/* STM32 F103 serial bus seems to properly initialize with quite a huge auto-baud range From 921600 down to 1200, i don't recommend getting any lower then that Official "specs" are from 115200 to 1200 popular choices - 921600, 460800, 256000, 230400, 153600, 128000, 115200, 57600, 38400, 28800, 19200 */ 'use strict'; var STM32_protocol = function () { this.baud; this.options = {}; this.callback; // ref this.hex; // ref this.verify_hex; this.receive_buffer; this.bytes_to_read = 0; // ref this.read_callback; // ref this.upload_time_start; this.upload_process_alive; this.status = { ACK: 0x79, // y NACK: 0x1F }; this.command = { get: 0x00, // Gets the version and the allowed commands supported by the current version of the bootloader get_ver_r_protect_s: 0x01, // Gets the bootloader version and the Read Protection status of the Flash memory get_ID: 0x02, // Gets the chip ID read_memory: 0x11, // Reads up to 256 bytes of memory starting from an address specified by the application go: 0x21, // Jumps to user application code located in the internal Flash memory or in SRAM write_memory: 0x31, // Writes up to 256 bytes to the RAM or Flash memory starting from an address specified by the application erase: 0x43, // Erases from one to all the Flash memory pages extended_erase: 0x44, // Erases from one to all the Flash memory pages using two byte addressing mode (v3.0+ usart). write_protect: 0x63, // Enables the write protection for some sectors write_unprotect: 0x73, // Disables the write protection for all Flash memory sectors readout_protect: 0x82, // Enables the read protection readout_unprotect: 0x92 // Disables the read protection }; // Erase (x043) and Extended Erase (0x44) are exclusive. A device may support either the Erase command or the Extended Erase command but not both. this.available_flash_size = 0; this.page_size = 0; this.useExtendedErase = false; }; // no input parameters STM32_protocol.prototype.connect = function (port, baud, hex, options, callback) { var self = this; self.hex = hex; self.baud = baud; self.callback = callback; // we will crunch the options here since doing it inside initialization routine would be too late self.options = { no_reboot: false, reboot_baud: false, erase_chip: false }; if (options.no_reboot) { self.options.no_reboot = true; } else { self.options.reboot_baud = options.reboot_baud; } if (options.erase_chip) { self.options.erase_chip = true; } if (self.options.no_reboot) { serial.connect(port, {bitrate: self.baud, parityBit: 'even', stopBits: 'one'}, function (openInfo) { if (openInfo) { // we are connected, disabling connect button in the UI GUI.connect_lock = true; self.initialize(); } else { GUI.log('Failed to open serial port'); } }); } else { serial.connect(port, {bitrate: self.options.reboot_baud}, function (openInfo) { if (openInfo) { console.log('Sending ascii "R" to reboot'); // we are connected, disabling connect button in the UI GUI.connect_lock = true; var bufferOut = new ArrayBuffer(1); var bufferView = new Uint8Array(bufferOut); bufferView[0] = 0x52; serial.send(bufferOut, function () { serial.disconnect(function (result) { if (result) { // delay to allow board to boot in bootloader mode // required to detect if a DFU device appears setTimeout(function() { // refresh device list PortHandler.check_usb_devices(function(dfu_available) { if(dfu_available) { STM32DFU.connect(usbDevices.STM32DFU, hex, options); } else { serial.connect(port, {bitrate: self.baud, parityBit: 'even', stopBits: 'one'}, function (openInfo) { if (openInfo) { self.initialize(); } else { GUI.connect_lock = false; GUI.log('Failed to open serial port'); } }); } }); }, 1000); } else { GUI.connect_lock = false; } }); }); } else { GUI.log('Failed to open serial port'); } }); } }; // initialize certain variables and start timers that oversee the communication STM32_protocol.prototype.initialize = function () { var self = this; // reset and set some variables before we start self.receive_buffer = []; self.verify_hex = []; self.upload_time_start = new Date().getTime(); self.upload_process_alive = false; // reset progress bar to initial state self.progress_bar_e = $('.progress'); self.progress_bar_e.val(0); self.progress_bar_e.removeClass('valid invalid'); // lock some UI elements TODO needs rework $('select[name="release"]').prop('disabled', true); serial.onReceive.addListener(function (info) { self.read(info); }); helper.interval.add('STM32_timeout', function () { if (self.upload_process_alive) { // process is running self.upload_process_alive = false; } else { console.log('STM32 - timed out, programming failed ...'); $('span.progressLabel').text('STM32 - timed out, programming: FAILED'); self.progress_bar_e.addClass('invalid'); googleAnalytics.sendEvent('Flashing', 'Programming', 'timeout'); // protocol got stuck, clear timer and disconnect helper.interval.remove('STM32_timeout'); // exit self.upload_procedure(99); } }, 2000); self.upload_procedure(1); }; // no input parameters // this method should be executed every 1 ms via interval timer STM32_protocol.prototype.read = function (readInfo) { // routine that fills the buffer var data = new Uint8Array(readInfo.data); for (var i = 0; i < data.length; i++) { this.receive_buffer.push(data[i]); } // routine that fetches data from buffer if statement is true if (this.receive_buffer.length >= this.bytes_to_read && this.bytes_to_read != 0) { var data = this.receive_buffer.slice(0, this.bytes_to_read); // bytes requested this.receive_buffer.splice(0, this.bytes_to_read); // remove read bytes this.bytes_to_read = 0; // reset trigger this.read_callback(data); } }; // we should always try to consume all "proper" available data while using retrieve STM32_protocol.prototype.retrieve = function (n_bytes, callback) { if (this.receive_buffer.length >= n_bytes) { // data that we need are there, process immediately var data = this.receive_buffer.slice(0, n_bytes); this.receive_buffer.splice(0, n_bytes); // remove read bytes callback(data); } else { // still waiting for data, add callback this.bytes_to_read = n_bytes; this.read_callback = callback; } }; // Array = array of bytes that will be send over serial // bytes_to_read = received bytes necessary to trigger read_callback // callback = function that will be executed after received bytes = bytes_to_read STM32_protocol.prototype.send = function (Array, bytes_to_read, callback) { // flip flag this.upload_process_alive = true; var bufferOut = new ArrayBuffer(Array.length); var bufferView = new Uint8Array(bufferOut); // set Array values inside bufferView (alternative to for loop) bufferView.set(Array); // update references this.bytes_to_read = bytes_to_read; this.read_callback = callback; // empty receive buffer before next command is out this.receive_buffer = []; // send over the actual data serial.send(bufferOut, function (writeInfo) {}); }; // val = single byte to be verified // data = response of n bytes from mcu (array) // result = true/false STM32_protocol.prototype.verify_response = function (val, data) { var self = this; if (val != data[0]) { var message = 'STM32 Communication failed, wrong response, expected: ' + val + ' (0x' + val.toString(16) + ') received: ' + data[0] + ' (0x' + data[0].toString(16) + ')'; console.error(message); $('span.progressLabel').text(message); self.progress_bar_e.addClass('invalid'); // disconnect this.upload_procedure(99); return false; } return true; }; // input = 16 bit value // result = true/false STM32_protocol.prototype.verify_chip_signature = function (signature) { switch (signature) { case 0x412: // not tested console.log('Chip recognized as F1 Low-density'); break; case 0x410: console.log('Chip recognized as F1 Medium-density'); this.available_flash_size = 131072; this.page_size = 1024; break; case 0x414: // not tested console.log('Chip recognized as F1 High-density'); this.available_flash_size = 0x40000; this.page_size = 2048; break; case 0x418: // not tested console.log('Chip recognized as F1 Connectivity line'); break; case 0x420: // not tested console.log('Chip recognized as F1 Medium-density value line'); break; case 0x428: // not tested console.log('Chip recognized as F1 High-density value line'); break; case 0x430: // not tested console.log('Chip recognized as F1 XL-density value line'); break; case 0x416: // not tested console.log('Chip recognized as L1 Medium-density ultralow power'); break; case 0x436: // not tested console.log('Chip recognized as L1 High-density ultralow power'); break; case 0x427: // not tested console.log('Chip recognized as L1 Medium-density plus ultralow power'); break; case 0x411: // not tested console.log('Chip recognized as F2 STM32F2xxxx'); break; case 0x440: // not tested console.log('Chip recognized as F0 STM32F051xx'); break; case 0x444: // not tested console.log('Chip recognized as F0 STM32F050xx'); break; case 0x413: // not tested console.log('Chip recognized as F4 STM32F40xxx/41xxx'); break; case 0x419: // not tested console.log('Chip recognized as F4 STM32F427xx/437xx, STM32F429xx/439xx'); break; case 0x432: // not tested console.log('Chip recognized as F3 STM32F37xxx, STM32F38xxx'); break; case 0x422: console.log('Chip recognized as F3 STM32F30xxx, STM32F31xxx'); this.available_flash_size = 0x40000; this.page_size = 2048; break; } if (this.available_flash_size > 0) { if (this.hex.bytes_total < this.available_flash_size) { return true; } else { console.log('Supplied hex is bigger then flash available on the chip, HEX: ' + this.hex.bytes_total + ' bytes, limit = ' + this.available_flash_size + ' bytes'); return false; } } console.log('Chip NOT recognized: ' + signature); return false; }; // first_array = usually hex_to_flash array // second_array = usually verify_hex array // result = true/false STM32_protocol.prototype.verify_flash = function (first_array, second_array) { for (var i = 0; i < first_array.length; i++) { if (first_array[i] != second_array[i]) { console.log('Verification failed on byte: ' + i + ' expected: 0x' + first_array[i].toString(16) + ' received: 0x' + second_array[i].toString(16)); return false; } } console.log('Verification successful, matching: ' + first_array.length + ' bytes'); return true; }; // step = value depending on current state of upload_procedure STM32_protocol.prototype.upload_procedure = function (step) { var self = this; switch (step) { case 1: // initialize serial interface on the MCU side, auto baud rate settings $('span.progressLabel').text('Contacting bootloader ...'); var send_counter = 0; helper.interval.add('stm32_initialize_mcu', function () { // 200 ms interval (just in case mcu was already initialized), we need to break the 2 bytes command requirement self.send([0x7F], 1, function (reply) { if (reply[0] == 0x7F || reply[0] == self.status.ACK || reply[0] == self.status.NACK) { helper.interval.remove('stm32_initialize_mcu'); console.log('STM32 - Serial interface initialized on the MCU side'); // proceed to next step self.upload_procedure(2); } else { $('span.progressLabel').text('Communication with bootloader failed'); self.progress_bar_e.addClass('invalid'); helper.interval.remove('stm32_initialize_mcu'); // disconnect self.upload_procedure(99); } }); if (send_counter++ > 3) { // stop retrying, its too late to get any response from MCU console.log('STM32 - no response from bootloader, disconnecting'); $('span.progressLabel').text('No response from the bootloader, programming: FAILED'); self.progress_bar_e.addClass('invalid'); helper.interval.remove('stm32_initialize_mcu'); helper.interval.remove('STM32_timeout'); // exit self.upload_procedure(99); } }, 250, true); break; case 2: // get version of the bootloader and supported commands self.send([self.command.get, 0xFF], 2, function (data) { // 0x00 ^ 0xFF if (self.verify_response(self.status.ACK, data)) { self.retrieve(data[1] + 1 + 1, function (data) { // data[1] = number of bytes that will follow [– 1 except current and ACKs] console.log('STM32 - Bootloader version: ' + (parseInt(data[0].toString(16)) / 10).toFixed(1)); // convert dec to hex, hex to dec and add floating point self.useExtendedErase = (data[7] == self.command.extended_erase); // proceed to next step self.upload_procedure(3); }); } }); break; case 3: // get ID (device signature) self.send([self.command.get_ID, 0xFD], 2, function (data) { // 0x01 ^ 0xFF if (self.verify_response(self.status.ACK, data)) { self.retrieve(data[1] + 1 + 1, function (data) { // data[1] = number of bytes that will follow [– 1 (N = 1 for STM32), except for current byte and ACKs] var signature = (data[0] << 8) | data[1]; console.log('STM32 - Signature: 0x' + signature.toString(16)); // signature in hex representation if (self.verify_chip_signature(signature)) { // proceed to next step self.upload_procedure(4); } else { // disconnect self.upload_procedure(99); } }); } }); break; case 4: // erase memory if (self.useExtendedErase) { if (self.options.erase_chip) { var message = 'Executing global chip erase (via extended erase)'; console.log(message); $('span.progressLabel').text(message + ' ...'); self.send([self.command.extended_erase, 0xBB], 1, function (reply) { if (self.verify_response(self.status.ACK, reply)) { self.send( [0xFF, 0xFF, 0x00], 1, function (reply) { if (self.verify_response(self.status.ACK, reply)) { console.log('Executing global chip extended erase: done'); self.upload_procedure(5); } }); } }); } else { var message = 'Executing local erase (via extended erase)'; console.log(message); $('span.progressLabel').text(message + ' ...'); self.send([self.command.extended_erase, 0xBB], 1, function (reply) { if (self.verify_response(self.status.ACK, reply)) { // For reference: https://code.google.com/p/stm32flash/source/browse/stm32.c#723 var max_address = self.hex.data[self.hex.data.length - 1].address + self.hex.data[self.hex.data.length - 1].bytes - 0x8000000, erase_pages_n = Math.ceil(max_address / self.page_size), buff = [], checksum = 0; var pg_byte; pg_byte = (erase_pages_n - 1) >> 8; buff.push(pg_byte); checksum ^= pg_byte; pg_byte = (erase_pages_n - 1) & 0xFF; buff.push(pg_byte); checksum ^= pg_byte; for (var i = 0; i < erase_pages_n; i++) { pg_byte = i >> 8; buff.push(pg_byte); checksum ^= pg_byte; pg_byte = i & 0xFF; buff.push(pg_byte); checksum ^= pg_byte; } buff.push(checksum); console.log('Erasing. pages: 0x00 - 0x' + erase_pages_n.toString(16) + ', checksum: 0x' + checksum.toString(16)); self.send(buff, 1, function (reply) { if (self.verify_response(self.status.ACK, reply)) { console.log('Erasing: done'); // proceed to next step self.upload_procedure(5); } }); } }); } break; } if (self.options.erase_chip) { var message = 'Executing global chip erase' ; console.log(message); $('span.progressLabel').text(message + ' ...'); self.send([self.command.erase, 0xBC], 1, function (reply) { // 0x43 ^ 0xFF if (self.verify_response(self.status.ACK, reply)) { self.send([0xFF, 0x00], 1, function (reply) { if (self.verify_response(self.status.ACK, reply)) { console.log('Erasing: done'); // proceed to next step self.upload_procedure(5); } }); } }); } else { var message = 'Executing local erase'; console.log(message); $('span.progressLabel').text(message + ' ...'); self.send([self.command.erase, 0xBC], 1, function (reply) { // 0x43 ^ 0xFF if (self.verify_response(self.status.ACK, reply)) { // the bootloader receives one byte that contains N, the number of pages to be erased – 1 var max_address = self.hex.data[self.hex.data.length - 1].address + self.hex.data[self.hex.data.length - 1].bytes - 0x8000000, erase_pages_n = Math.ceil(max_address / self.page_size), buff = [], checksum = erase_pages_n - 1; buff.push(erase_pages_n - 1); for (var i = 0; i < erase_pages_n; i++) { buff.push(i); checksum ^= i; } buff.push(checksum); self.send(buff, 1, function (reply) { if (self.verify_response(self.status.ACK, reply)) { console.log('Erasing: done'); // proceed to next step self.upload_procedure(5); } }); } }); } break; case 5: // upload console.log('Writing data ...'); $('span.progressLabel').text('Flashing ...'); var blocks = self.hex.data.length - 1, flashing_block = 0, address = self.hex.data[flashing_block].address, bytes_flashed = 0, bytes_flashed_total = 0; // used for progress bar var write = function () { if (bytes_flashed < self.hex.data[flashing_block].bytes) { var bytes_to_write = ((bytes_flashed + 256) <= self.hex.data[flashing_block].bytes) ? 256 : (self.hex.data[flashing_block].bytes - bytes_flashed); // console.log('STM32 - Writing to: 0x' + address.toString(16) + ', ' + bytes_to_write + ' bytes'); self.send([self.command.write_memory, 0xCE], 1, function (reply) { // 0x31 ^ 0xFF if (self.verify_response(self.status.ACK, reply)) { // address needs to be transmitted as 32 bit integer, we need to bit shift each byte out and then calculate address checksum var address_arr = [(address >> 24), (address >> 16), (address >> 8), address]; var address_checksum = address_arr[0] ^ address_arr[1] ^ address_arr[2] ^ address_arr[3]; self.send([address_arr[0], address_arr[1], address_arr[2], address_arr[3], address_checksum], 1, function (reply) { // write start address + checksum if (self.verify_response(self.status.ACK, reply)) { var array_out = new Array(bytes_to_write + 2); // 2 byte overhead [N, ...., checksum] array_out[0] = bytes_to_write - 1; // number of bytes to be written (to write 128 bytes, N must be 127, to write 256 bytes, N must be 255) var checksum = array_out[0]; for (var i = 0; i < bytes_to_write; i++) { array_out[i + 1] = self.hex.data[flashing_block].data[bytes_flashed]; // + 1 because of the first byte offset checksum ^= self.hex.data[flashing_block].data[bytes_flashed]; bytes_flashed++; } array_out[array_out.length - 1] = checksum; // checksum (last byte in the array_out array) address += bytes_to_write; bytes_flashed_total += bytes_to_write; self.send(array_out, 1, function (reply) { if (self.verify_response(self.status.ACK, reply)) { // flash another page write(); } }); // update progress bar self.progress_bar_e.val(Math.round(bytes_flashed_total / (self.hex.bytes_total * 2) * 100)); } }); } }); } else { // move to another block if (flashing_block < blocks) { flashing_block++; address = self.hex.data[flashing_block].address; bytes_flashed = 0; write(); } else { // all blocks flashed console.log('Writing: done'); // proceed to next step self.upload_procedure(6); } } } // start writing write(); break; case 6: // verify console.log('Verifying data ...'); $('span.progressLabel').text('Verifying ...'); var blocks = self.hex.data.length - 1, reading_block = 0, address = self.hex.data[reading_block].address, bytes_verified = 0, bytes_verified_total = 0; // used for progress bar // initialize arrays for (var i = 0; i <= blocks; i++) { self.verify_hex.push([]); } var reading = function () { if (bytes_verified < self.hex.data[reading_block].bytes) { var bytes_to_read = ((bytes_verified + 256) <= self.hex.data[reading_block].bytes) ? 256 : (self.hex.data[reading_block].bytes - bytes_verified); // console.log('STM32 - Reading from: 0x' + address.toString(16) + ', ' + bytes_to_read + ' bytes'); self.send([self.command.read_memory, 0xEE], 1, function (reply) { // 0x11 ^ 0xFF if (self.verify_response(self.status.ACK, reply)) { var address_arr = [(address >> 24), (address >> 16), (address >> 8), address]; var address_checksum = address_arr[0] ^ address_arr[1] ^ address_arr[2] ^ address_arr[3]; self.send([address_arr[0], address_arr[1], address_arr[2], address_arr[3], address_checksum], 1, function (reply) { // read start address + checksum if (self.verify_response(self.status.ACK, reply)) { var bytes_to_read_n = bytes_to_read - 1; self.send([bytes_to_read_n, (~bytes_to_read_n) & 0xFF], 1, function (reply) { // bytes to be read + checksum XOR(complement of bytes_to_read_n) if (self.verify_response(self.status.ACK, reply)) { self.retrieve(bytes_to_read, function (data) { for (var i = 0; i < data.length; i++) { self.verify_hex[reading_block].push(data[i]); } address += bytes_to_read; bytes_verified += bytes_to_read; bytes_verified_total += bytes_to_read; // verify another page reading(); }); } }); // update progress bar self.progress_bar_e.val(Math.round((self.hex.bytes_total + bytes_verified_total) / (self.hex.bytes_total * 2) * 100)); } }); } }); } else { // move to another block if (reading_block < blocks) { reading_block++; address = self.hex.data[reading_block].address; bytes_verified = 0; reading(); } else { // all blocks read, verify var verify = true; for (var i = 0; i <= blocks; i++) { verify = self.verify_flash(self.hex.data[i].data, self.verify_hex[i]); if (!verify) break; } if (verify) { console.log('Programming: SUCCESSFUL'); $('span.progressLabel').text('Programming: SUCCESSFUL'); googleAnalytics.sendEvent('Flashing', 'Programming', 'success'); // update progress bar self.progress_bar_e.addClass('valid'); // proceed to next step self.upload_procedure(7); } else { console.log('Programming: FAILED'); $('span.progressLabel').text('Programming: FAILED'); googleAnalytics.sendEvent('Flashing', 'Programming', 'fail'); // update progress bar self.progress_bar_e.addClass('invalid'); // disconnect self.upload_procedure(99); } } } } // start reading reading(); break; case 7: // go // memory address = 4 bytes, 1st high byte, 4th low byte, 5th byte = checksum XOR(byte 1, byte 2, byte 3, byte 4) console.log('Sending GO command: 0x8000000'); self.send([self.command.go, 0xDE], 1, function (reply) { // 0x21 ^ 0xFF if (self.verify_response(self.status.ACK, reply)) { var gt_address = 0x8000000, address = [(gt_address >> 24), (gt_address >> 16), (gt_address >> 8), gt_address], address_checksum = address[0] ^ address[1] ^ address[2] ^ address[3]; self.send([address[0], address[1], address[2], address[3], address_checksum], 1, function (reply) { if (self.verify_response(self.status.ACK, reply)) { // disconnect self.upload_procedure(99); } }); } }); break; case 99: // disconnect helper.interval.remove('STM32_timeout'); // stop STM32 timeout timer (everything is finished now) // close connection serial.disconnect(function (result) { // unlocking connect button GUI.connect_lock = false; // unlock some UI elements TODO needs rework $('select[name="release"]').prop('disabled', false); // handle timing var timeSpent = new Date().getTime() - self.upload_time_start; console.log('Script finished after: ' + (timeSpent / 1000) + ' seconds'); if (self.callback) self.callback(); }); break; } }; // initialize object var STM32 = new STM32_protocol();