, input_xor_v);
+
+ __m256i sums_4x4_16bit_lo;
+ sums_4x4_16bit_lo = _mm256_cvtepi8_epi16(_mm256_castsi256_si128(r0));
+ sums_4x4_16bit_lo = _mm256_add_epi16(
+ sums_4x4_16bit_lo, _mm256_cvtepi8_epi16(_mm256_castsi256_si128(r1)));
+ sums_4x4_16bit_lo = _mm256_add_epi16(
+ sums_4x4_16bit_lo, _mm256_cvtepi8_epi16(_mm256_castsi256_si128(r2)));
+ sums_4x4_16bit_lo = _mm256_add_epi16(
+ sums_4x4_16bit_lo, _mm256_cvtepi8_epi16(_mm256_castsi256_si128(r3)));
+ sums_4x4_16bit_lo = _mm256_add_epi16(
+ sums_4x4_16bit_lo, _mm256_cvtepi8_epi16(_mm256_castsi256_si128(r4)));
+ sums_4x4_16bit_lo = _mm256_add_epi16(
+ sums_4x4_16bit_lo, _mm256_cvtepi8_epi16(_mm256_castsi256_si128(r5)));
+ sums_4x4_16bit_lo = _mm256_add_epi16(
+ sums_4x4_16bit_lo, _mm256_cvtepi8_epi16(_mm256_castsi256_si128(r6)));
+ sums_4x4_16bit_lo = _mm256_add_epi16(
+ sums_4x4_16bit_lo, _mm256_cvtepi8_epi16(_mm256_castsi256_si128(r7)));
+
+ // The sums have been performed across columns, and now we have 4x16-bit
+ // sums packed together. We use madd for pairwise 32-bit sums.
+ const __m256i sums_4x2_32bit_lo_new =
+ _mm256_madd_epi16(sums_4x4_16bit_lo, ones_16bit);
+ sums_4x2_32bit_lo =
+ _mm256_add_epi32(sums_4x2_32bit_lo, sums_4x2_32bit_lo_new);
+
+ __m256i sums_4x4_16bit_hi;
+ sums_4x4_16bit_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(r0, 1));
+ sums_4x4_16bit_hi = _mm256_add_epi16(
+ sums_4x4_16bit_hi,
+ _mm256_cvtepi8_epi16(_mm256_extracti128_si256(r1, 1)));
+ sums_4x4_16bit_hi = _mm256_add_epi16(
+ sums_4x4_16bit_hi,
+ _mm256_cvtepi8_epi16(_mm256_extracti128_si256(r2, 1)));
+ sums_4x4_16bit_hi = _mm256_add_epi16(
+ sums_4x4_16bit_hi,
+ _mm256_cvtepi8_epi16(_mm256_extracti128_si256(r3, 1)));
+ sums_4x4_16bit_hi = _mm256_add_epi16(
+ sums_4x4_16bit_hi,
+ _mm256_cvtepi8_epi16(_mm256_extracti128_si256(r4, 1)));
+ sums_4x4_16bit_hi = _mm256_add_epi16(
+ sums_4x4_16bit_hi,
+ _mm256_cvtepi8_epi16(_mm256_extracti128_si256(r5, 1)));
+ sums_4x4_16bit_hi = _mm256_add_epi16(
+ sums_4x4_16bit_hi,
+ _mm256_cvtepi8_epi16(_mm256_extracti128_si256(r6, 1)));
+ sums_4x4_16bit_hi = _mm256_add_epi16(
+ sums_4x4_16bit_hi,
+ _mm256_cvtepi8_epi16(_mm256_extracti128_si256(r7, 1)));
+
+ const __m256i sums_4x2_32bit_hi_new =
+ _mm256_madd_epi16(sums_4x4_16bit_hi, ones_16bit);
+ sums_4x2_32bit_hi =
+ _mm256_add_epi32(sums_4x2_32bit_hi, sums_4x2_32bit_hi_new);
+
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(trailing_buf + 0 * 8 * 4),
+ r0);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(trailing_buf + 2 * 8 * 4),
+ r4);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(trailing_buf + 4 * 8 * 4),
+ r1);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(trailing_buf + 6 * 8 * 4),
+ r5);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(trailing_buf + 1 * 8 * 4),
+ r2);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(trailing_buf + 3 * 8 * 4),
+ r6);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(trailing_buf + 5 * 8 * 4),
+ r3);
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(trailing_buf + 7 * 8 * 4),
+ r7);
+ }
+
+ packed_ptr += 8 * kNumChunkedSrcRows;
+ src_ptr0 += src_inc0;
+ src_ptr1 += src_inc1;
+ src_ptr2 += src_inc2;
+ src_ptr3 += src_inc3;
+ src_ptr4 += src_inc4;
+ src_ptr5 += src_inc5;
+ src_ptr6 += src_inc6;
+ src_ptr7 += src_inc7;
+ }
+
+ if (sums_ptr) {
+ const __m256i sums_adjustment_v = _mm256_set1_epi32(sums_adjustment);
+
+ __m256i sums =
+ _mm256_loadu_si256(reinterpret_cast<const __m256i*>(sums_ptr));
+ const __m256i idx = _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0);
+
+ // We earlier used madd for pairwise 32-bit sums, and now we deinterlace the
+ // neighbours, finshing up by adding them to the stored accumulated sums.
+ const __m256i sums_2x4_32bit_lo =
+ _mm256_permutevar8x32_epi32(sums_4x2_32bit_lo, idx);
+ const __m256i sums_2x4_32bit_hi =
+ _mm256_permutevar8x32_epi32(sums_4x2_32bit_hi, idx);
+ const __m256i sums_2x4_32bit_a =
+ _mm256_permute2x128_si256(sums_2x4_32bit_lo, sums_2x4_32bit_hi, 0x20);
+ const __m256i sums_2x4_32bit_b =
+ _mm256_permute2x128_si256(sums_2x4_32bit_lo, sums_2x4_32bit_hi, 0x31);
+ sums = _mm256_add_epi32(sums, sums_adjustment_v);
+ sums = _mm256_add_epi32(sums, sums_2x4_32bit_a);
+ sums = _mm256_add_epi32(sums, sums_2x4_32bit_b);
+
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(sums_ptr), sums);
+ }
+}
+
+inline __m256 Mm256UnpackloPsx2(const __m256 a, const __m256 b) {
+ return _mm256_castpd_ps(
+ _mm256_unpacklo_pd(_mm256_castps_pd(a), _mm256_castps_pd(b)));
+}
+
+inline __m256 Mm256UnpackhiPsx2(const __m256 a, const __m256 b) {
+ return _mm256_castpd_ps(
+ _mm256_unpackhi_pd(_mm256_castps_pd(a), _mm256_castps_pd(b)));
+}
+
+inline void PackFloatAvx2Packer(const float* src_ptr, const float* zerobuf,
+ int src_stride, int remaining_src_cols,
+ int src_rows, float* packed_ptr,
+ float* trailing_buf) {
+ RUY_DCHECK_EQ(PackImplFloatAvx2::Layout::kCols, 8);
+ RUY_DCHECK_EQ(PackImplFloatAvx2::Layout::kRows, 1);
+
+ // This packing amounts to transposition of 8x8 blocks.
+ static constexpr int kPackCols = 8; // Source cols packed together.
+ static constexpr int kPackRows = 8; // Short input is padded.
+
+ const float* src_ptr0 = src_ptr;
+ const float* src_ptr1 = src_ptr0 + src_stride;
+ const float* src_ptr2 = src_ptr1 + src_stride;
+ const float* src_ptr3 = src_ptr2 + src_stride;
+ const float* src_ptr4 = src_ptr3 + src_stride;
+ const float* src_ptr5 = src_ptr4 + src_stride;
+ const float* src_ptr6 = src_ptr5 + src_stride;
+ const float* src_ptr7 = src_ptr6 + src_stride;
+ std::int64_t src_inc0 = 8;
+ std::int64_t src_inc1 = 8;
+ std::int64_t src_inc2 = 8;
+ std::int64_t src_inc3 = 8;
+ std::int64_t src_inc4 = 8;
+ std::int64_t src_inc5 = 8;
+ std::int64_t src_inc6 = 8;
+ std::int64_t src_inc7 = 8;
+ // Handle cases where source does not have kPackDim (8) columns.
+ if (remaining_src_cols < kPackCols) {
+ if (remaining_src_cols <= 0) {
+ src_ptr0 = zerobuf;
+ src_inc0 = 0;
+ }
+ if (remaining_src_cols <= 1) {
+ src_ptr1 = zerobuf;
+ src_inc1 = 0;
+ }
+ if (remaining_src_cols <= 2) {
+ src_ptr2 = zerobuf;
+ src_inc2 = 0;
+ }
+ if (remaining_src_cols <= 3) {
+ src_ptr3 = zerobuf;
+ src_inc3 = 0;
+ }
+ if (remaining_src_cols <= 4) {
+ src_ptr4 = zerobuf;
+ src_inc4 = 0;
+ }
+ if (remaining_src_cols <= 5) {
+ src_ptr5 = zerobuf;
+ src_inc5 = 0;
+ }
+ if (remaining_src_cols <= 6) {
+ src_ptr6 = zerobuf;
+ src_inc6 = 0;
+ }
+ src_ptr7 = zerobuf;
+ src_inc7 = 0;
+ }
+
+ for (int k = 0; k < src_rows; k += kPackRows) {
+ const int available_src_rows = src_rows - k;
+ // Effectively,
+ // available_src_rows = std::max(0, std::min(kPackDim, src_rows - k));
+ // but treat each case separately.
+ if (available_src_rows >= kPackRows) {
+ __m256 t0, t1, t2, t3, t4, t5, t6, t7;
+ __m256 r0, r1, r2, r3, r4, r5, r6, r7;
+
+ t0 = _mm256_loadu_ps(src_ptr0);
+ t4 = _mm256_loadu_ps(src_ptr4);
+ t1 = _mm256_loadu_ps(src_ptr1);
+ t5 = _mm256_loadu_ps(src_ptr5);
+ t2 = _mm256_loadu_ps(src_ptr2);
+ t6 = _mm256_loadu_ps(src_ptr6);
+ t3 = _mm256_loadu_ps(src_ptr3);
+ t7 = _mm256_loadu_ps(src_ptr7);
+
+ r0 = _mm256_unpacklo_ps(t0, t1);
+ r4 = _mm256_unpacklo_ps(t4, t5);
+ r2 = _mm256_unpackhi_ps(t0, t1);
+ r6 = _mm256_unpackhi_ps(t4, t5);
+ r1 = _mm256_unpacklo_ps(t2, t3);
+ r5 = _mm256_unpacklo_ps(t6, t7);
+ r3 = _mm256_unpackhi_ps(t2, t3);
+ r7 = _mm256_unpackhi_ps(t6, t7);
+
+ t0 = Mm256UnpackloPsx2(r0, r1);
+ t4 = Mm256UnpackloPsx2(r4, r5);
+ t2 = Mm256UnpackhiPsx2(r0, r1);
+ t6 = Mm256UnpackhiPsx2(r4, r5);
+ t1 = Mm256UnpackloPsx2(r2, r3);
+ t5 = Mm256UnpackloPsx2(r6, r7);
+ t3 = Mm256UnpackhiPsx2(r2, r3);
+ t7 = Mm256UnpackhiPsx2(r6, r7);
+
+ // The preceding sets of rearrangement operations interleaved by 4 bytes
+ // and then by 8 bytes *within* lanes. The following set interleave by 16
+ // bytes (128-bit), operating *between* AVX lanes. For instance (t0, t4)
+ // are interleaved to create (r0, r1). This complexity follows from the
+ // way that AVX is centered around MM 128-bit lanes.
+ r0 = _mm256_permute2f128_ps(t0, t4, 0x20);
+ r4 = _mm256_permute2f128_ps(t1, t5, 0x20);
+ r1 = _mm256_permute2f128_ps(t0, t4, 0x31);
+ r5 = _mm256_permute2f128_ps(t1, t5, 0x31);
+ r2 = _mm256_permute2f128_ps(t2, t6, 0x20);
+ r6 = _mm256_permute2f128_ps(t3, t7, 0x20);
+ r3 = _mm256_permute2f128_ps(t2, t6, 0x31);
+ r7 = _mm256_permute2f128_ps(t3, t7, 0x31);
+
+ _mm256_storeu_ps(packed_ptr + 0 * 8, r0);
+ _mm256_storeu_ps(packed_ptr + 2 * 8, r4);
+ _mm256_storeu_ps(packed_ptr + 4 * 8, r1);
+ _mm256_storeu_ps(packed_ptr + 6 * 8, r5);
+ _mm256_storeu_ps(packed_ptr + 1 * 8, r2);
+ _mm256_storeu_ps(packed_ptr + 3 * 8, r6);
+ _mm256_storeu_ps(packed_ptr + 5 * 8, r3);
+ _mm256_storeu_ps(packed_ptr + 7 * 8, r7);
+ } else if (available_src_rows > 0) {
+ const __m256i series = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
+ const __m256i row_mask_v =
+ _mm256_cmpgt_epi32(_mm256_set1_epi32(available_src_rows), series);
+
+ __m256 t0, t1, t2, t3, t4, t5, t6, t7;
+ __m256 r0, r1, r2, r3, r4, r5, r6, r7;
+
+ t0 = _mm256_maskload_ps(src_ptr0, row_mask_v);
+ t4 = _mm256_maskload_ps(src_ptr4, row_mask_v);
+ t1 = _mm256_maskload_ps(src_ptr1, row_mask_v);
+ t5 = _mm256_maskload_ps(src_ptr5, row_mask_v);
+ t2 = _mm256_maskload_ps(src_ptr2, row_mask_v);
+ t6 = _mm256_maskload_ps(src_ptr6, row_mask_v);
+ t3 = _mm256_maskload_ps(src_ptr3, row_mask_v);
+ t7 = _mm256_maskload_ps(src_ptr7, row_mask_v);
+
+ r0 = _mm256_unpacklo_ps(t0, t1);
+ r4 = _mm256_unpacklo_ps(t4, t5);
+ r2 = _mm256_unpackhi_ps(t0, t1);
+ r6 = _mm256_unpackhi_ps(t4, t5);
+ r1 = _mm256_unpacklo_ps(t2, t3);
+ r5 = _mm256_unpacklo_ps(t6, t7);
+ r3 = _mm256_unpackhi_ps(t2, t3);
+ r7 = _mm256_unpackhi_ps(t6, t7);
+
+ t0 = Mm256UnpackloPsx2(r0, r1);
+ t4 = Mm256UnpackloPsx2(r4, r5);
+ t2 = Mm256UnpackhiPsx2(r0, r1);
+ t6 = Mm256UnpackhiPsx2(r4, r5);
+ t1 = Mm256UnpackloPsx2(r2, r3);
+ t5 = Mm256UnpackloPsx2(r6, r7);
+ t3 = Mm256UnpackhiPsx2(r2, r3);
+ t7 = Mm256UnpackhiPsx2(r6, r7);
+
+ // The preceding sets of rearrangement operations interleaved by 4 bytes
+ // and then by 8 bytes *within* lanes. The following set interleave by 16
+ // bytes (128-bit), operating *between* AVX lanes. For instance (t0, t4)
+ // are interleaved to create (r0, r1). This complexity follows from the
+ // way that AVX is centered around MM 128-bit lanes.
+ r0 = _mm256_permute2f128_ps(t0, t4, 0x20);
+ r4 = _mm256_permute2f128_ps(t1, t5, 0x20);
+ r1 = _mm256_permute2f128_ps(t0, t4, 0x31);
+ r5 = _mm256_permute2f128_ps(t1, t5, 0x31);
+ r2 = _mm256_permute2f128_ps(t2, t6, 0x20);
+ r6 = _mm256_permute2f128_ps(t3, t7, 0x20);
+ r3 = _mm256_permute2f128_ps(t2, t6, 0x31);
+ // r7 no longer needed.
+
+ _mm256_storeu_ps(trailing_buf + 0 * 8, r0);
+ _mm256_storeu_ps(trailing_buf + 2 * 8, r4);
+ _mm256_storeu_ps(trailing_buf + 4 * 8, r1);
+ _mm256_storeu_ps(trailing_buf + 6 * 8, r5);
+ _mm256_storeu_ps(trailing_buf + 1 * 8, r2);
+ _mm256_storeu_ps(trailing_buf + 3 * 8, r6);
+ _mm256_storeu_ps(trailing_buf + 5 * 8, r3);
+ // No store to (trailing_buf + 7 * 8), space not allocated.
+ }
+
+ packed_ptr += kPackRows * kPackCols;
+ src_ptr0 += src_inc0;
+ src_ptr1 += src_inc1;
+ src_ptr2 += src_inc2;
+ src_ptr3 += src_inc3;
+ src_ptr4 += src_inc4;
+ src_ptr5 += src_inc5;
+ src_ptr6 += src_inc6;
+ src_ptr7 += src_inc7;
+ }
+}
+
+} // namespace.
+
+void Pack8bitAvx2(const std::int8_t* src_ptr, std::int8_t input_xor,
+ const std::int8_t* zerobuf, int src_stride,
+ int remaining_src_cols, int src_rows, std::int8_t* packed_ptr,
+ std::int32_t* sums_ptr) {
+ profiler::ScopeLabel label("Pack kAvx2Fma 8bit");
+
+ using Layout = PackImpl8bitAvx2::Layout;
+ RUY_DCHECK_EQ(Layout::kCols, 8);
+ RUY_DCHECK_EQ(Layout::kRows, 4);
+
+ // Each Layout::Rows is 4 contiguous input, contiguous packed elements.
+ // We process 8 of these chunks at a time, padding short input chunks.
+ static constexpr int kNumRowChunks = 8; // Short input is padded.
+
+ // Each packed block is 4*8, and there are normally 8. The trailing block is
+ // only slightly shorter.
+ constexpr int kTrailingBufSize =
+ kNumRowChunks * Layout::kCols * Layout::kRows;
+ std::int8_t trailing_buf[kTrailingBufSize];
+ memset(trailing_buf, 0, kTrailingBufSize * sizeof(std::int8_t));
+
+ Pack8bitAvx2Packer(src_ptr, input_xor, zerobuf, src_stride,
+ remaining_src_cols, src_rows, packed_ptr, sums_ptr,
+ trailing_buf);
+
+ constexpr int kChunkedRowMask = kNumRowChunks * Layout::kRows - 1;
+ const bool trailing_data = (src_rows & kChunkedRowMask) > 0;
+ // If the number of source rows is not a multiple of kChunkedRowMask, there
+ // will be data in the trailing buffer,
+ if (trailing_data > 0) {
+ const int non_trailing_rows = src_rows & ~kChunkedRowMask;
+ // Destination "rows" are padded to next highest multiple of Layout::kRows.
+ const int dst_rows = (src_rows + 3) & ~3;
+ const int trailing_rows = dst_rows - non_trailing_rows;
+ memcpy(packed_ptr + Layout::kCols * non_trailing_rows, trailing_buf,
+ Layout::kCols * trailing_rows * sizeof(std::int8_t));
+ }
+}
+
+void PackFloatAvx2(const float* src_ptr, const float* zerobuf, int src_stride,
+ int remaining_src_cols, int src_rows, float* packed_ptr) {
+ profiler::ScopeLabel label("Pack kAvx2Fma float");
+ static constexpr int kPackCols = 8; // Source cols packed together.
+ static constexpr int kPackRows = 8; // Short input is padded.
+ float trailing_buf[(kPackRows - 1) * kPackCols];
+ if (remaining_src_cols < 8) {
+ memset(trailing_buf, 0, sizeof(trailing_buf));
+ }
+ PackFloatAvx2Packer(src_ptr, zerobuf, src_stride, remaining_src_cols,
+ src_rows, packed_ptr, trailing_buf);
+
+ const int trailing_rows = src_rows & (kPackRows - 1);
+ if (trailing_rows > 0) {
+ const int non_trailing_rows = src_rows & ~(kPackRows - 1);
+ memcpy(packed_ptr + kPackCols * non_trailing_rows, trailing_buf,
+ kPackCols * trailing_rows * sizeof(float));
+ }
+}
+
+#endif // RUY_PLATFORM_AVX2_FMA && RUY_OPT(INTRINSICS)
+
+} // namespace ruy