
OMTC : Open Machine Translation Core
An open API standard for Machine Translation

Systems
Version: 0.6.1-DRAFT

Ian Johnson
Capita Translation and Interpreting

February 26, 2013

Abstract

Open Machine Translation Core (OMTC) is an open standard that definesan ap-

plication programming interface (API) for machine translation systems (MT). The

API defined is a service interface which can be used to underpin any typeof MT

system: web-based, traditional client-server, or standalone single process applica-

tions. It consists of components, some of which are optional, which allow appli-

cation programmers to implement the core of MT systems in such a way as they

“look” consistent. This makes MT applications easier to develop since disparate

MT products start to “look” the same.

MT applications provide significant portions of functionality to OMTC that

allow aspects of the standard API to be customised for the application being devel-

oped. However, applications are not tied to the API allowing existing MT systems

to be re-factored to use OMTC. As well as new MT systems to be easily and quickly

developed using the standard API.

This standard API was developed as part of the MosesCore project

sponsored by the European Commission’s Seveth Framework Programme.

For more information on the Seventh Framework Programme please see

http://cordis.europa.eu/fp7/home_en.html.

http://cordis.europa.eu/fp7/home_en.html

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Architecture . 2

1.3 Notational Coventions . 3

2 Implementation 4

2.1 Language Bindings . 4

2.2 Namespace . 4

2.3 Multithreading . 5

2.4 Reference Implementation . 5

3 Resources 6

4 Sessions, Negotiation and Authorisation 10

4.1 Sessions . 10

4.2 Session Negotiation . 13

4.2.1 Capabilities . 14

4.3 Authorisation . 18

5 Scheduling 22

5.1 Tickets . 22

5.2 Priority . 25

6 Machine Translation Engines 27

6.1 Engines . 27

6.2 Optional Engine Functionality 28

6.2.1 Ticketable Engines . 29

6.2.2 Composing Engines . 29

i

6.2.3 Evaluating Engines . 31

6.2.4 Queryable Engines . 31

6.2.5 Trainable and Re-trainable Engines 32

6.2.6 Testable Engines . 32

6.2.7 Updatable Engines . 32

6.2.8 Parameterisable Engines 33

7 Translators 34

ii

List of Figures

3.1 Resources interface diagram. 7

4.1 Session interface diagram. 11

4.2 Capabilities interface diagram. 16

4.3 Capability negotiation interface diagram. 20

4.4 Authorisation interface diagram. 21

5.1 Scheduling ticket class diagram. 24

6.1 MT Engine class diagram. 28

6.2 MT Engine mixin class diagram. 30

7.1 Translator class diagram. 35

iii

List of Tables

4.1 Capability names. 15

iv

Chapter 1

Introduction

1.1 Overview

Open Machine Translation Core (OMTC) is an application programming interface

(API) for machine translation (MT) systems. It defines aservice interfacefor an

MT system. It is intended that this API makes different flavours of MT system

“look” the same, so that they can be used in an MT system consistently. This inter-

face isnot one with which disparate MT systems can immediately communicate,

rather it provides a framework in which an MT system can reside. This leaves ap-

plication concerns, e.g., inter-process communication, security, and payment, to be

implemented around the API.

The approach taken in OMTC separates the concerns and responsibilitiesinto

their correct “silos” and attempts to provide a highly cohesive design that, when

implemented, is not tightly coupled. Since the architecture of a machine translation

(MT) system cannot be predicted, defining a service interface keeps the “shape” of

compliant applications consistent without tying down the application programmer

to particular technologies or protocols.

A note on interoperability: this API does not intend to address the fundamental

problems around the exchange of translation memories. This has been identified

as a significant problem for language service providers (LSPs) and could be losing

them 30% of their business. Inspite of this, the approach this API has takento this

issue is to avoid it altogether. MT systems could be implemented using any, all

or none of the standard exchange formats, so we do not try and secondguess the

application programmer. It is assumed that support for schema conversion from

one standard to another is written as part of the implementation of the MT system.

1

Alternatively, libraries for converting from schema to schema can be developed but

this is an application concern since it is the application that defines which schemas

are to be supported. Moreover, it is the application which defines which schemas

can be converted to other schemas. The serialisation of such exhange formats is be

dependent on the transport chosen. Since transport is defined by theapplication,

then so is the serialisation.

1.2 Architecture

The API is separated into a number of packages. These are:

• Resources: An abstract representation of things that will be used by users

of an MT system, i.e., documents, translation memories, glossaries and MT

engines,

• Sessions and session negotiation: An abstract session implementation to al-

low users to upload and download resource to and from an MT system. Ne-

gotiation ensures that both client and server in an MT system meet each

others feature expectations,

• Authorisation integration: Since users may need authorisation to execution

certain operations integration with the application defined authorisation sys-

tem is support by this API,

• Task scheduling: Machine translation uses computationally expensive al-

gorithms. If multi-user MT systems are to be constructed a fair way of

scheduling and executing computationally expensive software is required.

The scheduling API is an abstract representation of a detached execution en-

vironment which can map to technologies which can efficiently utilise the

computing resources available to an MT system. These technologies can be

anything from native threading to grid or cluster computing infrastructure,

• MT engines: The API defines an abstract representation of entities that per-

formance machine translation. The MT engine package should supportany

flavour of MT engine, and optional functionality can be mixed in so that

application programmers can tailor their implementations to their MT sys-

tems. The optional behaviour is often computational expensive and the task

scheduling API is used to submit these tasks into the scheduling implemen-

tation, and

2

• Translators: The abstract translator API provides an interface to submit com-

putationally expensive translation tasks into the task scheduling API.

1.3 Notational Coventions

In this document, any class name, method name, or identifier associated with the

API definition shall be represented in afixed-width font.

All diagrams in this standard that defined API structure are shown using the

Unified Modeling Language v1.x1 (UML).

The key words ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL

NOT”, ”SHOULD”, ”SHOULD NOT”, ”RECOMMENDED”, ”MAY”, and ”O P-

TIONAL” in this document are to be interpreted as described in RFC 21192.

1The UML v1.x standard can be found athttp://www.uml.org/.
2RFC 2119 is available athttp://www.ietf.org/rfc/rfc2119.txt.

3

http://www.uml.org/
http://www.ietf.org/rfc/rfc2119.txt

Chapter 2

Implementation

2.1 Language Bindings

This standard has been defined using a language-agnostic representation. The ap-

peal of UML is that is can be taken and implemented in many object-oriented (OO)

and many non-OO languages without loosing the central concepts of the API. With

this in mind, the implementation:

• MUST adhere to the standard, or its intention, as closely as the implementa-

tion language will allow,

• SHOULD map collection types to implementation language collection types

that are more performant than their equivalents to the ones specified in this

standard, and

• MAY implement interfaces, which are used commonly in the standard defi-

nition, as classes, or structures.

2.2 Namespace

In order to encapsulate the interfaces, classes and enumerations defined in this

standard a namespace is to be used. This will avoid conflicts with other frameworks

and libraries used in an MT system. The namespace that SHALL be used isOMTC.

The namespace MAY be changed to fit with a specific language binding, e.g.,for

a Java binding the root package name could becom.mammon.omtc. However,

OMTC MUST be included in a namespace definition.

4

2.3 Multithreading

An implementation of this standard SHOULD ensure that the implementation sup-

ports concurrency and re-entrantcy. The level of multithread safety SHALL be doc-

umented along with the implementation. All users of the implementation should

be aware of the limitations of the abstract implementation. The application code

they shall provide to the API shall be required to be “aware” of the level of multi-

threaded safety supported by the API implementation.

2.4 Reference Implementation

There is a freely available reference implementation of this API which has been

released under the LGPL v3.01 software license. It is hosted on GitHub at

git://github.com/ianj-als/omtc.git.

The reference implementation is written in Java and is compliant with Java

v1.7. It is built using Apache Maven v2.2.12 or newer, and can be imported into

most common IDE platforms using thepom.xml file.

To build the reference implementation clone, or fork and clone the GitHub

repository, and build using the following commands,

$ git clone git://github.com/ianj-als/omtc.git # Or your fork

$ cd omtc

$ mvn install

Once installation, to your local Maven repository, has completed the latest OMTC

implementation can be made available to other Maven projects by adding the fol-

lowing dependency to yourpom.xml files:

<dependency>

<groupId>com.capitati.omtc</groupId>

<artifactId>omtc-core</artifactId>

<version>[1.0,)</version>

</dependency>

Any bugs, enhancements or comments regarding the reference implementation

should be directed to ian.johnson@capita-ti.com.

1See the GNU Lesser General Public License athttp://www.gnu.org/copyleft/lesser.html.
2Seehttp://maven.apache.org/ for downloads and documentation.

5

git://github.com/ianj-als/omtc.git
git://github.com/ianj-als/omtc.git
mailto:ian.johnson@capita-ti.com
http://www.gnu.org/copyleft/lesser.html
http://maven.apache.org/

Chapter 3

Resources

A resource is an object that is provided or constructed by a user action for use in

the MT system. Examples of resources can be:

• Documents,

• Translation memories,

• Glossaries, or

• MT engines.

There are two kinds of resources defined by this standard:

1. Primary resources: any resource that has been constructed externally and up-

loaded, in some way, for use in the MT system. Examples of these resources

are: a file, a translation memory (TM), a glossary etc. It is recommended that

these resources be persisted so that future sessions may use them. Primary

resources shall also be immutable, i.e., if a resource’s content is to be altered

it is a new resource.

2. Derived resources: these resources are constructed using their primary coun-

terparts either as a conglomeration or a separate entity is created, e.g., when

training a SMT engine using a translation memory (a primary resource) to

create a derived resource: the engine itself.

Figure 3.1 shows the resource interface and its relationship with the primary

and derived resources.

6

� � � � � � � � � � 	 ��
 � � � � � � �
� � � � � � � � � � � � �
� � � � � �
 � � � � � � � � � � � � �

�
� � � � � � � � �
� � � ! " # �

�
 � � � � � � � � �
$ " % & ' " (� � � ! " # �

� � � �)
 � � � �* � � � + * ,
 - � + � � � . � � / � � + * ,
 - � 0

�
� � � � � � � � �
1 � " % 2 � 3 � � � ! " # �

� � � � . * ,
 - � 4 � � � , � � � � � � . �
 �� �
� � � � 5 �
 � � � 4 � � � , � � � + � � � . �
 �� � 6 7
� � � � . * ,
 - � . � � � � � - �) * , � � � � � �� �
� � � � 5 �
 � � � . � � � � � - �) * , � � + � � � 8 � 9 / . �
 �� � : � � � � � �
 0

�
� � � � � � � � �
; ! < = % < % > ? ! ' < � � � ! " # �

� � � � . � � @ � � �) * , � � � � � �� �

�
� � � � � � � � �
A " ' > � < ' = % > ; � & " (

� � � � B � �
 C) * , � � � � � �� �

�
� � � � � � � � �
D < � � ' " (

� � � � 4 � � � , � � � � � � . �
 �� �
� � � � . � � � � � - �) * , � � � � � �� �

�
� � � � � � � � �
; > < % > ? ! ' < � � � ! " # �

Figure 3.1: Resources interface diagram.

The primary key for any resource is its identifier, auniversally unique identi-

fier1 (UUID) typed value (seeResource::getIdentifier()). The implemen-

tation of the UUID is implementation defined but SHALL be consistent within

the MT system. When communicating with other MT systems resource identifiers

SHALL be converted from one identifier space to the other: this is the responsi-

bility of the implementer. The URI of the resource provides its location in an MT

system (seeResource::getURI()). The scheme of the URI SHALL specify the

mechanism by which the resource can be reached. Again, this is applicationde-

fined but SHALL be consistent within the MT system, but implementers are free

to define their own resource schemes if needed. The meaning of a resource’sbirth

date(seeResource::getBirthDate()) is implementation defined but SHOULD

be populated with some date/time stamp which is consistent within the application.

A resource’s birth date can be time zoned if required but conversion of timezoned

timestamps MAY require conversion if the MT system is used globally.

1See RFC4122 athttp://tools.ietf.org/html/rfc4122

7

http://tools.ietf.org/html/rfc4122

Common resources that are used in MT system are monolingual and mul-

tilingual resources, and are modeled as the interfacesMonolingualResource

and MultilingualResource respectively. The monolingual interface pro-

vides two “getters” for retrieving a, consistent and application defined, language

code for the resource and the number of sentences contained in the resource:

MonolingualResource::getLanguage() and

MonolingualResource::getSentenceCount() respectively. The multilingual

resource representation provides methods to retrieve:

• Source language: this is an application defined string whose format

SHOULD be consistent throughout the application

(seeMultilingualResource::getSourceLanguage()),

• Target languages: since many target language can exist in a translation re-

source this is modelled as an array of strings whose format SHOULD be

consistent throughout the application

(seeMultilingualResource::getTargetLanguages()),

• Source language sentence count: the number of sentence in the source

language (seeMultilingualResource::getSourceSentenceCount()),

and

• Target language sentence counts: the sentence counts for all the tar-

get languages in the multilingual resource. This is modelled as

a map whose keys are the target language strings, as retrieved by

MultilingualResource::getTargetLanguages(), and their values the

target language sentence count (see

MultilingualResource::getTargetSentenceCounts()).

Two common multilingual resources are translation memories and glossaries.

In the light of this, two interfaces have been defined to model these resources:

TranslationMemory andGlossary. These interfaces define how to retrieve the

number of segments (seeTranslationMemory::getSegmentCount()) and en-

tries respectively (seeGlossary::getEntryCount()).

Derived resources add the ability to store their provenance. The resources

that where used to construct the derived resource SHOULD be recorded, not

only, for referential integrity but for ensuring repeatable builds of the derived

resource can be done by others. Recall thatall resources are immutable. The

8

DerivedResource::getCreationResources() method retrieves this informa-

tion.

It is expected that application programmers will use these interfaces to mixin

resource identity and behaviour with their representations of files, MT engines etc.

If these objects are being persisted then it MAY be necessary to use a dataaccess

object if any of the resource information is to be derived from existing persistent

data.

9

Chapter 4

Sessions, Negotiation and

Authorisation

In order for users to be able to use the MT service the API needs an idea of session.

A session is the period in which a user will interact with the MT service. The MT

service application may need to acquire the identity of users, whilst other imple-

mentations may not. The MT API therefore needs to supports both user identity

and anonymity. Moreover, clients to the MT service will support certain exchange

formats, and expect certain features from the application. Asession negotiation

is defined in the API in order that both client and server can ascertain if, once the

session is set up, their expectations of each other is correct. If the clientcannot

support the server’s requests, or visa versa, then the session should be torn down.

However, this decision is delegated to the application.

4.1 Sessions

The session class diagram is shown in Figure 4.1.

The API provides interfaces and implementations for sessions that require

user identity and anonymity. The anonymous user classes are:Session and

AbstractSession. These classes support actions withresourcesthat any user

would require. Resources are described in Chapter 3. The session actions are:

• Uploading a resource – a session making files and other resources available

to it or other sessions in the MT application via some transfer mechanism,

• Downloading a resource – a session retrieving resources uploaded either in

10

E F G H I J G K H L M L G N O P Q R R I S

E T U V W X J Y G Z W T N [G O L K J G V G F X H G Q Y G Z W T N [G \ N X K Z M G N S G V G F X H G] L K W ^ Z G N _ G N Q Y G Z W T N [G R U V W X J ` ^ Z G N _ G N P Q a T H T N G b Y G Z W T N [G c

E J W d K V W X J Y G Z W T N [G O L K J G V G F X H G Q Y G Z W T N [G \ N X K Z M G N S G V G F X H G] L K W ^ Z G N _ G N Q Y G Z W T N [G S W d K V W X J ` ^ Z G N _ G N P Q a T H T N G b Y G Z W T N [G c

E N G e W _ G Y G Z W T N [G O L K N G Z W T N [G Q Y G Z W T N [G P Q _ W L J

E N G H N L G _ G Y G Z W T N [G Z O L K U N G J L [X H G Q f N G J L [X H G b Y G Z W T N [G c P Q g G H b Y G Z W T N [G c

h i j k l m n o p l q

r s t t u v w

E F G H Y G Z W T N [G Y G X J G N O L K Z G Z Z L W K Q g G Z Z L W K P Q Y G Z W T N [G Y G X J G N

E F G H Y G Z W T N [G x N L H G N O L K Z G Z Z L W K Q g G Z Z L W K P Q Y G Z W T N [G x N L H G N

E F G H Y G Z W T N [G O L K Z G Z Z L W K Q g G Z Z L W K P Q Y G Z W T N [G

h i j k l m n o p l q

y s t v z { | s } { ~ w t � s { � s � s � ~ � s

E N G X J O L K ^ T M M G N Q ^ � H G � � P Q L K H

E [V W Z G O P Q _ W L J
h i j k l m n o p l q

y s t v z { | s y s ~ � s {

E d N L H G O L K [� T K � Q ^ � H G � �] L K [� T K � � G K F H � Q L K H P Q _ W L J

E [V W Z G O P Q _ W L J

h i j k l m n o p l q

y s t v z { | s � { u � s {

E F G H R Z G N O P Q R Z G N

h i j k l m n o p l q

� t s { r s t t u v w

E W K g T [[G Z Z O L K Z G Z Z L W K] L K N G Z W T N [G Q Y G Z W T N [G P Q _ W L J

E W K � N N W N O L K Z G Z Z L W K Q g G Z Z L W K] L K N G Z W T N [G Q Y G Z W T N [G] L K G � [G U H L W K Q � � [G U H L W K P Q _ W L J

h i j k l m n o p l q

y s t v z { | s } ~ t � � � t s { � s {

h i j k l m n o p l q

y s t v z { | s � � � v ~ � � � t s { � s {

h i j k l m n o p l q

y s t v z { | s � v � w � v ~ � � � t s { � s {

E N G H N L G _ G � K F L K G Z O L K M L V H G N Q f N G J L [X H G b � K F L K G c P Q g G H b � K F L K G c

h i j k l m n o p l q

� w � u w s y s � { u s � ~ � � s r s t t u v w

E N G H N L G _ G R Z G N Z O L K M L V H G N Q f N G J L [X H G b R Z G N c P Q g G H b R Z G N c

h i j k l m n o p l q

� t s { y s � { u s � ~ � � s r s t t u v w

E F N X K H � K F L K G \ W R Z G N O L K G K F L K G Q � K F L K G] L K T Z G N P Q _ W L J

E N G _ W � G � K F L K G a N W e R Z G N O L K G K F L K G Q � K F L K G] L K T Z G N P Q _ W L J

h i j k l m n o p l q

� w � u w s � t t u � w ~ � � s r s t t u v w

E F N X K H Y W V G \ W R Z G N O L K N W V G] L K T Z G N P Q _ W L J

E N G _ W � G Y W V G a N W e R Z G N O L K N W V G] L K T Z G N P Q _ W L J

h i j k l m n o p l q

y v � s � t t u � w ~ � � s r s t t u v w

� i � � � � � �

� � � n n l m � i l � i j k

¡ l ¢ l p � k £ m � ¤ ¢ l p � k £ m

� � t � { ~ | � r s t t u v w

¤ ¢ l p � k £ m

¡ � ¥ l m
� � t � { ~ | � � t s { r s t t u v w

h i j k l m n o p l q

¦ § ¨ © ª « ¬ §

h i j k l m n o p l q

� w � u w s

h i j k l m n o p l q

y v � s

h i j k l m n o p l q

� t s {

F
igure

4.1:
S

ession
interface

diagram
.

11

the current or previous sessions,

• Listing session owned resources – retrieving information about resources

that can be used by a session, and

• Removing a resource – deleting resources, owned by the session or other

sessions, that are no longer required.

Uploading and downloading resources could, potentially, take a “long”

time so the execution of these operations can be detached from the in-

voking thread in the provided implementation. Futures, and observers (see

ResourceUploadObserver and ResourceDownloadObserver shown in Fig-

ure 4.1) are used in order that the caller may block waiting for the resourceto

up- or download, or be asynchronously notified via the observer oncethe op-

eration has completed. This gives implementations the choice of synchronous

or asynchronous notifications. Also, the transfer of the resource is delegated to

the application since the transport layer is chosen by the implementation. A re-

source’s location is determined by its URI, and the scheme of the URI SHOULD

be used to determine which mechanism shall be used to transfer the resource.

Since this is defined in the application then the application SHALL implement

instances ofResourceTransferDelegate to provide the transfer mechanism.

This interface constructs instances ofResourceReader and ResourceWriter

which read and write a resource respectively. On construction, these objects

SHALL have opened the resource in a way appropriate to the implementation.

The methodResourceReader::read() SHALL read bytes into the provided

byte array. It SHALL NOT read more bytes into the array than the array can

accomodate and shall return the number of bytes written to the array. The re-

turn value SHALL be, then,number o f bytes read≤ |bu f f er|. Whereas, the

methodResourceWriter::write() SHALL write the number of bytes in the

provided byte array to the implementation defined resource destination. Both

ResourceReader::close() andResourceWriter::close()SHALL clean up

any implementation specific allocations that have been used to read or write the re-

source in order that the resource is closed.

The methodResourceTransferDelegate::getResource() constructs the

Resource object that will represent the uploaded resource or the resource to

be downloaded. This resource SHALL be provided to the application when

the resource upload or download observer methods are called. These observers

SHOULD be used to implement any application specific operations that shall be

12

processed once a resource has been up- or downloaded, e.g., persist the resource

description to a backing store.

It is application defined as to what happens to an anonymous session owned

resources once the session is ended. In some applications the resources MAY need

to the removed. However, in others perhaps they persist for others to use.

Sessions that require user identity are provided by the classesUserSession

andAbstractUserSession. These classes mixin the ability to store and retrieve

the user associated with the session.

Other optional session functionality can be mixed in with the following inter-

faces:

• EngineAssignableSession: used to mixin grant and revoke machine

translation engine access to users, and

• RoleAssignableSession: used to grant and revoke roles to and from

users.

The mixin interfacesEngineRetrievableSession andUserRetrievableSession

allow for the retrieval of engine objects and user objects from some backing store.

The retrieval methods are passed a predicate argument that SHALL be used to filter

the engine and user objects that are returned. This could be used to formulate an

SQL statement that queries a relational backing store to retrieve a session’s engines.

The user retrieval method,UserRetrievableSession::retrieveUsers(), is

defined to allow administrators assign engines or roles to users. However,the im-

plementation SHALL have the last word as to exactly what happens in a particular

application.

The grant and revoking of MT engine access rights and roles to and from users

will be discussed in Section 4.3.

4.2 Session Negotiation

On session creation the server and the client MAY come to some agreement on

what a client can expect from a server and what the server can expect from a client.

For example, the client may wish to submit a PDF document for translation. If the

server cannot handle PDF documents then the client may not wish to start a session

since the server is lacking support for the client’s future request(s). Conversely, a

server that only supports translation memories in XLIFF format is not compatible

with a client that only supports TMX. The final choice as to whether a session is

13

finalised for use SHALL rest with the server. However, clients MAY terminate a

session at session negotiation time if the server does not support the capabilities

the client requires.

Session negotiation is useful when two MT systems need to communicate with

each other. The session negotiation API allows the two systems to discover whether

they are compatible or provide the services they require. In an MT system where

translation jobs are farmed out to other, possibly unknown, systems this discov-

ery is essential since it provides dynamic capability information and allowsad hoc

system choice: let’s give this new service a try since it supports the required capa-

bilities. Session negotiation keeps the knowledge of which capabilities a service

provides in the service, not the consumer of the service.

Session negotiation is an optional part of this API. If session negotiation is

implemented then negotiation SHALL be completed before the session is fully

established and before any client request is serviced. It is application defined as to

what course of action to take when capabilities do not match: either tear downthe

session forcefully or leave the client to decide. However, there may be situations

where session negotiation is not required. If the server- and client-sideof the API’s

implementation have static expectations and requirements then session negotiation

may not be required since both “sides” of the application intrinsically “know”each

other.

Session negotiation SHALL proceed by exchanging server- and client-sideca-

pabilities.

4.2.1 Capabilities

The capabilities come in four board flavours:

• API: These capabilities determine the nature of the API, i.e., version.

• Resources: these capabilities describe the file types that the service can sup-

port. Supporting means that the service will store and use the resource in an

appropriate way.

• Features: the operations that can be expected from an MT service but may

not be available in every MT service.

• Prerequisites: the prerequisites that the client SHALL ensure are true before

some or all of the MT service’s features become unavailable to a client, e.g.,

payment.

14

Name Meaning Group

API VERSION The semantic version of the API. API
RES FILE TMX Translation Memory eXchange[2] (TMX) file for-

mat supported.
Resource

RES FILE TBX TermBase eXchange[4] (TBX) file format sup-
ported.

Resource

RES FILE UTX Universal Terminology eXchange[6] (UTX) file
format supported.

Resource

RES FILE SRX Segmentation Rules eXchange[1] (SRX) file for-
mat supported.

Resource

RES FILE ITS Internationalization Tag Set[3] (ITS) file format
supported.

Resource

RES FILE XLIFF XML Localisation Interchange File Format[5]
(XLIFF) file format supported.

Resource

RES FILE TTX SDL Trados translation memoryfile format sup-
port.

Resource

FET RES UPLOAD Sessions can upload resources to the MT server.
This feature MAY be disabled for particular ses-
sions or resource types and is application defined.

Feature

FET RES DOWNLOAD Session can download resources that are owned
by them from the MT service. This feature MAY
be disable for particular sessions or resource types
and is application defined.

Feature

PRE REQ PAYMENT A payment model is in operation for the MT
service. The service, at least, requires payment
for some operations. Freemium only services
SHALL NOT specify this capability.

Prerequisite

Table 4.1: Capability names.

Capabilities are flat representations of aspects of the supported resource kinds,

features and expectations. Depending on the implementation these could be strings

or enumerations, either way they SHALL be unique and follow the standard nam-

ing shown in Table 4.1.

The Trados translation memory format is a proprietory format developed by

SDL. It is included since some MT systems may wrap SDL products which can

support this translation memory format.

The capability class diagram is shown in Figure 4.2. The unique

identifier for a capability is its name as shown inCapability inter-

face. The four flavours of capability are shown: the two of note are

15

­ ® ¯ ° ± ² ³ ¯ ´ µ ¶ · ° ¸ ¹ º ®

» ¼ ½ ¾ ¿ À Á Â Ã ¿ Ä

Å Æ Ç Æ È É Ê É Ë Ì

­ ® ¯ ° Í ¯ ¸ · ¹ Î º ´ µ ¶ Ï ¯ ³ ² º ° ¹ Ð Í ¯ ¸ · ¹ Î º

» ¼ ½ ¾ ¿ À Á Â Ã ¿ Ä

Ñ Ò Ó Å Æ Ç Æ È É Ê É Ë Ì

­ ® ¯ ° Ô ² Õ Î ¸ ´ µ ¶ ¹ º °

­ ® ¯ ° Ô ¹ º Î ¸ ´ µ ¶ ¹ º °

­ ® ¯ ° Ö ² ° Ð × ´ µ ¶ ¹ º °

­ ® ¯ ° Ö ¸ ¯ Ø ¯ Ù ¯ ² · ¯ ´ µ ¶ · ° ¸ ¹ º ® Ú Û

­ ® ¯ ° Ü Ý ¹ Ù Þ ´ µ ¶ · ° ¸ ¹ º ® Ú Û

» ¼ ½ ¾ ¿ À Á Â Ã ¿ Ä

ß à á â ã ä å æ ç à è é å ê ã

­ ® ¯ ° ë Î ì ¯ ¸ Í ¯ ¸ · ¹ Î º ´ µ ¶ · ° ¸ ¹ º ®

­ ® ¯ ° í ¹ ® × ¯ ¸ Í ¯ ¸ · ¹ Î º ´ µ ¶ · ° ¸ ¹ º ®

» ¼ ½ ¾ ¿ À Á Â Ã ¿ Ä

î ï ð ñ ò ó ô ï Å Æ Ç Æ È É Ê É Ë Ì

­ ® ¯ ° Ö ¸ ¯ ¸ ¯ õ Ý ¹ · ¹ ° ¯ ö ² ÷ ² ø ¹ Ù ¹ ° ù ´ µ ¶ Ö ¸ ¯ ¸ ¯ õ Ý ¹ · ¹ ° ¯ ö ² ÷ ² ø ¹ Ù ¹ ° ù

» ¼ ½ ¾ ¿ À Á Â Ã ¿ Ä

ú ï Æ Ë ò ó ï Å Æ Ç Æ È É Ê É Ë Ì

» ¼ ½ ¾ ¿ À Á Â Ã ¿ Ä

Ò ó ï ó ï û ò É ð É Ë ï Å Æ Ç Æ È É Ê É Ë Ì

F
igure

4.2:
C

apabilities
interface

diagram
.

16

APICapability and ResourceCapability. In order to characterise sup-

port for resource kinds the version range is specified by the lowest and high-

est version supported: seeResourceCapability::getLowerVersion() and

ResourceCapability::getHigherVersion() respectively. These methods re-

turn strings which SHALL be meaningful to the implementation. The comparison

of these version strings SHALL be the implementation’s responsibility.

The API is versioned usingsemantic versioning1. Semantic versioning im-

poses rules on the meaning on the increments of version in order to have an ap-

propriate level of control of dependency versioning. This allows consumers of

this API to upgrade easily and safely. A semantic version has the formX.Y.Z:

which are non-negative integers that denotes the major, minor and patch ver-

sion of the API. Pre-release and build identifiers can also be added, e.g.,1.5.7-

alpha.2+build.2012.01.22. Semantic versioning imposes an ordering so that recent

and previous releases can be compared, i.e., 1.0.0-alpha<1.0.0-beta<1.0.0-rc.1

<1.0.0-rc.1+build.1<1.0.0<1.3.7+build.1<2.0.0.

Once the client, after an optional authentication step, has sent its capabili-

ties the MT service SHALL compare them with its capabilities. The MT service

SHALL then return the unsupported client capabilities back to the client. If the

application determines that a meaningful conversation cannot be carried out with

the client then the application server-side SHOULD terminate the session. Other-

wise, the decision to terminate the session is delegated to the client. However, this

API does not imposeany restrictions on which party terminates the session, it is

completely the responsibility of the implementer to choose the appropriate course

of action for the specific application.

More formally, the negotiation class diagram is shown in Figure 4.3. Two

interfaces are used to represent a client’s capability negotiation requestand the

response that the application constructs. The response is to be sent back to the

client. The client can then decide whether to continue the session if it has not

already been torn down by the service. Using theClientCapabilityRequest

interface the client specifies:

• The version of the MT API it expects to be presented with (see

ClientCapabilityRequest::getVersionCapability()), and

• The resource kinds that the client will be expected to be supported (see

ClientCapabilityRequest::getResourceCapabilities()).

1See Semantic Versioning 2.0.0-rc.1 athttp://semver.org/

17

http://semver.org/

Using theConcreteNegotiator::negotiate() the service SHALL con-

struct an instance of theClientCapabilityResponse interface. This interface

specifies:

• Whether the client’s API version is supported (see

ClientCapabilityResponse::isClientAPISupported()),

• Which of the resource capabilities, provided by the client, arenot supported

(seeClientCapabilityResponse::getUnsupportedResourceCapabilities()),

and

• A description of the feature capabilities of the MT service along with their

prerequisite capabilities, e.g., whether payment may be needed to use the

feature (seeClientCapabilityResponse::getFeatureCapabilities()).

Once the negotiation is complete, the service can inspect the response and tear

down the client’s session if it deems necassary. However, the negotiation response

MUST be returned to the client.

4.3 Authorisation

The MT API does not, by itself, support any security features. This is left to the

application programmer to integrate with authentication systems if authentication

is necessary. However, in order to support operations that do require a user then

some integration is needed with an external authentication provider. This interlocks

the external authentication and authorisation and the API representation ofusers

and roles present in the application. Two interfaces are used to represent a user,

and their authorisation role, in the API, namelyUser andRole (see Figure 4.4).

These mixin interfaces SHOULD be used with the application’s representa-

tion of users and roles to implement the interfaces that require these objects.

The methodUser::getIdentifier() SHALL return the user’s unique identi-

fier, andUser::getRoles() SHALL return an array representing the roles as-

signed to the user. The role interface requires that the methodRole::getCode()

SHALL return a unique code number for the role andRole::getName() SHALL

return a human readable name for the role. The implementation is free to de-

fine its own roles that are appropriate to the authorisation model used. For ex-

ample, an application may have three roles: superuser, administrator and normal

user. These roles will have different authorisations administrative, construction

18

and translation operations. TheRole interface can be used to integrate an imple-

mentation’s roles into the API implementation (seeUserRetrievableSession,

EngineAssignableSession, andRoleAssignableSession interfaces in Fig-

ure 4.1).

19

ü ý þ ÿ � þ � � � 	
 � �
 � � � � � ÿ � � � � � � � � �
 � � � � � ÿ �

ü ý þ ÿ � þ � 	 � � � þ � �
 � � � � � ÿ � þ � � � � � þ ÿ � � þ � 	 � � � þ � �
 � � � � � ÿ � �

� � � � � � � � � !

" # $ % & ' " () (* $ # $ ' + , % - . % / '

ü � � � � � þ
 ÿ � � � � �

 	 � ÿ þ 0 � � � 1 	 	 � þ �

ü ý þ ÿ 2
 � �

 	 � ÿ þ 0 � þ � 	 � � � þ � �
 � � � � � ÿ � þ � � � � � þ ÿ � � þ � 	 � � � þ � �
 � � � � � ÿ � �

ü ý þ ÿ 3 þ � ÿ � � þ � �
 � � � � � ÿ � þ � � � � � þ ÿ � 3 þ � ÿ � � þ � �
 � � � � � ÿ � �

� � � � � � � � � !

" # $ % & ' " () (* $ # $ ' + , % /) 4 & / %

� � � � � � � � � !

5 6 7 " () (* $ # $ ' +

� � � � � � � � � !

, % / 4 . 8 9 % " () (* $ # $ ' +

� � � � � � � � � !

: % (' . 8 % " () (* $ # $ ' +

; � � < = � � � � � > � � � � < = � � � � � = � ? � @ A � B � C D E � � � � D � F � G � E � � H ? � @ A � B � I C D E � � � � D � F � G � E � � H ? � B F = � B �

J K L M N O P O Q O R K P S T P K N

ü
 þ ý 	 ÿ � � ÿ þ � �

 þ ý 	 ÿ � � ÿ � 	
 � þ U � þ � ÿ � � � � þ
 ÿ � �
 � � � � � ÿ � � þ U � þ � ÿ � � � � � þ
 ÿ � �
 � � � � � ÿ � � þ �
 	
 � þ

� � � � � � � � � !

V % W 4 ' $ (' 4 8

X þ ý 	 ÿ � � ÿ 	 �

F
igure

4.3:
C

apability
negotiation

interface
diagram

.

20

YZ[\]^ [_\ `a`[b cd e ff]g

YZ[\hi j[k cd e h i j[lm

n op qrstuvrw

x yz{

YZ [\| i^[cd e `_ \

YZ [\} ~� [cd e k\ b `_Z

n op qrstuvrw

�� �z

Figure 4.4: Authorisation interface diagram.

21

Chapter 5

Scheduling

Machine translation consists of a number of operations which are computation-

ally expensive. Constructing an MT service with many users requires thatthe

computational resources are sharedfairly between the demands of the users. The

implementer of an MT service needs to define:

• Which computational resource or resources will be used to execute the com-

putationally expensive operations,

• The latency of an operation before it is executed, and

• A policy to determine how user’s operations will be scheduled, i.e., priority.

The scheduling API also needs to support different kinds of computation re-

source management: from native threading to distributed resource management

products. The pattern used in the scheduling API is detached execution withnoti-

fication on completion, whether successful or not. The implementer of the APIis

able to choose which technology to use for the detached execution: thread-pools,

Open Grid Engine, or Amazon EC2 etc.

5.1 Tickets

The scheduling API SHALL issueticketswhen an operation is submitted to the un-

derlying detached execution implementation. A ticket is a receipt for, and uniquely

identifies an operation. When the operation is submitted anobserverSHALL be

provided which observes the progressing computation. On completion, the ob-

server is invoked with the appropriate ticket to identify which operation has com-

pleted. This is the observer design pattern. The observer is application defined and

22

the application programmer SHOULD take this opportunity to update any data that

relies on the computation.

Operation priorities SHALL be defined using the scheduling API. This allows

an application defined priority to be used to prioritise operations into the particular

detached execution environment. For example, a priority could, say, for apaid-for

MT service prioritise operations, invoked by users, which are on a higher tariff. So,

say, a user on aFreemiumtariff would have their operations prioritised lower than

a user who pays for the service. Depending on the detached execution environment

a priority MAY determine, not only, the latency of an operation, but also howmuch

processor time a certain operation can expect when being execute, c.f., Unix nice

levels.

Figure 5.1 shows the scheduling ticket class hierarchy. The ticket classes are

structures which only hold data pertinent about the submitted operation. Instances

of these classes SHALL be constructed by the methods, found in the API, for ma-

chine translation engines and translators (see Section 6.2 and Chapter 7 for method

that issue tickets for machine translation engines and translator objects).

The scheduling API provides ticket types for the operations available with MT

engines (see Chapter 6), and tranlsation tasks (see Chapter 7). Ticketsare de-

rived from an abstract class calledTicket and SHALL be uniquely identified by a

UUID. They also hold the following data:

• Start date: A date/time stamp which is the date at which the ticket was is-

sued. This SHALL be the submission date of the task associated with the

ticket.

• Session: The session that submitted the task.

• Priority: The priority value that was used to schedule the ticketed task.

• End date: A protecteddate/time stamp which denotes when the task com-

pleted, successfully or not.

Sub-classes ofTicket specialise to computationally expensive MT engine op-

erations and translations: the classesEngineTicket andTranslationTicket

respectively. Instances ofEngineTicket are associated with an MT engine.

This is the engine on which the operation is being done and is labeled as the

participatingEngine in Figure 5.1. The ticket for composing MT engines is

associated with two MT engine instances. The engine with which the participat-

ing engine is being composed, and the MT engine that will be created due to the

23

� �

� �

� �

� � � � � � � � � ¡ ¢ £ £ ¤ ¥

� ¦ � § ¡ � ¥ § � � ¢ ¥ § � �

� ¦ � ¦ ¦ � ¨ � ¢ © � ¦ ¦ � ¨ �

� ª ¡ � ¨ ¡ � � « ¢ ¬ ¡ � ¨ ¡ � � « ­ « ª �

® � � � ¥ § � � ¢ ¥ § � �

¯ ° ± ² ³ ´
¬ ¡ � ¨ ¡ � � « ­ « ª �

µ ¶ · ¸ ¹ º » · ¼ ½ ¾ ¿ ¸ À Á Â ¶

µ ¶ · ¸ Ã · Ä Å À Á Æ ¸ Á Ç Â ¼ ½ ¾ ¿ ¸ À Á Â ¶

È � � � � ¡ § É � Ê

Ë Ì Í ° Ì ³

� � � É Î � �
Ï

� É ¨ Ð ª ¨ ¦ � � Ñ Ò � Ñ � � �
Ï

� � Ñ � � �

¯ Ó Ô Ì Õ Ö Ô ´ × Ó

¬ ¡ � ¨ ¡ � � « ­ « ª �

� � � É Î � �

Ï

� � ¡ § � ¦ Ø § � ¨ ¡ Ï

� ¡ § � ¦ Ø § � ¨ ¡

� � � É Î � �
Ï

� ª § ¡ � � É � ª § � � � Ñ Ò � Ñ � � �

Ï

� � Ñ � � �

Ù Ñ � � ¬ ¡ � ¨ ¡ � � « Ú � � � � ¦ É ¡ � ª � � ¨ � ¢ ¬ ¡ � ¨ ¡ � � « ¥ � ¦ É ¡ � ª � � ¨ � ­ « ª � Û ¢ ¬ ¡ � ¨ ¡ � � « Ü ¬ ¡ � ¨ ¡ � � « ­ « ª � Ý

È � � � � ¡ § É � Ê

Þ Ó ° × Ó ° ´ ß à ³ ± á Ô Ì ° Õ â

¬ ¡ � ¨ ¡ � � « ­ « ª � ã ¬ ¡ � ¨ ¡ � � « ¥ � ¦ É ¡ � ª � � ¨ � ­ « ª �

Ù Ñ � � ¬ ¡ � ¨ ¡ � � « Ú Û ¢ ¬ ¡ � ¨ ¡ � � « ­ « ª �

È � � � � ¡ § É � Ê

Þ Ó ° × Ó ° ´ ß
¬ ¡ � ¨ ¡ � � « ­ « ª �

Ù � ¨ � � « © ä å Ð � � � � � Ú � � � � É Î � � ¢ ­ � É Î � � ­ « ª � Û ¢ æ ¨ � �

Ù � ¨ � � « © � § ¡ � � � Ú � � � � É Î � � ¢ ­ � É Î � � ­ « ª � Û ¢ æ ¨ � �

Ù � ¨ � � « © ä É É � ¦ ¦ Ú � � � � É Î � � ¢ ­ � É Î � � ­ « ª � Û ¢ æ ¨ � �

Ù � ¨ � � « Ò ¡ ¡ ¨ ¡ Ú � � � � É Î � � ¢ ­ � É Î � � ­ « ª � ã � � � ç É � ª � � ¨ � ¢ Ò ç É � ª � � ¨ � Û ¢ æ ¨ � �

È � � � � ¡ § É � Ê

¯ ° ± ² ³ ´ è é Õ ³ Ó ê ³ Ó

­ � É Î � � ­ « ª �

� � � É Î � � Ï

� ¡ � ¦ ä Ø � § � � Ò � Ñ � � � Ï

¡ � ¦ ä Ø � § � �

F
igure

5.1:
S

cheduling
ticketclass

diagram
.

24

composition, i.e., the resultant MT engine. Translation tickets are associated with

a translator object and will be described in Chapter 7.

Ticket observers are used to notify the world of changes in ticket state. The

TicketObserver interface defines the events which application programmers can

use to update application state. All of theTicketObserver methods SHALL

be passed the ticket for which the task is associated. The interface defines the

following events:

• Submission: The implementation is called back once the ticketed task has

been submitted to the detached execution environment. See

TicketObserver::notifySubmitted().

• Start: When the task has been started in the detached execution environment

this event is raised. SeeTicketObserver::notifyStarted().

• Successful completion: On successful completion of the ticket task this event

is raised. SeeTicketObserver::notifySuccess().

• Error: If at any point an error occurs with the task of execution environment

the error callback is executed. The exception that is generated from the error

is provided with the event. SeeTicketObserver::notifyError().

Implementers of theTicketObserver MAY implement all, some or none of

the methods. It is application defined as to which ticket event are of interest.

5.2 Priority

Two generic interfaces, shown in Figure 5.1, define the prioritising features of the

scheduling API. ThePriorityMechanism is a factory interface that constructs

objects of typePriority. The mechanism takes an application defined priority

description and contructs an object that SHALL provide the priority for a submit-

ted operation. ThePriorityMechanism::getPriority() method SHALL be

used to construct the priority object and MAY be nondeterministic. The priority

description SHOULD contain data that can be used to produce a priority thatis

appropriate for the application. For example, a user’s payment plan and remain-

ing credit could determine how their ticketed tasks are scheduled in a paid-for MT

service. Maybe the time of day is important in producing a priority, e.g., tasks

scheduled at night may attract a higher priority for some users.

25

Once thePriority object has been constructed the actual priority value

SHALL be retrieved by calling thePriority::getPriority() method. This

method SHALL be idempotent. The priority value is stored in the ticket object and

SHALL be used to schedule tasks into the detached execution environment.

26

Chapter 6

Machine Translation Engines

Machine translation engines are the entities that produce translations for, possibly

unseen, sentences. Engines are built using primary resources and generally use

computationally expensive operations to produce translations. Engines shall have

operations available that, depending on their nature, shall read or mutate engine

state, e.g.

• Evaluating a engine,

• Composing engines,

• Testing engines, and

• Training SMT engines.

6.1 Engines

An engine is defined as the entity that will perform machine translation. This may

be a decoding pipeline in an SMT system or software that implements a rule based

system. Engines are modelled as a derived resource and Figure 6.1 shows it’s

relationship to the resource interfaces.

The application programmer SHALL implement and extend this interface

hierarchy to suit the representation for the particular flavour of MT engine

being employed. The interfaceEngine allows the programmer to define a

name and some descriptive text for an MT engine:Engine::getName() and

Engine::getDescription() respectively. The creation resources, defined us-

ing the DerivedResource::getCreationResources(), SHOULD reference

27

ëìíîïðñíòó ô õîö÷øì

ëìíîùíúûö÷üî÷ýøòó ô õîö÷øì

þÿ������	�

������

ëìíî��íøî÷�÷íöòó ô ���ù

ëìíî���òó ô ���

ëìíî�÷öî�ùðîíòó ô ùðîí

þÿ������	�

�������

ëìíî�öíðî÷ýø�íúý�öûíúòó ô õíî��íúý�öûí�

þÿ������	�

��� !�"
�������

Figure 6.1: MT Engine class diagram.

the primary resources used to construct an engine. This allows the provenance

of the engine to be preserved in the representation.

6.2 Optional Engine Functionality

Mixin interfaces are used to add optional functionality to an MT engine. This al-

lows the application programmer to choose mixins useful to the kind of MT engine

being constructed. Using mixins in this way prevents the application program-

mer from being tied to this API; it does not mandate that any class inheritance is

used. This is particularly useful when using languages that do not support multiple

inheritance and can be used alongside existing frameworks and class hierarchies.

The mixins provided define the following operations:

• Composition: compose one MT engine with another,

• Evaluation: score an MT engine,

• Update parameters: mutate runtime options/parameters,

• Querying: invoking translations one sentence at a time,

• Training and retraining: for SMT engines to build appropriate models,

• Testing: provide resources to test a constructed MT engine, and

28

• Updating: mutation of an existing engine to adapt to new data or rules.

The operations, in the mixins, that could represent computationally expensive

operations use a asynchronous invocation pattern. In order to track theoperation

the caller of these methods receives aticket. The ticket is used to represent an

“in flight” operation and, once complete, SHALL be used in a notification. Noti-

fications are used to inform the application of the state of a completed operation:

submitted, starting, or completed successfully or failed.

Figure 6.2 shows the mixin interfaces for optional engine functionality. All of

the mixin interface methods MUST be passed a session object. This session object

SHALL represent the session that is invoking the operation. Sessions aredescribed

in Section 4.1.

6.2.1 Ticketable Engines

TheTicketableEngine mixin defines a method that SHALL be used to retrieve

the issued tickets for operations on an engine. TheTicketableEngine::retrieveTickets()

takes a predicate object that SHALL be used to filter the tickets and return a set of

EngineTicket objects which meets the predicate. It is implementation defined as

to which engine tickets are returned when user authorisation is employed. Only

users that are authorised to retrieve some or all engine tickets SHOULD be taken

into account when implementingTicketableEngine interface. This is the base

interface of all the engine mixin interfaces.

6.2.2 Composing Engines

The composition mixin allows applications to chain engines together. This is

equivalent to function composition, i.e., suppose two enginesE1 andE2. Execut-

ing theComposableEngine::compose() method usingE1 as the owning object,

i.e.,E1.compose(E2), then the resultant engine is:

Eresultant= E2(E1(s)),

wheres is a sentence begin translated.

The data exchange format for the engines is also defined in the formal parame-

ters of the compose method. The interfaceDataExchangeFormat specifies which

format is to be used to exchange data from engine,E1, to engine,E2. The exchange

format to use could be gleaned from session negotiation (see more on session ne-

gotiation in Section 4.2).

29

$ % & $ ' % (%) ' * + % & , - ' . , % , , ' / . 0 1 % , , ' / . 2 ' . 3 ' 4 & % $ 0 5 $ % 6 ' * 7 & % 8 9 . : ' . %) ' * + % & ; < 0 1 % & 8 9 . : ' . %) ' * + % & ;

= > ? @ A B C D E A F

G H I J K L M N O K P Q R H Q K

S T A @ U D B D V A @ A B W X > ? W A W W > Y ? Z [A W W > Y ? \ Z] D ^ _ ` A a b a ^ A c U D B D V A @ A B b a ^ A d

S e ^ f D @ A U D B D V A @ A B W X > ? W A W W > Y ? Z [A W W > Y ? c > ? ? A g U D B D V A @ A B W Z] D ^ _ ` A a b a ^ A c U D B D V A @ A B b a ^ A d \ Z h Y > f

= > ? @ A B C D E A F

i M j M k K L K j H l M N O K P Q R H Q K

` A a b a ^ A c U D B D V A @ A B b a ^ A

S E Y V ^ Y W A X > ? W A W W > Y ? Z [A W W > Y ? c > ? A ? T > ? A Z m ? T > ? A c > ? A n E o D ? T A p Y B V D @ Z q D @ D m n E o D ? T A p Y B V D @ c > ? B A W e r @ D ? @ m ? T > ? A Z m ? T > ? A c

> ? ^ B > Y B > @ a Z U B > Y B > @ a _ U B > Y B > @ a b a ^ A d c > ? @ > E s A @ t u W A B h A B Z b > E s A @ t u W A B h A B _ v Y V ^ Y W > @ > Y ? b > E s A @ d \ Z v Y V ^ Y W > @ > Y ? b > E s A @

= > ? @ A B C D E A F

w x k y x l M N O K P Q R H Q K

U B > Y B > @ a b a ^ A

: % & z / . : { 7 | % - < 0 , & $ ' . :

: % & 1 } / $ & { 7 | % - < 0 , & $ ' . :

: % & ~ % $, ' / . - < 0 , & $ ' . :

: % & � % (' , ' / . - < 0 , & $ ' . :

: % & � % 4 % 7 , % � 7 & % - < 0 � 7 & %

: % & 9 . 6 � 3 z ' 3 % � 7 & % - < 0 � 7 & %

= > ? @ A B C D E A F

� M L M P � I � M Q R K � x j k M L

S A h D r e D @ A X > ? W A W W > Y ? Z [A W W > Y ? c > ? A h D r e D @ > Y ? � A W Y e B E A W Z [A @ _ U B > V D B a � A W Y e B E A d c > ? ^ B > Y B > @ a Z U B > Y B > @ a _ U B > Y B > @ a b a ^ A d c > ? @ > E s A @ t u W A B h A B Z b > E s A @ t u W A B h A B _ m h D r e D @ > Y ? b > E s A @ d \ Z m h D r e D @ > Y ? b > E s A @

S T A @ [E Y B A W X > ? W A W W > Y ? Z [A W W > Y ? \ Z [A @ _ [E Y B A d

= > ? @ A B C D E A F

P � M O � M L M N O K P Q R H Q K

U B > Y B > @ a b a ^ A

: % & 1 * } % | % - < 0 1 * / $ % 1 * } % | %

: % & 1 * / $ % - < 0 6 / � � 4 %

: % & � % , / � $ * % , - < 0 1 % & 8 5 $ ' | 7 $ � � % , / � $ * % ;

= > ? @ A B C D E A F

� I x j K

: % & { 7 | % - < 0 , & $ ' . :

: % & � % , * $ ' � & ' / . - < 0 , & $ ' . :

= > ? @ A B C D E A F

� I x j K � I � K k K

S � e A B a X > ? W A W W > Y ? Z [A W W > Y ? c > ? W Y e B E A [A ? @ A ? E A Z W @ B > ? T c > ? ^ B > Y B > @ a Z U B > Y B > @ a _ U B > Y B > @ a b a ^ A d c > ? @ > E s A @ t u W A B h A B Z b > E s A @ t u W A B h A B _ � e A B a b > E s A @ d \ Z � e A B a b > E s A @

= > ? @ A B C D E A F

� � K j � M N O K P Q R H Q K

U B > Y B > @ a b a ^ A

S B A @ B D > ? X > ? W A W W > Y ? Z [A W W > Y ? c > ? B A @ B D > ? > ? T � A W Y e B E A W Z [A @ _ U B > V D B a � A W Y e B E A d c > ? ^ B > Y B > @ a Z U B > Y B > @ a _ U B > Y B > @ a b a ^ A d c > ? @ > E s A @ t u W A B h A B Z b > E s A @ t u W A B h A B _ b B D > ? > ? T b > E s A @ d \ Z b B D > ? > ? T b > E s A @

= > ? @ A B C D E A F

� K L j M H Q M N O K P Q R H Q K

U B > Y B > @ a b a ^ A

S @ A W @ X > ? W A W W > Y ? Z [A W W > Y ? c > ? @ A W @ > ? T � A W Y e B E A W Z [A @ _ U B > V D B a � A W Y e B E A d c > ? ^ B > Y B > @ a Z U B > Y B > @ a _ U B > Y B > @ a b a ^ A d c > ? @ > E s A @ t u W A B h A B Z b > E s A @ t u W A B h A B _ b A W @ > ? T b > E s A @ d \ Z b A W @ > ? T b > E s A @

= > ? @ A B C D E A F

G K l L M N O K P Q R H Q K

U B > Y B > @ a b a ^ A

S @ B D > ? X > ? W A W W > Y ? Z [A W W > Y ? c > ? @ B D > ? > ? T � A W Y e B E A W Z [A @ _ U B > V D B a � A W Y e B E A d c > ? ^ B > Y B > @ a Z U B > Y B > @ a _ U B > Y B > @ a b a ^ A d c > ? @ > E s A @ t u W A B h A B Z b > E s A @ t u W A B h A B _ b B D > ? > ? T b > E s A @ d \ Z b B D > ? > ? T b > E s A @

= > ? @ A B C D E A F

G j M H Q M N O K P Q R H Q K

U B > Y B > @ a b a ^ A

S e ^ f D @ A X > ? W A W W > Y ? Z [A W W > Y ? c > ? ^ D B D V A @ A B W Z U D B D V A @ A B W b a ^ A c > ? ^ B > Y B > @ a Z U B > Y B > @ a _ U B > Y B > @ a b a ^ A d c > ? @ > E s A @ t u W A B h A B Z b > E s A @ t u W A B h A B _ � ^ f D @ A b > E s A @ d \ Z � ^ f D @ A b > E s A @

S T A @ U D B D V A @ A B W X > ? W A W W > Y ? Z [A W W > Y ? c > ? ^ B > Y B > @ a Z U B > Y B > @ a _ U B > Y B > @ a b a ^ A d c > ? Y u W A B h A B Z b > E s A @ t u W A B h A B _ m ? T > ? A b > E s A @ d \ Z m ? T > ? A b > E s A @

= > ? @ A B C D E A F

� y � M L M N O K P Q R H Q K

U B > Y B > @ a b a ^ A c U D B D V A @ A B W b a ^ A

F
igure

6.2:
M

T
E

ngine
m

ixin
class

diagram
.

30

Since this operator could take a considerable amount of time this operation

is ticketed and prioritised. Therefore, an observer SHALL be providedthat shall

receive notifications. Also, aCompositionTicket is returned to the caller.

6.2.3 Evaluating Engines

One important benchmark of an engine’s translation performance is scor-

ing. Many scoring schemes exist, e.g., BLEU and METEOR, and the

EvaluatableEngine mixin allows engines to be ranked using any scoring

scheme. TheEvaluatableEngine::evaluate() method SHALL be imple-

mented for the scoring scheme(s) used. The primary resources used to gen-

erate the score are passed into the method and aEvaluationTicket is re-

turned. Since this is a ticketed operation a ticket observer is required which

will receive notifications as the evalutation operation proceeds. This potentially

long running task is also prioritised. Once complete a record of the score or

scores SHALL be constructed using theScore and ScoreScheme interfaces.

TheEvalutableEngine::getScores() method SHALL be used to retrieve the

scores for the engine.

TheScore interface defines:

• Scoring Scheme: TheScoringScheme defines the scheme used and SHALL

be retrieved with theScore::getScheme() method.

• Score: A double precision value which is the generated score. The

Score::getScore() method SHALL be used to retrieve the score.

• Resource Provanence: Any primary resources that were used to generate the

score SHALL be retrievable using theScore::getResources().

6.2.4 Queryable Engines

Users of MT systems require that translations are done on a sentence-by-sentence

basis to test a constructed engine. TheQueryableEngine mixin supports this use

case. Invoking theQueryableEngine::query() method with a sentence, and a

priority SHALL return query ticket. This operation is ticketed since the it could

take a considerable amount of time, even though it is only a single sentence. An

observer SHALL be provided to notify the application of the query operation.

31

6.2.5 Trainable and Re-trainable Engines

TheTrainableEngine andRetrainableEngine mixin interfaces are included

for SMT systems. However, it is not unreasonable that these mixins will be used

in a non-SMT engine implementation. Typically training and re-training an SMT

engine can take a considerable amount of time even using small corpora. Alloper-

ations in these mixin interfaces are ticketed and prioritised. As with all the ticketed

operations, a ticket observer SHALL be required. Primary resourcesare used to

train and re-train SMT engine and a collection of these instances SHALL be passed

to the TrainableEngine::train() and RetrainableEngine::retrain()

methods.

6.2.6 Testable Engines

Testing a constructed or updated engine is a crucial step in developing machine

translation engines: the developer needs some level on confidence that the transla-

tion performance of an engine meets some benchmark or criteria. Testing an engine

could take a considerable amount of time and, therefore, theTestableEngine

mixin interface tickets the testing operation. TheTestable::test() method

SHALL be implemented to carry out ticketed testing tasks. This method SHALL

be given a ticket observer, a priority, and a collection of primary resources to use

as test vectors.

6.2.7 Updatable Engines

Engines from time-to-time will require maintenance. In rule-based systems

new rules could be required, and in SMT based systems tuning operations

may be needed once training is complete. TheUpdatableEngine mixin al-

lows for these potentially long running and mutating operations to be imple-

mented. The engine’s updatable parameters SHALL be fetched by implementing

theUpdatableEngine::getParameters()method. Since retrieving parameters

could potentially take some time it is ticketed and prioritised.

Updating, or mutating, the engine SHALL be achieved by implementing the

UpdatableEngine::update() method. This operation is ticketed and requires a

ticket observer. A priority is used to fairly schedule this updating request.

32

6.2.8 Parameterisable Engines

Machine translation engine software MAY require options and settings in order

to configure the operation of an engine. These name-value pairs are called pa-

rametersin this API. TheParameterisableEngine interface SHALL mixin

a getter and a setter for engine parameters. To retrieve an engine’s cur-

rent parameters theParameterisableEngine::getParameters() SHALL be

used. Commiting parameters back to the engine SHALL be done using the

ParameterisableEngine::updateParameters() method. These operations

are expected to complete quickly, since they are accessing files or memory, and are

thereforenot ticketed.

33

Chapter 7

Translators

Translators are a conglomeration of an MT engine, translation memories and glos-

saries. A translator SHALL specify at least one of these resources. This allows

translators to support translations using any combination of MT, TM or glossaries.

It is the responsibility of application programmers to handle these resourcesin an

appropriate way for the flavour of translation required.

Translations are typically computationally expensive and can take a consider-

able amount of time to complete. In an MT system that is multi-user computation

resources should be shared fairly between the demands of the submitted transla-

tions. As with MT engine operations (see Chapter 6), translations SHALL betick-

eted and a ticket observer is REQUIRED to receive notifications of the progress of

a translation task.

The standard models a translator as a derived resource (seeDerivedResource

interface in Figure 3.1). An abstract and associative class calledTranslator is

defined, and is shown in Figure 7.1. There are two methods for performinga

translation:

• Primary Resource Translation: A primary resource uploaded to the MT sys-

tem can be translated. It is application defined as to which kind of primary

resources are supported for translation. If supported, it is implementationde-

fined as to whether any pre- or port-processing is required, e.g. file filtering.

If the primary resource is not supported theTicketObserver::notifyError()

SHOULD be called immediately. For a description of ticket observers see

Section 5.1.

• Sentence-by-sentence Translation: Translations can be supported that consist

of a single sentence. Recall that MT engines can be queried sentence-by-

34

� � � � � � � � � � � ¡ � � ¢ £ ¤ ¡ ¥ £ ¡ � � � � £ ¤ ¡ ¦ § � � � £ ¤ ¡ ¨ £ ¡ � � � ¤ � � � � � ¤ � � ¡ � � ¢ � ¦ © � £ ª � « ¬ � � ¤ � � � � ¨ £ ¡ ­ � £ ¤ � £ ¢ « ¦ © � £ ¤ � £ ¢ « ® © � £ ¤ � £ ¢ « � « ­ � ¯ ¨ £ ¡ ¢ � ¡ � � ¢ £ ¤ ¡ ° ± � � � ² � � ¦ � £ � ³ � ¢ ° ± � � � ² � � ® � � ¡ � � ¢ £ ¤ ¡ � £ � ³ � ¢ ¯ ´ ¦ � � ¡ � � ¢ £ ¤ ¡ � £ � ³ � ¢

� � � � � � � � � � � ¡ � � ¢ £ ¤ ¡ ¥ £ ¡ � � � � £ ¤ ¡ ¦ § � � � £ ¤ ¡ ¨ £ ¡ � ¤ � � � � § � ¡ ¢ � ¡ � � ¦ � ¢ � £ ¡ µ ¨ £ ¡ ­ � £ ¤ � £ ¢ « ¦ © � £ ¤ � £ ¢ « ® © � £ ¤ � £ ¢ « � « ­ � ¯ ¨ £ ¡ ¢ � ¡ � � ¢ £ ¤ ¡ ° ± � � � ² � � ¦ � £ � ³ � ¢ ° ± � � � ² � � ® � � ¡ � � ¢ £ ¤ ¡ � £ � ³ � ¢ ¯ ´ ¦ � � ¡ � � ¢ £ ¤ ¡ � £ � ³ � ¢

� � � ¢ � £ � ² � � � ¡ � � ¢ £ ¤ ¡ � ¥ £ ¡ � � � � £ ¤ ¡ ¦ § � � � £ ¤ ¡ ¨ £ ¡ ¶ £ � ¢ � � ¦ © � � � £ � ¢ � ® � � ¡ � � ¢ £ ¤ ¡ � £ � ³ � ¢ ¯ ´ ¦ § � ¢ ® � � ¡ � � ¢ £ ¤ ¡ � £ � ³ � ¢ ¯

· ¸ ¹ º » ¼ ¹ ½ ¾ ¸

© � £ ¤ � £ ¢ « � « ­ �

¿ £ ¡ ¢ � � ¶ � � À

Á º Â Ã º Ä

Å ¢ � ¡ � � ¢ ¤ �Æ

Å � ¡ µ £ ¡ �Ç È È É

Å ¢ � ¡ � � ¢ ¤ �Æ

Å µ � ¤ � � � £ � �Ç È È É

Å ¢ � ¡ � � ¢ ¤ �Æ

Å ¢ � ¡ � � ¢ £ ¤ ¡ Ê � ª ¤ � «Ç È È É
¿ £ ¡ ¢ � � ¶ � � À

Ë Ì Í Î Ï Ð Í Ñ Ò Ó Î Ô Õ Ö Ó Ì ×

¿ £ ¡ ¢ � � ¶ � � À

Ø Ð Ó Ï Ï Í Ì ×

¿ £ ¡ ¢ � � ¶ � � À

Ù Õ Ì Ò Ú Õ Û Ü Õ Ï Ó Ý Ì Þ Õ

F
igure

7.1:
T

ranslator
class

diagram
.

35

sentence (see Section 6.2.4) to perform a translation using only the engine.

However here, TM and glossaries can be mixed into a richer translation that

uses any translation pipeline that may be implemented.

The methods defined in theTranslator abstract class SHALL be passed a

session object. This session object SHALL represent the session that isinvoking

the operation. A detailed description of sessions can be found in Section 4.1.

The abstract classTranslator holds references to, optionally, an MT engine,

translation memories and glossaries. Translations are scheduled using the poly-

morphic methodTranslator::scheduleTranslation(). One version of this

method takes a primary resource object, and the other a string object, these meth-

ods SHOULD be used for document and sentence-by-sentence translation respec-

tively. The polymorphic translation method SHALL be provided with a priority

and a ticket observer and returns aTranslationTicket object as a receipt for

the translation task. This ticket SHALL be made available in the ticket observer

callback methods.

A single translator can be used to schedule many translations, i.e.,

the same resources used to translate many primary resources or sentences.

To query the translations that have been scheduled but not completed the

Translation::retrieveTranslations() method SHALL be implemented.

This method takes a predicate object to filter the translations. It is implementa-

tion defined as to which user’s sessions are authorised to retrieve which translation

tickets. The authorisation model SHALL be application defined but MAY be de-

pendent on which user/session owns a translator object.

Implementers of the abstractTranslator class should extend it to use their

favourite detached execution environment to execute the translation tasks.It is

left to the application programmer to decide how the computational resources are

shared between translations. For example, using a distributed resource manage-

ment system such a cluster or grid computing separate job queues can be config-

ured to segregate the logically disparate translation tasks.

36

Bibliography

[1] SRX Standard.http://okapi.opentag.com/help/lib/ui/segmentation/srx.html.

[2] TMX 1.4b Specification.http://www.gala-global.org/oscarStandards/tmx/,

2005.

[3] Internationalization Tag Set (ITS) Version 1.0.

http://www.w3.org/TR/its/, 2007.

[4] Systems to manage terminology, knowledge, and content - TermBase eX-

change (TBX).http://www.ttt.org/oscarStandards/tbx/, 2008.

[5] XLIFF Version 1.2.http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html,

2008.

[6] UTX Specification Version 1.11.http://www.aamt.info/english/utx/utx1.11-specification-

2011.

37

http://okapi.opentag.com/help/lib/ui/segmentation/srx.html
http://www.gala-global.org/oscarStandards/tmx/
http://www.w3.org/TR/its/
http://www.ttt.org/oscarStandards/tbx/
http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html
http://www.aamt.info/english/utx/utx1.11-specification-e.pdf

	Introduction
	Overview
	Architecture
	Notational Coventions

	Implementation
	Language Bindings
	Namespace
	Multithreading
	Reference Implementation

	Resources
	Sessions, Negotiation and Authorisation
	Sessions
	Session Negotiation
	Capabilities

	Authorisation

	Scheduling
	Tickets
	Priority

	Machine Translation Engines
	Engines
	Optional Engine Functionality
	Ticketable Engines
	Composing Engines
	Evaluating Engines
	Queryable Engines
	Trainable and Re-trainable Engines
	Testable Engines
	Updatable Engines
	Parameterisable Engines

	Translators

