Welcome to mirror list, hosted at ThFree Co, Russian Federation.

pack_avx512.cc « ruy - github.com/google/ruy.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ecad3a240a60ce7381dc6060469aef1b126ccd67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
/* Copyright 2019 Google LLC. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <cstdint>
#include <cstring>

#include "ruy/check_macros.h"
#include "ruy/matrix.h"
#include "ruy/opt_set.h"
#include "ruy/pack.h"
#include "ruy/path.h"
#include "ruy/platform.h"
#include "ruy/profiler/instrumentation.h"

#if RUY_PLATFORM(AVX512) && RUY_OPT_ENABLED(RUY_OPT_INTRINSICS)
#include <immintrin.h>  // IWYU pragma: keep
#endif

namespace ruy {

#if !(RUY_PLATFORM(AVX512) && RUY_OPT_ENABLED(RUY_OPT_ASM))

void Pack8bitAvx512(const std::int8_t* src_ptr, std::int8_t input_xor,
                    const std::int8_t* zerobuf, int src_stride,
                    int remaining_src_cols, int src_rows,
                    std::int8_t* packed_ptr, std::int32_t* sums_ptr) {
  // CPU-ID-based checks should disable the path that would reach this point.
  RUY_DCHECK(false);
}

void PackFloatAvx512(const float* src_ptr, const float* zerobuf, int src_stride,
                     int remaining_src_cols, int src_rows, float* packed_ptr) {
  // CPU-ID-based checks should disable the path that would reach this point.
  RUY_DCHECK(false);
}

#else  // RUY_PLATFORM(AVX512) && RUY_OPT_ENABLED(RUY_OPT_ASM)

// The first int8_t template parameter is arbitrary: this routine is common to
// all 8-bit source matrix types.
using PackImpl8bitAvx512 =
    PackImpl<Path::kAvx512, FixedKernelLayout<Order::kColMajor, 4, 16>,
             std::int8_t, std::int8_t, std::int32_t>;

namespace {

inline void ZeroHalf8bitAvx512(int src_rows, std::int8_t packed_zero_point,
                               std::int8_t* packed_ptr) {
  using Layout = PackImpl8bitAvx512::Layout;
  static constexpr int kHalfLayoutCols =
      PackImpl8bitAvx512::kHalfLayoutCols;  // Half the number of cols in a
                                            // block.
  RUY_DCHECK_EQ(kHalfLayoutCols, 8);
  RUY_DCHECK_EQ(Layout::kCols, 16);
  RUY_DCHECK_EQ(Layout::kRows, 4);

  const int non_trailing_blocks = (src_rows & ~31) >> 2;
  // This routine fills half blocks, and typically fills the second halves.
  // Thus packed_ptr is already offset by 8 * 4.
  for (int k = 0; k < non_trailing_blocks; ++k) {
    for (int j = 0; j < (kHalfLayoutCols * Layout::kRows); ++j) {
      packed_ptr[Layout::kCols * Layout::kRows * k + j] = packed_zero_point;
    }
  }
}

inline __m512i LoaduTwo(const std::int8_t* addr_lo,
                        const std::int8_t* addr_hi) {
  __m512i lower_filled = _mm512_castsi256_si512(_mm256_loadu_epi8(addr_lo));
  return _mm512_inserti32x8(lower_filled, _mm256_loadu_epi8(addr_hi), 1);
}

inline __m512i MaskLoaduTwo(__mmask32 row_mask, const __m256i default_value_v,
                            const std::int8_t* addr_lo,
                            const std::int8_t* addr_hi) {
  const __m512i lower_filled = _mm512_castsi256_si512(
      _mm256_mask_loadu_epi8(default_value_v, row_mask, addr_lo));
  return _mm512_inserti32x8(
      lower_filled, _mm256_mask_loadu_epi8(default_value_v, row_mask, addr_hi),
      1);
}

inline void HalfPack8bitAvx512(const std::int8_t* src_ptr,
                               std::int8_t input_xor,
                               const std::int8_t* zerobuf, int src_stride,
                               int remaining_src_cols, int src_rows,
                               std::int8_t* packed_ptr, std::int32_t* sums_ptr,
                               std::int8_t* trailing_buf) {
  using Layout = PackImpl8bitAvx512::Layout;
  RUY_DCHECK_EQ(Layout::kCols, 16);
  RUY_DCHECK_EQ(Layout::kRows, 4);
  // Each Layout::Rows is 4 contiguous input, contiguous packed elements.
  // We process 8 of these chunks at a time, padding short input chunks.
  constexpr int kNumRowChunks = 8;
  constexpr int kNumChunkedSrcRows = kNumRowChunks * Layout::kRows;

  const std::int8_t* src_ptr0 = src_ptr;
  const std::int8_t* src_ptr1 = src_ptr0 + src_stride;
  const std::int8_t* src_ptr2 = src_ptr1 + src_stride;
  const std::int8_t* src_ptr3 = src_ptr2 + src_stride;
  const std::int8_t* src_ptr4 = src_ptr3 + src_stride;
  const std::int8_t* src_ptr5 = src_ptr4 + src_stride;
  const std::int8_t* src_ptr6 = src_ptr5 + src_stride;
  const std::int8_t* src_ptr7 = src_ptr6 + src_stride;
  std::int64_t src_inc0 = kNumChunkedSrcRows;
  std::int64_t src_inc1 = kNumChunkedSrcRows;
  std::int64_t src_inc2 = kNumChunkedSrcRows;
  std::int64_t src_inc3 = kNumChunkedSrcRows;
  std::int64_t src_inc4 = kNumChunkedSrcRows;
  std::int64_t src_inc5 = kNumChunkedSrcRows;
  std::int64_t src_inc6 = kNumChunkedSrcRows;
  std::int64_t src_inc7 = kNumChunkedSrcRows;
  // Handle cases where source does not have kHalfLayoutCols (8) columns.
  if (remaining_src_cols < 8) {
    if (remaining_src_cols <= 0) {
      src_ptr0 = zerobuf;
      src_inc0 = 0;
    }
    if (remaining_src_cols <= 1) {
      src_ptr1 = zerobuf;
      src_inc1 = 0;
    }
    if (remaining_src_cols <= 2) {
      src_ptr2 = zerobuf;
      src_inc2 = 0;
    }
    if (remaining_src_cols <= 3) {
      src_ptr3 = zerobuf;
      src_inc3 = 0;
    }
    if (remaining_src_cols <= 4) {
      src_ptr4 = zerobuf;
      src_inc4 = 0;
    }
    if (remaining_src_cols <= 5) {
      src_ptr5 = zerobuf;
      src_inc5 = 0;
    }
    if (remaining_src_cols <= 6) {
      src_ptr6 = zerobuf;
      src_inc6 = 0;
    }
    src_ptr7 = zerobuf;
    src_inc7 = 0;
  }

  const std::int8_t zero_point = zerobuf[0];

  if (sums_ptr) {
    // i: kHalfLayoutCols.
    for (int i = 0; i < 8; ++i) {
      sums_ptr[i] = 0;
    }
  }
  std::int32_t sums_adjustment = 0;
  const __m512i ones_16bit = _mm512_set1_epi16(1);
  __m512i sums_8x2_32bit = _mm512_set1_epi32(0);

  // The overall packing effectively pads the source rows to
  // (src_rows + 63) & ~63. The iteration over k may skip when m=1, and then we
  // only pack for (src_rows + 31) & ~31. When there is an incomplete
  // destination block, this is stored into trailing_buf instead of packed_ptr.
  for (int k = 0; k < src_rows; k += 2 * kNumChunkedSrcRows) {
    // m: {0, 1} for 2 chunks of rows.
    for (int m = 0; m < 2; ++m) {
      // Available source rows.
      // If this is less than 0 (for m=1), we skip, having filled trailing
      // buffer for m=0. Also, if source rows is zero on m=1, then we filled
      // exactly to the end of the column in the packed buffer.
      const int available_src_rows = src_rows - k - m * kNumChunkedSrcRows;
      // Effectively,
      // available rows = std::max(0, std::min(8, src_rows - k - 8 * 4 * m));
      // treat each case separately.
      if (available_src_rows >= kNumChunkedSrcRows) {
        // i: chunks, s: Layout::Rows.
        if (sums_ptr) {
          __m512i t0, t1, t2, t3;
          __m512i r0, r1, r2, r3;
          const __m512i input_xor_v = _mm512_set1_epi8(input_xor);

          t0 = LoaduTwo(src_ptr0, src_ptr4);
          t1 = LoaduTwo(src_ptr1, src_ptr5);
          t2 = LoaduTwo(src_ptr2, src_ptr6);
          t3 = LoaduTwo(src_ptr3, src_ptr7);

          r0 = _mm512_unpacklo_epi32(t0, t1);
          r2 = _mm512_unpackhi_epi32(t0, t1);
          r1 = _mm512_unpacklo_epi32(t2, t3);
          r3 = _mm512_unpackhi_epi32(t2, t3);

          t0 = _mm512_unpacklo_epi64(r0, r1);
          t2 = _mm512_unpackhi_epi64(r0, r1);
          t1 = _mm512_unpacklo_epi64(r2, r3);
          t3 = _mm512_unpackhi_epi64(r2, r3);

          r0 = _mm512_shuffle_i32x4(t0, t1, 0x88);
          r1 = _mm512_shuffle_i32x4(t0, t1, 0xdd);
          r2 = _mm512_shuffle_i32x4(t2, t3, 0x88);
          r3 = _mm512_shuffle_i32x4(t2, t3, 0xdd);

          r0 = _mm512_xor_si512(r0, input_xor_v);
          r1 = _mm512_xor_si512(r1, input_xor_v);
          r2 = _mm512_xor_si512(r2, input_xor_v);
          r3 = _mm512_xor_si512(r3, input_xor_v);

          const __m256i r0_0 = _mm512_castsi512_si256(r0);
          const __m256i r0_1 = _mm512_extracti32x8_epi32(r0, 1);
          const __m256i r1_0 = _mm512_castsi512_si256(r1);
          const __m256i r1_1 = _mm512_extracti32x8_epi32(r1, 1);
          const __m256i r2_0 = _mm512_castsi512_si256(r2);
          const __m256i r2_1 = _mm512_extracti32x8_epi32(r2, 1);
          const __m256i r3_0 = _mm512_castsi512_si256(r3);
          const __m256i r3_1 = _mm512_extracti32x8_epi32(r3, 1);

          __m512i sums_8x4_16bit;
          sums_8x4_16bit = _mm512_cvtepi8_epi16(r0_0);
          sums_8x4_16bit =
              _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r0_1));
          sums_8x4_16bit =
              _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r1_0));
          sums_8x4_16bit =
              _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r1_1));
          sums_8x4_16bit =
              _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r2_0));
          sums_8x4_16bit =
              _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r2_1));
          sums_8x4_16bit =
              _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r3_0));
          sums_8x4_16bit =
              _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r3_1));
          // The sums have been performed across columns, and now we have
          // 4x16-bit sums packed together. We use madd for pairwise 32-bit
          // sums.
          const __m512i sums_8x2_32bit_new =
              _mm512_madd_epi16(sums_8x4_16bit, ones_16bit);
          sums_8x2_32bit = _mm512_add_epi32(sums_8x2_32bit, sums_8x2_32bit_new);

          _mm256_storeu_epi8(packed_ptr + 0 * 16 * 4, r0_0);
          _mm256_storeu_epi8(packed_ptr + 2 * 16 * 4, r0_1);
          _mm256_storeu_epi8(packed_ptr + 4 * 16 * 4, r1_0);
          _mm256_storeu_epi8(packed_ptr + 6 * 16 * 4, r1_1);
          _mm256_storeu_epi8(packed_ptr + 1 * 16 * 4, r2_0);
          _mm256_storeu_epi8(packed_ptr + 3 * 16 * 4, r2_1);
          _mm256_storeu_epi8(packed_ptr + 5 * 16 * 4, r3_0);
          _mm256_storeu_epi8(packed_ptr + 7 * 16 * 4, r3_1);
        } else {
          __m512i t0, t1, t2, t3;
          __m512i r0, r1, r2, r3;
          const __m512i input_xor_v = _mm512_set1_epi8(input_xor);

          t0 = LoaduTwo(src_ptr0, src_ptr4);
          t1 = LoaduTwo(src_ptr1, src_ptr5);
          t2 = LoaduTwo(src_ptr2, src_ptr6);
          t3 = LoaduTwo(src_ptr3, src_ptr7);

          r0 = _mm512_unpacklo_epi32(t0, t1);
          r2 = _mm512_unpackhi_epi32(t0, t1);
          r1 = _mm512_unpacklo_epi32(t2, t3);
          r3 = _mm512_unpackhi_epi32(t2, t3);

          t0 = _mm512_unpacklo_epi64(r0, r1);
          t2 = _mm512_unpackhi_epi64(r0, r1);
          t1 = _mm512_unpacklo_epi64(r2, r3);
          t3 = _mm512_unpackhi_epi64(r2, r3);

          r0 = _mm512_shuffle_i32x4(t0, t1, 0x88);
          r1 = _mm512_shuffle_i32x4(t0, t1, 0xdd);
          r2 = _mm512_shuffle_i32x4(t2, t3, 0x88);
          r3 = _mm512_shuffle_i32x4(t2, t3, 0xdd);

          r0 = _mm512_xor_si512(r0, input_xor_v);
          r1 = _mm512_xor_si512(r1, input_xor_v);
          r2 = _mm512_xor_si512(r2, input_xor_v);
          r3 = _mm512_xor_si512(r3, input_xor_v);

          const __m256i r0_0 = _mm512_castsi512_si256(r0);
          const __m256i r0_1 = _mm512_extracti32x8_epi32(r0, 1);
          const __m256i r1_0 = _mm512_castsi512_si256(r1);
          const __m256i r1_1 = _mm512_extracti32x8_epi32(r1, 1);
          const __m256i r2_0 = _mm512_castsi512_si256(r2);
          const __m256i r2_1 = _mm512_extracti32x8_epi32(r2, 1);
          const __m256i r3_0 = _mm512_castsi512_si256(r3);
          const __m256i r3_1 = _mm512_extracti32x8_epi32(r3, 1);
          _mm256_storeu_epi8(packed_ptr + 0 * 16 * 4, r0_0);
          _mm256_storeu_epi8(packed_ptr + 2 * 16 * 4, r0_1);
          _mm256_storeu_epi8(packed_ptr + 4 * 16 * 4, r1_0);
          _mm256_storeu_epi8(packed_ptr + 6 * 16 * 4, r1_1);
          _mm256_storeu_epi8(packed_ptr + 1 * 16 * 4, r2_0);
          _mm256_storeu_epi8(packed_ptr + 3 * 16 * 4, r2_1);
          _mm256_storeu_epi8(packed_ptr + 5 * 16 * 4, r3_0);
          _mm256_storeu_epi8(packed_ptr + 7 * 16 * 4, r3_1);
        }
      } else if (available_src_rows > 0) {
        RUY_DCHECK_LT(available_src_rows >> 2, kNumChunkedSrcRows);
        const __mmask32 row_mask =
            (static_cast<std::uint64_t>(1) << available_src_rows) - 1;

        // We do not care what goes into the trailing buffer, but we want
        // in_data[...] ^ input_xor == 0 for irrelevant values in the summation.
        //
        // We compensate for padding-with-zero_point by initializing the
        // summations with the compensating offset, effectively
        // ((input_xor ^ input_xor) - (zero_point ^ input_xor)) *
        //                         4 * (8 - ((available_src_rows + 3) >> 2)).
        //
        // Note that (zero_point ^ input_xor) is performed in 8-bits and then
        // cast.
        sums_adjustment += -(zero_point ^ input_xor) * 4 *
                           (8 - ((available_src_rows + 3) >> 2));

        __m512i t0, t1, t2, t3;
        __m512i r0, r1, r2, r3;
        const __m512i input_xor_v = _mm512_set1_epi8(input_xor);
        const __m256i zero_point_v = _mm256_set1_epi8(zero_point);

        t0 = MaskLoaduTwo(row_mask, zero_point_v, src_ptr0, src_ptr4);
        t1 = MaskLoaduTwo(row_mask, zero_point_v, src_ptr1, src_ptr5);
        t2 = MaskLoaduTwo(row_mask, zero_point_v, src_ptr2, src_ptr6);
        t3 = MaskLoaduTwo(row_mask, zero_point_v, src_ptr3, src_ptr7);

        r0 = _mm512_unpacklo_epi32(t0, t1);
        r2 = _mm512_unpackhi_epi32(t0, t1);
        r1 = _mm512_unpacklo_epi32(t2, t3);
        r3 = _mm512_unpackhi_epi32(t2, t3);

        t0 = _mm512_unpacklo_epi64(r0, r1);
        t2 = _mm512_unpackhi_epi64(r0, r1);
        t1 = _mm512_unpacklo_epi64(r2, r3);
        t3 = _mm512_unpackhi_epi64(r2, r3);

        r0 = _mm512_shuffle_i32x4(t0, t1, 0x88);
        r1 = _mm512_shuffle_i32x4(t0, t1, 0xdd);
        r2 = _mm512_shuffle_i32x4(t2, t3, 0x88);
        r3 = _mm512_shuffle_i32x4(t2, t3, 0xdd);

        r0 = _mm512_xor_si512(r0, input_xor_v);
        r1 = _mm512_xor_si512(r1, input_xor_v);
        r2 = _mm512_xor_si512(r2, input_xor_v);
        r3 = _mm512_xor_si512(r3, input_xor_v);

        const __m256i r0_0 = _mm512_castsi512_si256(r0);
        const __m256i r0_1 = _mm512_extracti32x8_epi32(r0, 1);
        const __m256i r1_0 = _mm512_castsi512_si256(r1);
        const __m256i r1_1 = _mm512_extracti32x8_epi32(r1, 1);
        const __m256i r2_0 = _mm512_castsi512_si256(r2);
        const __m256i r2_1 = _mm512_extracti32x8_epi32(r2, 1);
        const __m256i r3_0 = _mm512_castsi512_si256(r3);
        const __m256i r3_1 = _mm512_extracti32x8_epi32(r3, 1);

        __m512i sums_8x4_16bit;
        sums_8x4_16bit = _mm512_cvtepi8_epi16(r0_0);
        sums_8x4_16bit =
            _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r0_1));
        sums_8x4_16bit =
            _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r1_0));
        sums_8x4_16bit =
            _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r1_1));
        sums_8x4_16bit =
            _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r2_0));
        sums_8x4_16bit =
            _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r2_1));
        sums_8x4_16bit =
            _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r3_0));
        sums_8x4_16bit =
            _mm512_add_epi16(sums_8x4_16bit, _mm512_cvtepi8_epi16(r3_1));
        // The sums have been performed across columns, and now we have
        // 4x16-bit sums packed together. We use madd for pairwise 32-bit
        // sums.
        const __m512i sums_8x2_32bit_new =
            _mm512_madd_epi16(sums_8x4_16bit, ones_16bit);
        sums_8x2_32bit = _mm512_add_epi32(sums_8x2_32bit, sums_8x2_32bit_new);

        _mm256_storeu_epi8(trailing_buf + 0 * 16 * 4, r0_0);
        _mm256_storeu_epi8(trailing_buf + 2 * 16 * 4, r0_1);
        _mm256_storeu_epi8(trailing_buf + 4 * 16 * 4, r1_0);
        _mm256_storeu_epi8(trailing_buf + 6 * 16 * 4, r1_1);
        _mm256_storeu_epi8(trailing_buf + 1 * 16 * 4, r2_0);
        _mm256_storeu_epi8(trailing_buf + 3 * 16 * 4, r2_1);
        _mm256_storeu_epi8(trailing_buf + 5 * 16 * 4, r3_0);
        _mm256_storeu_epi8(trailing_buf + 7 * 16 * 4, r3_1);
      }

      packed_ptr += 16 * kNumChunkedSrcRows;
      src_ptr0 += src_inc0;
      src_ptr1 += src_inc1;
      src_ptr2 += src_inc2;
      src_ptr3 += src_inc3;
      src_ptr4 += src_inc4;
      src_ptr5 += src_inc5;
      src_ptr6 += src_inc6;
      src_ptr7 += src_inc7;
    }
  }

  if (sums_ptr) {
    const __m256i sums_adjustment_v = _mm256_set1_epi32(sums_adjustment);

    __m256i sums = _mm256_loadu_epi32(sums_ptr);
    const __m512i idx =
        _mm512_set_epi32(15, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0);

    // We earlier used madd for pairwise 32-bit sums, and now we deinterlace the
    // neighbours, finshing up by adding them to the stored accumulated sums.
    const __m512i sums_2x8_32bit =
        _mm512_permutexvar_epi32(idx, sums_8x2_32bit);
    sums = _mm256_add_epi32(sums, sums_adjustment_v);
    sums = _mm256_add_epi32(sums, _mm512_castsi512_si256(sums_2x8_32bit));
    sums = _mm256_add_epi32(sums, _mm512_extracti32x8_epi32(sums_2x8_32bit, 1));

    _mm256_storeu_epi32(sums_ptr, sums);
  }
}

inline __m512 LoaduTwo(const float* addr_lo, const float* addr_hi) {
  const __m512 lower_filled = _mm512_castps256_ps512(_mm256_loadu_ps(addr_lo));
  return _mm512_insertf32x8(lower_filled, _mm256_loadu_ps(addr_hi), 1);
}

inline __m512 MaskLoaduTwo(__mmask8 row_mask, const float* addr_lo,
                           const float* addr_hi) {
  const __m512 lower_filled =
      _mm512_castps256_ps512(_mm256_maskz_loadu_ps(row_mask, addr_lo));
  return _mm512_insertf32x8(lower_filled,
                            _mm256_maskz_loadu_ps(row_mask, addr_hi), 1);
}

inline __m512 Mm512UnpackloPsx2(const __m512 a, const __m512 b) {
  return _mm512_castpd_ps(
      _mm512_unpacklo_pd(_mm512_castps_pd(a), _mm512_castps_pd(b)));
}

inline __m512 Mm512UnpackhiPsx2(const __m512 a, const __m512 b) {
  return _mm512_castpd_ps(
      _mm512_unpackhi_pd(_mm512_castps_pd(a), _mm512_castps_pd(b)));
}

inline void HalfPackFloatAvx512(const float* src_ptr, const float* zerobuf,
                                int src_stride, int remaining_src_cols,
                                int src_rows, float* packed_ptr,
                                float* trailing_buf) {
  const float* src_ptr0 = src_ptr;
  const float* src_ptr1 = src_ptr0 + src_stride;
  const float* src_ptr2 = src_ptr1 + src_stride;
  const float* src_ptr3 = src_ptr2 + src_stride;
  const float* src_ptr4 = src_ptr3 + src_stride;
  const float* src_ptr5 = src_ptr4 + src_stride;
  const float* src_ptr6 = src_ptr5 + src_stride;
  const float* src_ptr7 = src_ptr6 + src_stride;
  std::int64_t src_inc0 = 8;
  std::int64_t src_inc1 = 8;
  std::int64_t src_inc2 = 8;
  std::int64_t src_inc3 = 8;
  std::int64_t src_inc4 = 8;
  std::int64_t src_inc5 = 8;
  std::int64_t src_inc6 = 8;
  std::int64_t src_inc7 = 8;
  if (remaining_src_cols < 8) {
    if (remaining_src_cols <= 0) {
      src_ptr0 = zerobuf;
      src_inc0 = 0;
    }
    if (remaining_src_cols <= 1) {
      src_ptr1 = zerobuf;
      src_inc1 = 0;
    }
    if (remaining_src_cols <= 2) {
      src_ptr2 = zerobuf;
      src_inc2 = 0;
    }
    if (remaining_src_cols <= 3) {
      src_ptr3 = zerobuf;
      src_inc3 = 0;
    }
    if (remaining_src_cols <= 4) {
      src_ptr4 = zerobuf;
      src_inc4 = 0;
    }
    if (remaining_src_cols <= 5) {
      src_ptr5 = zerobuf;
      src_inc5 = 0;
    }
    if (remaining_src_cols <= 6) {
      src_ptr6 = zerobuf;
      src_inc6 = 0;
    }
    src_ptr7 = zerobuf;
    src_inc7 = 0;
  }

  for (int k = 0; k < src_rows; k += 16) {
    for (int m = 0; m < 2; ++m) {
      const int available_src_rows = src_rows - k - 8 * m;
      // Effectively,
      // available_src_rows = std::max(0, std::min(8, src_rows - k - 8 * m));
      // but treat each case separately.
      if (available_src_rows > 7) {
        __m512 t0, t1, t2, t3;
        __m512 r0, r1, r2, r3;

        t0 = LoaduTwo(src_ptr0, src_ptr4);
        t1 = LoaduTwo(src_ptr1, src_ptr5);
        t2 = LoaduTwo(src_ptr2, src_ptr6);
        t3 = LoaduTwo(src_ptr3, src_ptr7);

        r0 = _mm512_unpacklo_ps(t0, t1);
        r2 = _mm512_unpackhi_ps(t0, t1);
        r1 = _mm512_unpacklo_ps(t2, t3);
        r3 = _mm512_unpackhi_ps(t2, t3);

        t0 = Mm512UnpackloPsx2(r0, r1);
        t2 = Mm512UnpackhiPsx2(r0, r1);
        t1 = Mm512UnpackloPsx2(r2, r3);
        t3 = Mm512UnpackhiPsx2(r2, r3);

        r0 = _mm512_shuffle_f32x4(t0, t1, 0x88);
        r1 = _mm512_shuffle_f32x4(t0, t1, 0xdd);
        r2 = _mm512_shuffle_f32x4(t2, t3, 0x88);
        r3 = _mm512_shuffle_f32x4(t2, t3, 0xdd);

        _mm256_storeu_ps(packed_ptr + 0 * 16, _mm512_castps512_ps256(r0));
        _mm256_storeu_ps(packed_ptr + 2 * 16, _mm512_extractf32x8_ps(r0, 1));
        _mm256_storeu_ps(packed_ptr + 4 * 16, _mm512_castps512_ps256(r1));
        _mm256_storeu_ps(packed_ptr + 6 * 16, _mm512_extractf32x8_ps(r1, 1));
        _mm256_storeu_ps(packed_ptr + 1 * 16, _mm512_castps512_ps256(r2));
        _mm256_storeu_ps(packed_ptr + 3 * 16, _mm512_extractf32x8_ps(r2, 1));
        _mm256_storeu_ps(packed_ptr + 5 * 16, _mm512_castps512_ps256(r3));
        _mm256_storeu_ps(packed_ptr + 7 * 16, _mm512_extractf32x8_ps(r3, 1));
      } else if (available_src_rows > 0) {
        const __mmask8 row_mask =
            (static_cast<std::uint32_t>(1) << available_src_rows) - 1;

        __m512 t0, t1, t2, t3;
        __m512 r0, r1, r2, r3;

        t0 = MaskLoaduTwo(row_mask, src_ptr0, src_ptr4);
        t1 = MaskLoaduTwo(row_mask, src_ptr1, src_ptr5);
        t2 = MaskLoaduTwo(row_mask, src_ptr2, src_ptr6);
        t3 = MaskLoaduTwo(row_mask, src_ptr3, src_ptr7);

        r0 = _mm512_unpacklo_ps(t0, t1);
        r2 = _mm512_unpackhi_ps(t0, t1);
        r1 = _mm512_unpacklo_ps(t2, t3);
        r3 = _mm512_unpackhi_ps(t2, t3);

        t0 = Mm512UnpackloPsx2(r0, r1);
        t2 = Mm512UnpackhiPsx2(r0, r1);
        t1 = Mm512UnpackloPsx2(r2, r3);
        t3 = Mm512UnpackhiPsx2(r2, r3);

        r0 = _mm512_shuffle_f32x4(t0, t1, 0x88);
        r1 = _mm512_shuffle_f32x4(t0, t1, 0xdd);
        r2 = _mm512_shuffle_f32x4(t2, t3, 0x88);
        r3 = _mm512_shuffle_f32x4(t2, t3, 0xdd);

        _mm256_storeu_ps(trailing_buf + 0 * 16, _mm512_castps512_ps256(r0));
        _mm256_storeu_ps(trailing_buf + 2 * 16, _mm512_extractf32x8_ps(r0, 1));
        _mm256_storeu_ps(trailing_buf + 4 * 16, _mm512_castps512_ps256(r1));
        _mm256_storeu_ps(trailing_buf + 6 * 16, _mm512_extractf32x8_ps(r1, 1));
        _mm256_storeu_ps(trailing_buf + 1 * 16, _mm512_castps512_ps256(r2));
        _mm256_storeu_ps(trailing_buf + 3 * 16, _mm512_extractf32x8_ps(r2, 1));
        _mm256_storeu_ps(trailing_buf + 5 * 16, _mm512_castps512_ps256(r3));
        // Do not store _mm512_extractf32x8_ps(r3, 1).
      }

      packed_ptr += 16 * 8;
      src_ptr0 += src_inc0;
      src_ptr1 += src_inc1;
      src_ptr2 += src_inc2;
      src_ptr3 += src_inc3;
      src_ptr4 += src_inc4;
      src_ptr5 += src_inc5;
      src_ptr6 += src_inc6;
      src_ptr7 += src_inc7;
    }
  }
}

inline void ZeroHalfFloatAvx512(int src_rows, float* packed_ptr) {
  const int non_trailing_rows = src_rows & ~7;
  for (int k = 0; k < non_trailing_rows; ++k) {
    for (int j = 0; j < 8; ++j) {
      packed_ptr[j] = 0.0f;
    }
    packed_ptr += 16;
  }
}

}  // namespace.

void Pack8bitAvx512(const std::int8_t* src_ptr, std::int8_t input_xor,
                    const std::int8_t* zerobuf, int src_stride,
                    int remaining_src_cols, int src_rows,
                    std::int8_t* packed_ptr, std::int32_t* sums_ptr) {
  profiler::ScopeLabel label("Pack kAvx512 8bit");

  using Layout = PackImpl8bitAvx512::Layout;
  constexpr int kHalfBlockOffset = 32;
  RUY_DCHECK_EQ(kHalfBlockOffset * 2, Layout::kRows * Layout::kCols);
  static constexpr int kHalfLayoutCols =
      PackImpl8bitAvx512::kHalfLayoutCols;  // Half the number of cols in a
                                            // block.
  RUY_DCHECK_EQ(kHalfLayoutCols, 8);
  RUY_DCHECK_EQ(Layout::kCols, 16);
  RUY_DCHECK_EQ(Layout::kRows, 4);

  // Each Layout::Rows is 4 contiguous input, contiguous packed elements.
  // We process 8 of these chunks at a time, padding short input chunks.
  constexpr int kNumRowChunks = 8;

  // Each packed block is 4*16, and there are normally 8. The trailing block is
  // only slightly shorter.
  constexpr int kTrailingBufSize =
      kNumRowChunks * Layout::kCols * Layout::kRows;
  std::int8_t trailing_buf[kTrailingBufSize];
  memset(trailing_buf, 0, kTrailingBufSize * sizeof(std::int8_t));

  std::int32_t* second_sums_ptr =
      sums_ptr ? sums_ptr + kHalfLayoutCols : nullptr;
  if (remaining_src_cols > kHalfLayoutCols) {
    HalfPack8bitAvx512(src_ptr, input_xor, zerobuf, src_stride,
                       remaining_src_cols, src_rows, packed_ptr, sums_ptr,
                       trailing_buf);
    HalfPack8bitAvx512(src_ptr + src_stride * kHalfLayoutCols, input_xor,
                       zerobuf, src_stride,
                       remaining_src_cols - kHalfLayoutCols, src_rows,
                       packed_ptr + kHalfBlockOffset, second_sums_ptr,
                       trailing_buf + kHalfBlockOffset);
  } else {
    HalfPack8bitAvx512(src_ptr, input_xor, zerobuf, src_stride,
                       remaining_src_cols, src_rows, packed_ptr, sums_ptr,
                       trailing_buf);
    ZeroHalf8bitAvx512(src_rows, zerobuf[0] ^ input_xor,
                       packed_ptr + kHalfBlockOffset);
    // The kernel may not need the second half-blocks sums to be set.
    if (second_sums_ptr) {
      for (int i = 0; i < kHalfLayoutCols; ++i) {
        second_sums_ptr[i] = (zerobuf[0] ^ input_xor) * ((src_rows + 3) & ~3);
      }
    }
  }
  constexpr int kChunkedRowMask = kNumRowChunks * Layout::kRows - 1;
  const bool trailing_data = (src_rows & kChunkedRowMask) > 0;
  // If the number of source rows is not a multiple of kChunkedRowMask, there
  // will be data in the trailing buffer,
  if (trailing_data > 0) {
    const int non_trailing_rows = src_rows & ~kChunkedRowMask;
    // Destination "rows" are padded to next highest multiple of Layout::kRows.
    const int dst_rows = (src_rows + 3) & ~3;
    const int trailing_rows = dst_rows - non_trailing_rows;
    memcpy(packed_ptr + Layout::kCols * non_trailing_rows, trailing_buf,
           Layout::kCols * trailing_rows * sizeof(std::int8_t));
  }
}

void PackFloatAvx512(const float* src_ptr, const float* zerobuf, int src_stride,
                     int remaining_src_cols, int src_rows, float* packed_ptr) {
  profiler::ScopeLabel label("Pack kAvx512 float");
  float trailing_buf[7 * 16];
  if (remaining_src_cols > 8) {
    HalfPackFloatAvx512(src_ptr, zerobuf, src_stride, remaining_src_cols,
                        src_rows, packed_ptr, trailing_buf);
    HalfPackFloatAvx512(src_ptr + src_stride * 8, zerobuf, src_stride,
                        remaining_src_cols - 8, src_rows, packed_ptr + 8,
                        trailing_buf + 8);
  } else {
    memset(trailing_buf, 0, sizeof(trailing_buf));
    HalfPackFloatAvx512(src_ptr, zerobuf, src_stride, remaining_src_cols,
                        src_rows, packed_ptr, trailing_buf);
    ZeroHalfFloatAvx512(src_rows, packed_ptr + 8);
  }
  const int trailing_rows = src_rows & 7;
  if (trailing_rows > 0) {
    const int non_trailing_rows = src_rows & ~7;
    memcpy(packed_ptr + 16 * non_trailing_rows, trailing_buf,
           16 * trailing_rows * sizeof(float));
  }
}

#endif  // RUY_PLATFORM(AVX512) && RUY_OPT_ENABLED(RUY_OPT_INTRINSICS)

}  // namespace ruy