Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/google/ruy.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'ruy/pack_avx512.cc')
-rw-r--r--ruy/pack_avx512.cc693
1 files changed, 693 insertions, 0 deletions
diff --git a/ruy/pack_avx512.cc b/ruy/pack_avx512.cc
new file mode 100644
index 0000000..ecad3a2
--- /dev/null
+++ b/ruy/pack_avx512.cc
@@ -0,0 +1,693 @@
+/* Copyright 2019 Google LLC. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#include <cstdint>
+#include <cstring>
+
+#include "ruy/check_macros.h"
+#include "ruy/matrix.h"
+#include "ruy/opt_set.h"
+#include "ruy/pack.h"
+#include "ruy/path.h"
+#include "ruy/platform.h"
+#include "ruy/profiler/instrumentation.h"
+
+#if RUY_PLATFORM(AVX512) && RUY_OPT_ENABLED(RUY_OPT_INTRINSICS)
+#include <immintrin.h> // IWYU pragma: keep
+#endif
+
+namespace ruy {
+
+#if !(RUY_PLATFORM(AVX512) && RUY_OPT_ENABLED(RUY_OPT_ASM))
+
+void Pack8bitAvx512(const std::int8_t* src_ptr, std::int8_t input_xor,
+ const std::int8_t* zerobuf, int src_stride,
+ int remaining_src_cols, int src_rows,
+ std::int8_t* packed_ptr, std::int32_t* sums_ptr) {
+ // CPU-ID-based checks should disable the path that would reach this point.
+ RUY_DCHECK(false);
+}
+
+void PackFloatAvx512(const float* src_ptr, const float* zerobuf, int src_stride,
+ int remaining_src_cols, int src_rows, float* packed_ptr) {
+ // CPU-ID-based checks should disable the path that would reach this point.
+ RUY_DCHECK(false);
+}
+
+#else // RUY_PLATFORM(AVX512) && RUY_OPT_ENABLED(RUY_OPT_ASM)
+
+// The first int8_t template parameter is arbitrary: this routine is common to
+// all 8-bit source matrix types.
+using PackImpl8bitAvx512 =
+ PackImpl<Path::kAvx512, FixedKernelLayout<Order::kColMajor, 4, 16>,
+ std::int8_t, std::int8_t, std::int32_t>;
+
+namespace {
+
+inline void ZeroHalf8bitAvx512(int src_rows, std::int8_t packed_zero_point,
+ std::int8_t* packed_ptr) {
+ using Layout = PackImpl8bitAvx512::Layout;
+ static constexpr int kHalfLayoutCols =
+ PackImpl8bitAvx512::kHalfLayoutCols; // Half the number of cols in a
+ // block.
+ RUY_DCHECK_EQ(kHalfLayoutCols, 8);
+ RUY_DCHECK_EQ(Layout::kCols, 16);
+ RUY_DCHECK_EQ(Layout::kRows, 4);
+
+ const int non_trailing_blocks = (src_rows & ~31) >> 2;
+ // This routine fills half blocks, and typically fills the second halves.
+ // Thus packed_ptr is already offset by 8 * 4.
+ for (int k = 0; k < non_trailing_blocks; ++k) {
+ for (int j = 0; j < (kHalfLayoutCols * Layout::kRows); ++j) {
+ packed_ptr[Layout::kCols * Layout::kRows * k + j] = packed_zero_point;
+ }
+ }
+}
+
+inline __m512i LoaduTwo(const std::int8_t* addr_lo,
+ const std::int8_t* addr_hi) {
+ __m512i lower_filled = _mm512_castsi256_si512(_mm256_loadu_epi8(addr_lo));
+ return _mm512_inserti32x8(lower_filled, _mm256_loadu_epi8(addr_hi), 1);
+}
+
+inline __m512i MaskLoaduTwo(__mmask32 row_mask, const __m256i default_value_v,
+ const std::int8_t* addr_lo,
+ const std::int8_t* addr_hi) {
+ const __m512i lower_filled = _mm512_castsi256_si512(
+ _mm256_mask_loadu_epi8(default_value_v, row_mask, addr_lo));
+ return _mm512_inserti32x8(
+ lower_filled, _mm256_mask_loadu_epi8(default_value_v, row_mask, addr_hi),
+ 1);
+}
+
+inline void HalfPack8bitAvx512(const std::int8_t* src_ptr,
+ std::int8_t input_xor,
+ const std::int8_t* zerobuf, int src_stride,
+ int remaining_src_cols, int src_rows,
+ std::int8_t* packed_ptr, std::int32_t* sums_ptr,
+ std::int8_t* trailing_buf) {
+ using Layout = PackImpl8bitAvx512::Layout;
+ RUY_DCHECK_EQ(Layout::kCols, 16);
+ RUY_DCHECK_EQ(Layout::kRows, 4);
+ // Each Layout::Rows is 4 contiguous input, contiguous packed elements.
+ // We process 8 of these chunks at a time, padding short input chunks.
+ constexpr int kNumRowChunks = 8;
+ constexpr int kNumChunkedSrcRows = kNumRowChunks * Layout::kRows;
+
+ const std::int8_t* src_ptr0 = src_ptr;
+ const std::int8_t* src_ptr1 = src_ptr0 + src_stride;
+ const std::int8_t* src_ptr2 = src_ptr1 + src_stride;
+ const std::int8_t* src_ptr3 = src_ptr2 + src_stride;
+ const std::int8_t* src_ptr4 = src_ptr3 + src_stride;
+ const std::int8_t* src_ptr5 = src_ptr4 + src_stride;
+ const std::int8_t* src_ptr6 = src_ptr5 + src_stride;
+ const std::int8_t* src_ptr7 = src_ptr6 + src_stride;
+ std::int64_t src_inc0 = kNumChunkedSrcRows;
+ std::int64_t src_inc1 = kNumChunkedSrcRows;
+ std::int64_t src_inc2 = kNumChunkedSrcRows;
+ std::int64_t src_inc3 = kNumChunkedSrcRows;
+ std::int64_t src_inc4 = kNumChunkedSrcRows;
+ std::int64_t src_inc5 = kNumChunkedSrcRows;
+ std::int64_t src_inc6 = kNumChunkedSrcRows;
+ std::int64_t src_inc7 = kNumChunkedSrcRows;
+ // Handle cases where source does not have kHalfLayoutCols (8) columns.
+ if (remaining_src_cols < 8) {
+ if (remaining_src_cols <= 0) {
+ src_ptr0 = zerobuf;
+ src_inc0 = 0;
+ }
+ if (remaining_src_cols <= 1) {
+ src_ptr1 = zerobuf;
+ src_inc1 = 0;
+ }
+ if (remaining_src_cols <= 2) {
+ src_ptr2 = zerobuf;
+ src_inc2 = 0;
+ }
+ if (remaining_src_cols <= 3) {
+ src_ptr3 = zerobuf;
+ src_inc3 = 0;
+ }
+ if (remaining_src_cols <= 4) {
+ src_ptr4 = zerobuf;
+ src_inc4 = 0;
+ }
+ if (remaining_src_cols <= 5) {
+ src_ptr5 = zerobuf;
+ src_inc5 = 0;
+ }
+ if (remaining_src_cols <= 6) {
+ src_ptr6 = zerobuf;
+ src_inc6 = 0;
+ }
+ src_ptr7 = zerobuf;
+ src_inc7 = 0;
+ }
+
+ const std::int8_t zero_point = zerobuf[0];
+
+ if (sums_ptr) {
+ // i: kHalfLayoutCols.
+ for (int i = 0; i < 8; ++i) {
+ sums_ptr[i] = 0;
+ }
+ }
+ std::int32_t sums_adjustment = 0;
+ const __m512i ones_16bit = _mm512_set1_epi16(1);
+ __m512i sums_8x2_32bit = _mm512_set1_epi32(0);
+
+ // The overall packing effectively pads the source rows to
+ // (src_rows + 63) & ~63. The iteration over k may skip when m=1, and then we
+ // only pack for (src_rows + 31) & ~31. When there is an incomplete
+ // destination block, this is stored into trailing_buf instead of packed_ptr.
+ for (int k = 0; k < src_rows; k += 2 * kNumChunkedSrcRows) {
+ // m: {0, 1} for 2 chunks of rows.
+ for (int m = 0; m < 2; ++m) {
+ // Available source rows.
+ // If this is less than 0 (for m=1), we skip, having filled trailing
+ // buffer for m=0. Also, if source rows is zero on m=1, then we filled
+ // exactly to the end of the column in the packed buffer.
+ const int available_src_rows = src_rows - k - m * kNumChunkedSrcRows;
+ // Effectively,
+ // available rows = std::max(0, std::min(8, src_rows - k - 8 * 4 * m));
+ // treat each case separately.
+ if (available_src_rows >= kNumChunkedSrcRows) {
+ // i: chunks, s: Layout::Rows.
+ if (sums_ptr) {
+ __m512i t0, t1, t2, t3;
+ __m512i r0, r1, r2, r3;
+ const __m512i input_xor_v = _mm512_set1_epi8(input_xor);
+
+ t0 = LoaduTwo(src_ptr0, src_ptr4);
+ t1 = LoaduTwo(src_ptr1, src_ptr5);
+ t2 = LoaduTwo(src_ptr2, src_ptr6);
+ t3 = LoaduTwo(src_ptr3, src_ptr7);
+
+ r0 = _mm512_unpacklo_epi32(t0, t1);
+ r2 = _mm512_unpackhi_epi32(t0, t1);
+ r1 = _mm512_unpacklo_epi32(t2, t3);
+ r3 = _mm512_unpackhi_epi32(t2, t3);
+
+ t0 = _mm512_unpacklo_epi64(r0, r1);
+ t2 = _mm512_unpackhi_epi64(r0, r1);
+ t1 = _mm512_unpacklo_epi64(r2, r3);
+ t3 = _mm512_unpackhi_epi64(r2, r3);
+
+ r0 = _mm512_shuffle_i32x4(t0, t1, 0x88);
+ r1 = _mm512_shuffle_i32x4(t0, t1, 0xdd);
+ r2 = _mm512_shuffle_i32x4(t2, t3, 0x88);
+ r3 = _mm512_shuffle_i32x4(t2, t3, 0xdd);
+
+ r0 = _mm512_xor_si512(r0, input_xor_v);
+ r1 = _mm512_xor_si512(r1, input_xor_v);
+ r2 = _mm512_xor_si512(r2, input_xor_v);
+ r3 = _mm512_xor_si512(r3, input_xor_v);
+
+ const __m256i r0_0 = _mm512_castsi512_si256(r0);
+ const __m256i r0_1 = _mm512_extracti32x8_epi32(r0, 1);
+ const __m256i r1_0 = _mm512_castsi512_si256(r1);
+ const __m256i r1_1 = _mm512_extracti32x8_epi32(r1, 1);
+ const __m256i r2_0 = _mm512_castsi512_si256(r2);
+ const __m256i r2_1 = _mm512_extracti32x8_epi32(r2, 1);
+ const __m256i r3_0 = _mm512_castsi512_si256(r3);
+ const __m256i r3_1 = _mm512_extracti32x8_epi32(r3, 1);
+
+ __m512i sums_8x4_16bit;
+ sums_8x4_16bit = _mm512_cvtepi8_epi16(r0_0);
+ sums_8x4_16bit =
+ _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r0_1));
+ sums_8x4_16bit =
+ _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r1_0));
+ sums_8x4_16bit =
+ _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r1_1));
+ sums_8x4_16bit =
+ _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r2_0));
+ sums_8x4_16bit =
+ _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r2_1));
+ sums_8x4_16bit =
+ _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r3_0));
+ sums_8x4_16bit =
+ _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r3_1));
+ // The sums have been performed across columns, and now we have
+ // 4x16-bit sums packed together. We use madd for pairwise 32-bit
+ // sums.
+ const __m512i sums_8x2_32bit_new =
+ _mm512_madd_epi16(sums_8x4_16bit, ones_16bit);
+ sums_8x2_32bit = _mm512_add_epi32(sums_8x2_32bit, sums_8x2_32bit_new);
+
+ _mm256_storeu_epi8(packed_ptr + 0 * 16 * 4, r0_0);
+ _mm256_storeu_epi8(packed_ptr + 2 * 16 * 4, r0_1);
+ _mm256_storeu_epi8(packed_ptr + 4 * 16 * 4, r1_0);
+ _mm256_storeu_epi8(packed_ptr + 6 * 16 * 4, r1_1);
+ _mm256_storeu_epi8(packed_ptr + 1 * 16 * 4, r2_0);
+ _mm256_storeu_epi8(packed_ptr + 3 * 16 * 4, r2_1);
+ _mm256_storeu_epi8(packed_ptr + 5 * 16 * 4, r3_0);
+ _mm256_storeu_epi8(packed_ptr + 7 * 16 * 4, r3_1);
+ } else {
+ __m512i t0, t1, t2, t3;
+ __m512i r0, r1, r2, r3;
+ const __m512i input_xor_v = _mm512_set1_epi8(input_xor);
+
+ t0 = LoaduTwo(src_ptr0, src_ptr4);
+ t1 = LoaduTwo(src_ptr1, src_ptr5);
+ t2 = LoaduTwo(src_ptr2, src_ptr6);
+ t3 = LoaduTwo(src_ptr3, src_ptr7);
+
+ r0 = _mm512_unpacklo_epi32(t0, t1);
+ r2 = _mm512_unpackhi_epi32(t0, t1);
+ r1 = _mm512_unpacklo_epi32(t2, t3);
+ r3 = _mm512_unpackhi_epi32(t2, t3);
+
+ t0 = _mm512_unpacklo_epi64(r0, r1);
+ t2 = _mm512_unpackhi_epi64(r0, r1);
+ t1 = _mm512_unpacklo_epi64(r2, r3);
+ t3 = _mm512_unpackhi_epi64(r2, r3);
+
+ r0 = _mm512_shuffle_i32x4(t0, t1, 0x88);
+ r1 = _mm512_shuffle_i32x4(t0, t1, 0xdd);
+ r2 = _mm512_shuffle_i32x4(t2, t3, 0x88);
+ r3 = _mm512_shuffle_i32x4(t2, t3, 0xdd);
+
+ r0 = _mm512_xor_si512(r0, input_xor_v);
+ r1 = _mm512_xor_si512(r1, input_xor_v);
+ r2 = _mm512_xor_si512(r2, input_xor_v);
+ r3 = _mm512_xor_si512(r3, input_xor_v);
+
+ const __m256i r0_0 = _mm512_castsi512_si256(r0);
+ const __m256i r0_1 = _mm512_extracti32x8_epi32(r0, 1);
+ const __m256i r1_0 = _mm512_castsi512_si256(r1);
+ const __m256i r1_1 = _mm512_extracti32x8_epi32(r1, 1);
+ const __m256i r2_0 = _mm512_castsi512_si256(r2);
+ const __m256i r2_1 = _mm512_extracti32x8_epi32(r2, 1);
+ const __m256i r3_0 = _mm512_castsi512_si256(r3);
+ const __m256i r3_1 = _mm512_extracti32x8_epi32(r3, 1);
+ _mm256_storeu_epi8(packed_ptr + 0 * 16 * 4, r0_0);
+ _mm256_storeu_epi8(packed_ptr + 2 * 16 * 4, r0_1);
+ _mm256_storeu_epi8(packed_ptr + 4 * 16 * 4, r1_0);
+ _mm256_storeu_epi8(packed_ptr + 6 * 16 * 4, r1_1);
+ _mm256_storeu_epi8(packed_ptr + 1 * 16 * 4, r2_0);
+ _mm256_storeu_epi8(packed_ptr + 3 * 16 * 4, r2_1);
+ _mm256_storeu_epi8(packed_ptr + 5 * 16 * 4, r3_0);
+ _mm256_storeu_epi8(packed_ptr + 7 * 16 * 4, r3_1);
+ }
+ } else if (available_src_rows > 0) {
+ RUY_DCHECK_LT(available_src_rows >> 2, kNumChunkedSrcRows);
+ const __mmask32 row_mask =
+ (static_cast<std::uint64_t>(1) << available_src_rows) - 1;
+
+ // We do not care what goes into the trailing buffer, but we want
+ // in_data[...] ^ input_xor == 0 for irrelevant values in the summation.
+ //
+ // We compensate for padding-with-zero_point by initializing the
+ // summations with the compensating offset, effectively
+ // ((input_xor ^ input_xor) - (zero_point ^ input_xor)) *
+ // 4 * (8 - ((available_src_rows + 3) >> 2)).
+ //
+ // Note that (zero_point ^ input_xor) is performed in 8-bits and then
+ // cast.
+ sums_adjustment += -(zero_point ^ input_xor) * 4 *
+ (8 - ((available_src_rows + 3) >> 2));
+
+ __m512i t0, t1, t2, t3;
+ __m512i r0, r1, r2, r3;
+ const __m512i input_xor_v = _mm512_set1_epi8(input_xor);
+ const __m256i zero_point_v = _mm256_set1_epi8(zero_point);
+
+ t0 = MaskLoaduTwo(row_mask, zero_point_v, src_ptr0, src_ptr4);
+ t1 = MaskLoaduTwo(row_mask, zero_point_v, src_ptr1, src_ptr5);
+ t2 = MaskLoaduTwo(row_mask, zero_point_v, src_ptr2, src_ptr6);
+ t3 = MaskLoaduTwo(row_mask, zero_point_v, src_ptr3, src_ptr7);
+
+ r0 = _mm512_unpacklo_epi32(t0, t1);
+ r2 = _mm512_unpackhi_epi32(t0, t1);
+ r1 = _mm512_unpacklo_epi32(t2, t3);
+ r3 = _mm512_unpackhi_epi32(t2, t3);
+
+ t0 = _mm512_unpacklo_epi64(r0, r1);
+ t2 = _mm512_unpackhi_epi64(r0, r1);
+ t1 = _mm512_unpacklo_epi64(r2, r3);
+ t3 = _mm512_unpackhi_epi64(r2, r3);
+
+ r0 = _mm512_shuffle_i32x4(t0, t1, 0x88);
+ r1 = _mm512_shuffle_i32x4(t0, t1, 0xdd);
+ r2 = _mm512_shuffle_i32x4(t2, t3, 0x88);
+ r3 = _mm512_shuffle_i32x4(t2, t3, 0xdd);
+
+ r0 = _mm512_xor_si512(r0, input_xor_v);
+ r1 = _mm512_xor_si512(r1, input_xor_v);
+ r2 = _mm512_xor_si512(r2, input_xor_v);
+ r3 = _mm512_xor_si512(r3, input_xor_v);
+
+ const __m256i r0_0 = _mm512_castsi512_si256(r0);
+ const __m256i r0_1 = _mm512_extracti32x8_epi32(r0, 1);
+ const __m256i r1_0 = _mm512_castsi512_si256(r1);
+ const __m256i r1_1 = _mm512_extracti32x8_epi32(r1, 1);
+ const __m256i r2_0 = _mm512_castsi512_si256(r2);
+ const __m256i r2_1 = _mm512_extracti32x8_epi32(r2, 1);
+ const __m256i r3_0 = _mm512_castsi512_si256(r3);
+ const __m256i r3_1 = _mm512_extracti32x8_epi32(r3, 1);
+
+ __m512i sums_8x4_16bit;
+ sums_8x4_16bit = _mm512_cvtepi8_epi16(r0_0);
+ sums_8x4_16bit =
+ _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r0_1));
+ sums_8x4_16bit =
+ _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r1_0));
+ sums_8x4_16bit =
+ _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r1_1));
+ sums_8x4_16bit =
+ _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r2_0));
+ sums_8x4_16bit =
+ _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r2_1));
+ sums_8x4_16bit =
+ _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r3_0));
+ sums_8x4_16bit =
+ _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r3_1));
+ // The sums have been performed across columns, and now we have
+ // 4x16-bit sums packed together. We use madd for pairwise 32-bit
+ // sums.
+ const __m512i sums_8x2_32bit_new =
+ _mm512_madd_epi16(sums_8x4_16bit, ones_16bit);
+ sums_8x2_32bit = _mm512_add_epi32(sums_8x2_32bit, sums_8x2_32bit_new);
+
+ _mm256_storeu_epi8(trailing_buf + 0 * 16 * 4, r0_0);
+ _mm256_storeu_epi8(trailing_buf + 2 * 16 * 4, r0_1);
+ _mm256_storeu_epi8(trailing_buf + 4 * 16 * 4, r1_0);
+ _mm256_storeu_epi8(trailing_buf + 6 * 16 * 4, r1_1);
+ _mm256_storeu_epi8(trailing_buf + 1 * 16 * 4, r2_0);
+ _mm256_storeu_epi8(trailing_buf + 3 * 16 * 4, r2_1);
+ _mm256_storeu_epi8(trailing_buf + 5 * 16 * 4, r3_0);
+ _mm256_storeu_epi8(trailing_buf + 7 * 16 * 4, r3_1);
+ }
+
+ packed_ptr += 16 * kNumChunkedSrcRows;
+ src_ptr0 += src_inc0;
+ src_ptr1 += src_inc1;
+ src_ptr2 += src_inc2;
+ src_ptr3 += src_inc3;
+ src_ptr4 += src_inc4;
+ src_ptr5 += src_inc5;
+ src_ptr6 += src_inc6;
+ src_ptr7 += src_inc7;
+ }
+ }
+
+ if (sums_ptr) {
+ const __m256i sums_adjustment_v = _mm256_set1_epi32(sums_adjustment);
+
+ __m256i sums = _mm256_loadu_epi32(sums_ptr);
+ const __m512i idx =
+ _mm512_set_epi32(15, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0);
+
+ // We earlier used madd for pairwise 32-bit sums, and now we deinterlace the
+ // neighbours, finshing up by adding them to the stored accumulated sums.
+ const __m512i sums_2x8_32bit =
+ _mm512_permutexvar_epi32(idx, sums_8x2_32bit);
+ sums = _mm256_add_epi32(sums, sums_adjustment_v);
+ sums = _mm256_add_epi32(sums, _mm512_castsi512_si256(sums_2x8_32bit));
+ sums = _mm256_add_epi32(sums, _mm512_extracti32x8_epi32(sums_2x8_32bit, 1));
+
+ _mm256_storeu_epi32(sums_ptr, sums);
+ }
+}
+
+inline __m512 LoaduTwo(const float* addr_lo, const float* addr_hi) {
+ const __m512 lower_filled = _mm512_castps256_ps512(_mm256_loadu_ps(addr_lo));
+ return _mm512_insertf32x8(lower_filled, _mm256_loadu_ps(addr_hi), 1);
+}
+
+inline __m512 MaskLoaduTwo(__mmask8 row_mask, const float* addr_lo,
+ const float* addr_hi) {
+ const __m512 lower_filled =
+ _mm512_castps256_ps512(_mm256_maskz_loadu_ps(row_mask, addr_lo));
+ return _mm512_insertf32x8(lower_filled,
+ _mm256_maskz_loadu_ps(row_mask, addr_hi), 1);
+}
+
+inline __m512 Mm512UnpackloPsx2(const __m512 a, const __m512 b) {
+ return _mm512_castpd_ps(
+ _mm512_unpacklo_pd(_mm512_castps_pd(a), _mm512_castps_pd(b)));
+}
+
+inline __m512 Mm512UnpackhiPsx2(const __m512 a, const __m512 b) {
+ return _mm512_castpd_ps(
+ _mm512_unpackhi_pd(_mm512_castps_pd(a), _mm512_castps_pd(b)));
+}
+
+inline void HalfPackFloatAvx512(const float* src_ptr, const float* zerobuf,
+ int src_stride, int remaining_src_cols,
+ int src_rows, float* packed_ptr,
+ float* trailing_buf) {
+ const float* src_ptr0 = src_ptr;
+ const float* src_ptr1 = src_ptr0 + src_stride;
+ const float* src_ptr2 = src_ptr1 + src_stride;
+ const float* src_ptr3 = src_ptr2 + src_stride;
+ const float* src_ptr4 = src_ptr3 + src_stride;
+ const float* src_ptr5 = src_ptr4 + src_stride;
+ const float* src_ptr6 = src_ptr5 + src_stride;
+ const float* src_ptr7 = src_ptr6 + src_stride;
+ std::int64_t src_inc0 = 8;
+ std::int64_t src_inc1 = 8;
+ std::int64_t src_inc2 = 8;
+ std::int64_t src_inc3 = 8;
+ std::int64_t src_inc4 = 8;
+ std::int64_t src_inc5 = 8;
+ std::int64_t src_inc6 = 8;
+ std::int64_t src_inc7 = 8;
+ if (remaining_src_cols < 8) {
+ if (remaining_src_cols <= 0) {
+ src_ptr0 = zerobuf;
+ src_inc0 = 0;
+ }
+ if (remaining_src_cols <= 1) {
+ src_ptr1 = zerobuf;
+ src_inc1 = 0;
+ }
+ if (remaining_src_cols <= 2) {
+ src_ptr2 = zerobuf;
+ src_inc2 = 0;
+ }
+ if (remaining_src_cols <= 3) {
+ src_ptr3 = zerobuf;
+ src_inc3 = 0;
+ }
+ if (remaining_src_cols <= 4) {
+ src_ptr4 = zerobuf;
+ src_inc4 = 0;
+ }
+ if (remaining_src_cols <= 5) {
+ src_ptr5 = zerobuf;
+ src_inc5 = 0;
+ }
+ if (remaining_src_cols <= 6) {
+ src_ptr6 = zerobuf;
+ src_inc6 = 0;
+ }
+ src_ptr7 = zerobuf;
+ src_inc7 = 0;
+ }
+
+ for (int k = 0; k < src_rows; k += 16) {
+ for (int m = 0; m < 2; ++m) {
+ const int available_src_rows = src_rows - k - 8 * m;
+ // Effectively,
+ // available_src_rows = std::max(0, std::min(8, src_rows - k - 8 * m));
+ // but treat each case separately.
+ if (available_src_rows > 7) {
+ __m512 t0, t1, t2, t3;
+ __m512 r0, r1, r2, r3;
+
+ t0 = LoaduTwo(src_ptr0, src_ptr4);
+ t1 = LoaduTwo(src_ptr1, src_ptr5);
+ t2 = LoaduTwo(src_ptr2, src_ptr6);
+ t3 = LoaduTwo(src_ptr3, src_ptr7);
+
+ r0 = _mm512_unpacklo_ps(t0, t1);
+ r2 = _mm512_unpackhi_ps(t0, t1);
+ r1 = _mm512_unpacklo_ps(t2, t3);
+ r3 = _mm512_unpackhi_ps(t2, t3);
+
+ t0 = Mm512UnpackloPsx2(r0, r1);
+ t2 = Mm512UnpackhiPsx2(r0, r1);
+ t1 = Mm512UnpackloPsx2(r2, r3);
+ t3 = Mm512UnpackhiPsx2(r2, r3);
+
+ r0 = _mm512_shuffle_f32x4(t0, t1, 0x88);
+ r1 = _mm512_shuffle_f32x4(t0, t1, 0xdd);
+ r2 = _mm512_shuffle_f32x4(t2, t3, 0x88);
+ r3 = _mm512_shuffle_f32x4(t2, t3, 0xdd);
+
+ _mm256_storeu_ps(packed_ptr + 0 * 16, _mm512_castps512_ps256(r0));
+ _mm256_storeu_ps(packed_ptr + 2 * 16, _mm512_extractf32x8_ps(r0, 1));
+ _mm256_storeu_ps(packed_ptr + 4 * 16, _mm512_castps512_ps256(r1));
+ _mm256_storeu_ps(packed_ptr + 6 * 16, _mm512_extractf32x8_ps(r1, 1));
+ _mm256_storeu_ps(packed_ptr + 1 * 16, _mm512_castps512_ps256(r2));
+ _mm256_storeu_ps(packed_ptr + 3 * 16, _mm512_extractf32x8_ps(r2, 1));
+ _mm256_storeu_ps(packed_ptr + 5 * 16, _mm512_castps512_ps256(r3));
+ _mm256_storeu_ps(packed_ptr + 7 * 16, _mm512_extractf32x8_ps(r3, 1));
+ } else if (available_src_rows > 0) {
+ const __mmask8 row_mask =
+ (static_cast<std::uint32_t>(1) << available_src_rows) - 1;
+
+ __m512 t0, t1, t2, t3;
+ __m512 r0, r1, r2, r3;
+
+ t0 = MaskLoaduTwo(row_mask, src_ptr0, src_ptr4);
+ t1 = MaskLoaduTwo(row_mask, src_ptr1, src_ptr5);
+ t2 = MaskLoaduTwo(row_mask, src_ptr2, src_ptr6);
+ t3 = MaskLoaduTwo(row_mask, src_ptr3, src_ptr7);
+
+ r0 = _mm512_unpacklo_ps(t0, t1);
+ r2 = _mm512_unpackhi_ps(t0, t1);
+ r1 = _mm512_unpacklo_ps(t2, t3);
+ r3 = _mm512_unpackhi_ps(t2, t3);
+
+ t0 = Mm512UnpackloPsx2(r0, r1);
+ t2 = Mm512UnpackhiPsx2(r0, r1);
+ t1 = Mm512UnpackloPsx2(r2, r3);
+ t3 = Mm512UnpackhiPsx2(r2, r3);
+
+ r0 = _mm512_shuffle_f32x4(t0, t1, 0x88);
+ r1 = _mm512_shuffle_f32x4(t0, t1, 0xdd);
+ r2 = _mm512_shuffle_f32x4(t2, t3, 0x88);
+ r3 = _mm512_shuffle_f32x4(t2, t3, 0xdd);
+
+ _mm256_storeu_ps(trailing_buf + 0 * 16, _mm512_castps512_ps256(r0));
+ _mm256_storeu_ps(trailing_buf + 2 * 16, _mm512_extractf32x8_ps(r0, 1));
+ _mm256_storeu_ps(trailing_buf + 4 * 16, _mm512_castps512_ps256(r1));
+ _mm256_storeu_ps(trailing_buf + 6 * 16, _mm512_extractf32x8_ps(r1, 1));
+ _mm256_storeu_ps(trailing_buf + 1 * 16, _mm512_castps512_ps256(r2));
+ _mm256_storeu_ps(trailing_buf + 3 * 16, _mm512_extractf32x8_ps(r2, 1));
+ _mm256_storeu_ps(trailing_buf + 5 * 16, _mm512_castps512_ps256(r3));
+ // Do not store _mm512_extractf32x8_ps(r3, 1).
+ }
+
+ packed_ptr += 16 * 8;
+ src_ptr0 += src_inc0;
+ src_ptr1 += src_inc1;
+ src_ptr2 += src_inc2;
+ src_ptr3 += src_inc3;
+ src_ptr4 += src_inc4;
+ src_ptr5 += src_inc5;
+ src_ptr6 += src_inc6;
+ src_ptr7 += src_inc7;
+ }
+ }
+}
+
+inline void ZeroHalfFloatAvx512(int src_rows, float* packed_ptr) {
+ const int non_trailing_rows = src_rows & ~7;
+ for (int k = 0; k < non_trailing_rows; ++k) {
+ for (int j = 0; j < 8; ++j) {
+ packed_ptr[j] = 0.0f;
+ }
+ packed_ptr += 16;
+ }
+}
+
+} // namespace.
+
+void Pack8bitAvx512(const std::int8_t* src_ptr, std::int8_t input_xor,
+ const std::int8_t* zerobuf, int src_stride,
+ int remaining_src_cols, int src_rows,
+ std::int8_t* packed_ptr, std::int32_t* sums_ptr) {
+ profiler::ScopeLabel label("Pack kAvx512 8bit");
+
+ using Layout = PackImpl8bitAvx512::Layout;
+ constexpr int kHalfBlockOffset = 32;
+ RUY_DCHECK_EQ(kHalfBlockOffset * 2, Layout::kRows * Layout::kCols);
+ static constexpr int kHalfLayoutCols =
+ PackImpl8bitAvx512::kHalfLayoutCols; // Half the number of cols in a
+ // block.
+ RUY_DCHECK_EQ(kHalfLayoutCols, 8);
+ RUY_DCHECK_EQ(Layout::kCols, 16);
+ RUY_DCHECK_EQ(Layout::kRows, 4);
+
+ // Each Layout::Rows is 4 contiguous input, contiguous packed elements.
+ // We process 8 of these chunks at a time, padding short input chunks.
+ constexpr int kNumRowChunks = 8;
+
+ // Each packed block is 4*16, and there are normally 8. The trailing block is
+ // only slightly shorter.
+ constexpr int kTrailingBufSize =
+ kNumRowChunks * Layout::kCols * Layout::kRows;
+ std::int8_t trailing_buf[kTrailingBufSize];
+ memset(trailing_buf, 0, kTrailingBufSize * sizeof(std::int8_t));
+
+ std::int32_t* second_sums_ptr =
+ sums_ptr ? sums_ptr + kHalfLayoutCols : nullptr;
+ if (remaining_src_cols > kHalfLayoutCols) {
+ HalfPack8bitAvx512(src_ptr, input_xor, zerobuf, src_stride,
+ remaining_src_cols, src_rows, packed_ptr, sums_ptr,
+ trailing_buf);
+ HalfPack8bitAvx512(src_ptr + src_stride * kHalfLayoutCols, input_xor,
+ zerobuf, src_stride,
+ remaining_src_cols - kHalfLayoutCols, src_rows,
+ packed_ptr + kHalfBlockOffset, second_sums_ptr,
+ trailing_buf + kHalfBlockOffset);
+ } else {
+ HalfPack8bitAvx512(src_ptr, input_xor, zerobuf, src_stride,
+ remaining_src_cols, src_rows, packed_ptr, sums_ptr,
+ trailing_buf);
+ ZeroHalf8bitAvx512(src_rows, zerobuf[0] ^ input_xor,
+ packed_ptr + kHalfBlockOffset);
+ // The kernel may not need the second half-blocks sums to be set.
+ if (second_sums_ptr) {
+ for (int i = 0; i < kHalfLayoutCols; ++i) {
+ second_sums_ptr[i] = (zerobuf[0] ^ input_xor) * ((src_rows + 3) & ~3);
+ }
+ }
+ }
+ constexpr int kChunkedRowMask = kNumRowChunks * Layout::kRows - 1;
+ const bool trailing_data = (src_rows & kChunkedRowMask) > 0;
+ // If the number of source rows is not a multiple of kChunkedRowMask, there
+ // will be data in the trailing buffer,
+ if (trailing_data > 0) {
+ const int non_trailing_rows = src_rows & ~kChunkedRowMask;
+ // Destination "rows" are padded to next highest multiple of Layout::kRows.
+ const int dst_rows = (src_rows + 3) & ~3;
+ const int trailing_rows = dst_rows - non_trailing_rows;
+ memcpy(packed_ptr + Layout::kCols * non_trailing_rows, trailing_buf,
+ Layout::kCols * trailing_rows * sizeof(std::int8_t));
+ }
+}
+
+void PackFloatAvx512(const float* src_ptr, const float* zerobuf, int src_stride,
+ int remaining_src_cols, int src_rows, float* packed_ptr) {
+ profiler::ScopeLabel label("Pack kAvx512 float");
+ float trailing_buf[7 * 16];
+ if (remaining_src_cols > 8) {
+ HalfPackFloatAvx512(src_ptr, zerobuf, src_stride, remaining_src_cols,
+ src_rows, packed_ptr, trailing_buf);
+ HalfPackFloatAvx512(src_ptr + src_stride * 8, zerobuf, src_stride,
+ remaining_src_cols - 8, src_rows, packed_ptr + 8,
+ trailing_buf + 8);
+ } else {
+ memset(trailing_buf, 0, sizeof(trailing_buf));
+ HalfPackFloatAvx512(src_ptr, zerobuf, src_stride, remaining_src_cols,
+ src_rows, packed_ptr, trailing_buf);
+ ZeroHalfFloatAvx512(src_rows, packed_ptr + 8);
+ }
+ const int trailing_rows = src_rows & 7;
+ if (trailing_rows > 0) {
+ const int non_trailing_rows = src_rows & ~7;
+ memcpy(packed_ptr + 16 * non_trailing_rows, trailing_buf,
+ 16 * trailing_rows * sizeof(float));
+ }
+}
+
+#endif // RUY_PLATFORM(AVX512) && RUY_OPT_ENABLED(RUY_OPT_INTRINSICS)
+
+} // namespace ruy