OMTC : Open Machine Translation Core
An open API standard for Machine Translation

Systems
Version: 0.6.1-DRAFT

lan Johnson
Capita Translation and Interpreting

February 26, 2013

Abstract

Open Machine Translation Core (OMTC) is an open standard that definep-
plication programming interface (API) for machine translation systems (Mfg. T
API defined is a service interface which can be used to underpin anyfyydd
system: web-based, traditional client-server, or standalone singleszrapplica-
tions. It consists of components, some of which are optional, which allotapp
cation programmers to implement the core of MT systems in such a way as they
“look” consistent. This makes MT applications easier to develop since dispar
MT products start to “look” the same.

MT applications provide significant portions of functionality to OMTC that
allow aspects of the standard API to be customised for the application beiely dev
oped. However, applications are not tied to the API allowing existing MT syste
to be re-factored to use OMTC. As well as new MT systems to be easily ackdygu
developed using the standard API.

This standard API was developed as part of the MosesCore project
sponsored by the European Commission’s Seveth Framework Programme.
For more information on the Seventh Framework Programme please see
http://cordis.europa.eu/fp7/home_en.htmll

http://cordis.europa.eu/fp7/home_en.html

Contents

|2 ImolementatioA 4

2.2 NamespaCe v e e e e e e 4

L3 Multithreadin 5

hz_SﬁﬂmuﬁgmLaubn 13

421 Capabilities o oo 14

4.3 AthQrisaIiQL‘l 18

' Nes e
|6 2.4 _Queryable Eni'ﬁes

ines
6.2.7 Updatable Engides

7_Transatord

List of Figures

4.1 Sessioninterface diagram.o 11

|4.2 Capabilities interface diagglm. 16
4.3 _Capability negsnlaligninletta.cg_dlagthm 20
4.4 Authorisation interf jiagram. 21

5.1 Scheduling ticket class diagram.o\t 24
6.1 MTEngineclassdiagram. 28

List of Tables

Chapter 1

| ntroduction

1.1 Overview

Open Machine Translation Core (OMTC) is an application programming icerfa
(API) for machine translation (MT) systems. It defineseaavice interfacdor an

MT system. It is intended that this APl makedtdient flavours of MT system
“look” the same, so that they can be used in an MT system consistently. Téris in
face isnot one with which disparate MT systems can immediately communicate,
rather it provides a framework in which an MT system can reside. Thietap-
plication concerns, e.g., inter-process communication, security, and pgymbe
implemented around the API.

The approach taken in OMTC separates the concerns and responsilnitilies
their correct “silos” and attempts to provide a highly cohesive design tHegnw
implemented, is not tightly coupled. Since the architecture of a machine translation
(MT) system cannot be predicted, defining a service interface keefstihpe” of
compliant applications consistent without tying down the application programmer
to particular technologies or protocols.

A note on interoperability: this API does not intend to address the fundamenta
problems around the exchange of translation memories. This has been édentifi
as a significant problem for language service providers (LSPs)auld be losing
them 30% of their business. Inspite of this, the approach this API has takkis
issue is to avoid it altogether. MT systems could be implemented using any, all
or none of the standard exchange formats, so we do not try and sguesd the
application programmer. It is assumed that support for schema convérsia
one standard to another is written as part of the implementation of the MT system.

Alternatively, libraries for converting from schema to schema can bdajese but
this is an application concern since it is the application that defines whicmsshe
are to be supported. Moreover, it is the application which defines whiotnsas
can be converted to other schemas. The serialisation of such exhamgésis be
dependent on the transport chosen. Since transport is defined bpyheation,
then so is the serialisation.

1.2 Architecture

The API is separated into a number of packages. These are:

e ResourcesAn abstract representation of things that will be used by users
of an MT system, i.e., documents, translation memories, glossaries and MT
engines,

e Sessions and session negotiatidm abstract session implementation to al-
low users to upload and download resource to and from an MT system. Ne-
gotiation ensures that both client and server in an MT system meet each
others feature expectations,

¢ Authorisation integration Since users may need authorisation to execution
certain operations integration with the application defined authorisation sys-
tem is support by this API,

e Task scheduling Machine translation uses computationally expensive al-
gorithms. If multi-user MT systems are to be constructed a fair way of
scheduling and executing computationally expensive software is required
The scheduling APl is an abstract representation of a detached exeentio
vironment which can map to technologies which c#iiceently utilise the
computing resources available to an MT system. These technologies can be
anything from native threading to grid or cluster computing infrastructure,

e MT engines The API defines an abstract representation of entities that per-
formance machine translation. The MT engine package should sugport
flavour of MT engine, and optional functionality can be mixed in so that
application programmers can tailor their implementations to their MT sys-
tems. The optional behaviour is often computational expensive and the task
scheduling API is used to submit these tasks into the scheduling implemen-
tation, and

e Translators The abstract translator API provides an interface to submit com-
putationally expensive translation tasks into the task scheduling API.

1.3 Notational Coventions

In this document, any class name, method name, or identifier associated with the
API definition shall be represented inféaxed-width font.

All diagrams in this standard that defined API structure are shown using the
Unified Modeling Language VJEL(UML).

The key words "MUST”, "MUST NOT”, "REQUIRED”, "SHALL”, "SHALL
NOT”, "SHOULD”, "SHOULD NOT”, "RECOMMENDED”, "MAY”, and "O P-
TIONAL” in this document are to be interpreted as described in RFCBleQ

1The UML v1.x standard can be foundtattp: //www.uml.org/.
°RFC 2119 is available &ittp://www.ietf.org/rfc/rfc2119. txt.

http://www.uml.org/
http://www.ietf.org/rfc/rfc2119.txt

Chapter 2

| mplementation

2.1 Language Bindings

This standard has been defined using a language-agnostic reptiegerthe ap-

peal of UML is that is can be taken and implemented in many object-oriented (OO)
and many non-OO languages without loosing the central concepts of the\ikR

this in mind, the implementation:

e MUST adhere to the standard, or its intention, as closely as the implementa-
tion language will allow,

e SHOULD map collection types to implementation language collection types
that are more performant than their equivalents to the ones specified in this
standard, and

¢ MAY implement interfaces, which are used commonly in the standard defi-
nition, as classes, or structures.

2.2 Namespace

In order to encapsulate the interfaces, classes and enumerationsl defihés
standard a namespace is to be used. This will avoid conflicts with other firankew
and libraries used in an MT system. The namespace that SHALL be usBTds
The namespace MAY be changed to fit with a specific language bindingfae.g.,
a Java binding the root package name couldcbe.mammon.omtc. However,
OMTC MUST be included in a namespace definition.

2.3 Multithreading

An implementation of this standard SHOULD ensure that the implementation sup-
ports concurrency and re-entrantcy. The level of multithread safef\t EHe doc-
umented along with the implementation. All users of the implementation should
be aware of the limitations of the abstract implementation. The application code
they shall provide to the API shall be required to be “aware” of the le/elulti-
threaded safety supported by the APl implementation.

2.4 Reference Implementation

There is a freely available reference implementation of this APl which has bee
released under the LGPL V.Q;oftware license. It is hosted on GitHub at
git://github.com/ianj-als/omtc.git.

The reference implementation is written in Java and is compliant with Java
v1.7. Itis built using Apache Maven vz.g.ibr newer, and can be imported into
most common IDE platforms using tipem. xml file.

To build the reference implementation clone, or fork and clone the GitHub
repository, and build using the following commands,

$ git clone git://github.com/ianj-als/omtc.git| # Or your fork
$ cd omtc
$ mvn install

Once installation, to your local Maven repository, has completed the late$iGCOM
implementation can be made available to other Maven projects by adding the fol-
lowing dependency to yoyrom. xm1 files:

<dependency>
<groupId>com.capitati.omtc</groupId>
<artifactId>omtc-core</artifactId>
<version>[1.0,)</version>

</dependency>

Any bugs, enhancements or comments regarding the reference implementation
should be directed 1o ian.johnson@capita-ti.com.

!See the GNU Lesser General Public Licendetab : //www.gnu.org/copyleft/lesser.htmll
2Seehttp://maven.apache.org/|for downloads and documentation.

git://github.com/ianj-als/omtc.git
git://github.com/ianj-als/omtc.git
mailto:ian.johnson@capita-ti.com
http://www.gnu.org/copyleft/lesser.html
http://maven.apache.org/

Chapter 3

Resour ces

A resource is an object that is provided or constructed by a user actiasé in
the MT system. Examples of resources can be:

e Documents,

e Translation memories,

e Glossaries, or

e MT engines.

There are two kinds of resources defined by this standard:

1. Primary resourcesany resource that has been constructed externally and up-
loaded, in some way, for use in the MT system. Examples of these resources
are: afile, a translation memory (TM), a glossary etc. Itis recommended that
these resources be persisted so that future sessions may use themy Primar
resources shall also be immutable, i.e., if a resource’s content is to balaltere
it is a new resource.

2. Derived resourceghese resources are constructed using their primary coun-
terparts either as a conglomeration or a separate entity is created, e.g., when
training a SMT engine using a translation memory (a primary resource) to
create a derived resource: the engine itself.

Figure[3.1 shows the resource interface and its relationship with the primary
and derived resources.

«interface»
Resource
+getldentifier() : UUID

+getURI(): URI
+getBirthDate(): Date

T

«interface» winterface»
PrimaryResource DerivedResource
+getCreationResources(): Set<Resource>
«interface» winterfacen
MonolingualResource MultilingualResource
+getlanguage(): String +getSourcelanguage(): String

+getSentenceCount():int +getTargetlanguages(): String[]
+getSourceSentenceCount() :int

+getTargetSentenceCounts(): Map<String, Integer>

T

«interfacen» cinterface»
TranslationMemaory Glossary
+getSegmentCount() :int +getEntryCount():int

Figure 3.1: Resources interface diagram.

The primary key for any resource is its identifiem@iversally unique identi-
fie@ (UUID) typed value (se®esource: :getIdentifier()). The implemen-
tation of the UUID is implementation defined but SHALL be consistent within
the MT system. When communicating with other MT systems resource identifiers
SHALL be converted from one identifier space to the other: this is the nsspo
bility of the implementer. The URI of the resource provides its location in an MT
system (seBesource: :getURI()). The scheme of the URI SHALL specify the
mechanism by which the resource can be reached. Again, this is applidation
fined but SHALL be consistent within the MT system, but implementers are free
to define their own resource schemes if needed. The meaning of age'sdinth
date(seeResource: :getBirthDate()) is implementation defined but SHOULD
be populated with some ddtiene stamp which is consistent within the application.
A resource’s birth date can be time zoned if required but conversion ofziimed
timestamps MAY require conversion if the MT system is used globally.

1See RFC4122 dfttp://tools.ietf.org/html/rfc4122

http://tools.ietf.org/html/rfc4122

Common resources that are used in MT system are monolingual and mul-
tilingual resources, and are modeled as the interféioa®lingualResource
and MultilingualResource respectively. The monolingual interface pro-
vides two “getters” for retrieving a, consistent and application definedjuage
code for the resource and the number of sentences contained in theceeso
MonolingualResource: :getLanguage () and
MonolingualResource: :getSentenceCount () respectively. The multilingua
resource representation provides methods to retrieve:

e Source language: this is an application defined string whose format
SHOULD be consistent throughout the application
(seeMultilingualResource: :getSourcelLanguage()),

e Target languages: since many target language can exist in a transkation r
source this is modelled as an array of strings whose format SHOULD be
consistent throughout the application
(seeMultilingualResource: :getTargetLanguages()),

e Source language sentence count: the number of sentence in the source
language (se¥ultilingualResource: :getSourceSentenceCount()),
and

e Target language sentence counts: the sentence counts for all the tar-
get languages in the multilingual resource. This is modelled as
a map whose keys are the target language strings, as retrieved by
MultilingualResource: :getTargetLanguages (), and their values the
target language sentence count (see
MultilingualResource::getTargetSentenceCounts()).

Two common multilingual resources are translation memories and glossaries.
In the light of this, two interfaces have been defined to model these rEsour
TranslationMemory andGlossary. These interfaces define how to retrieve the
number of segments (s@eanslationMemory: :getSegmentCount()) and en-
tries respectively (se@lossary: :getEntryCount()).

Derived resources add the ability to store their provenance. Theroesou
that where used to construct the derived resource SHOULD bede>onot
only, for referential integrity but for ensuring repeatable builds of teeved
resource can be done by others. Recall #ilhtresources are immutable. The

DerivedResource: :getCreationResources() method retrieves this informa-
tion.

It is expected that application programmers will use these interfaces to mixin
resource identity and behaviour with their representations of files, Miheagtc.
If these objects are being persisted then it MAY be necessary to use acdatss
object if any of the resource information is to be derived from existingiptemt
data.

Chapter 4

Sessions, Negotiation and
Authorisation

In order for users to be able to use the MT service the API needs anfideasion

A session is the period in which a user will interact with the MT service. The MT
service application may need to acquire the identity of users, whilst other imple-
mentations may not. The MT API therefore needs to supports both user identity
and anonymity. Moreover, clients to the MT service will support certaitarge
formats, and expect certain features from the applicatiorsegsion negotiation

is defined in the API in order that both client and server can ascertaindgg the
session is set up, their expectations of each other is correct. If the chanbt
support the server’s requests, or visa versa, then the sessidd blediorn down.
However, this decision is delegated to the application.

4.1 Sessions

The session class diagram is shown in Figuré 4.1.

The API provides interfaces and implementations for sessions that require
user identity and anonymity. The anonymous user classes S&esion and
AbstractSession. These classes support actions witisourcesthat any user
would require. Resources are described in Chapter 3. The sestmmsare:

e Uploading a resource — a session making files and other resourceblgvaila
to it or other sessions in the MT application via some transfer mechanism,

e Downloading a resource — a session retrieving resources uploadedigith

10

T inbi

TT

‘welBelp adealul UOISSaS

——————— b
—{_Exe(utor

«interface» e —— AbstractUserSession
________ ResourceTaskObserver AbstractSession Hoser
i +onSuccess(in session, in resource : Resource) : void 1
+onError(in session : Session, in resource : Resource, in exception : Exception) : void -id 1 UUID
-bufferSize : int
#executor: Executor

«interfacen» «interface»
ResourceUploadObserver ResourceDownloadObserver
ZOS «interfacen

UserSession

+getUser() : User

terfacen

1
1
1
1
1
1
_____________ 1
Resource : «interface»
_____________________ Session
+getldentifier() : UUID
bty +uploadResource(in delegate : ResourceTransferDelegate, in observer : ResourceUploadObserver) : Future<Resource> 47
+downloadResource(in delegate : ResourceTransferDelegate, in observer : ResourceDownloadObserver) : Future<Resource>
+removeResource(in resource : Resource) : void
+retrieveResources(in predicate : Predicate<Resource>) : Set<Resource>

«interfacen

[ResourceTransferDelegate

+getResourceReader(in session : Session) : ResourceReader i

~—+getResourceWriter(in session : Session) : Resource W riter :

+getResource(in session : Session) : Resource :
1
1

1
]
1
]
[|
[1
[1
[|
[:
: : «interface» «interface» |
[. 1
I === EngineRetrievableSession UserRetrievableSession qi 1
: : 1 +retrieveEngines(in filter : Predicate<Engine>) : Set<Engine> +retrieveUsers(in filter : Predicate<User>) : Set<User> :
. «interface» : |
[ResourceReader ! !
! +read(in buffer : byte(]) : int [|
] +close() : void :
: |
1 1
1 1
! :
1
] «interface» «interfacen «interface» :
: ResourceWriter EngineAssignableSession RoleAssignableSession 1
1
+write(in chunk : byte[], in chunkLength : int) : void +grantEngineToUser(in engine : Engine, in user) : void +grantRoleToUser(in role, in user) : void I |
+close() : void +revokeEngineFromUser(in engine : Engine, in user) : void +revokeRoleFrom User(in role, in user) : void

the current or previous sessions,

e Listing session owned resources — retrieving information about ressurc
that can be used by a session, and

e Removing a resource — deleting resources, owned by the session pbr othe
sessions, that are no longer required.

Uploading and downloading resources could, potentially, take a “long”
time so the execution of these operations can be detached from the in-
voking thread in the provided implementation. Futures, and observers (see
ResourceUploadObserver and ResourceDownloadObserver shown in Fig-
ure[4.1) are used in order that the caller may block waiting for the resaarce
up- or download, or be asynchronously notified via the observer treop-
eration has completed. This gives implementations the choice of synchronous
or asynchronous notifications. Also, the transfer of the resourcelégated to
the application since the transport layer is chosen by the implementation. A re-
source’s location is determined by its URI, and the scheme of the URI SHOULD
be used to determine which mechanism shall be used to transfer the eesourc
Since this is defined in the application then the application SHALL implement
instances ofResourceTransferDelegate to provide the transfer mechanism.
This interface constructs instances RfsourceReader and ResourceWriter
which read and write a resource respectively. On construction, thgset®
SHALL have opened the resource in a way appropriate to the implementation.
The methodResourceReader: :read() SHALL read bytes into the provided
byte array. It SHALL NOT read more bytes into the array than the array ca
accomodate and shall return the number of bytes written to the array. The re
turn value SHALL be, thennumber of htes read< |buffe. Whereas, the
methodResourceWriter: :write() SHALL write the number of bytes in the
provided byte array to the implementation defined resource destination. Both
ResourceReader: :close() andResourceliriter: :close() SHALL cleanup
any implementation specific allocations that have been used to read or wrige the r
source in order that the resource is closed.

The methoResourceTransferDelegate: :getResource() constructs the
Resource object that will represent the uploaded resource or the resource to
be downloaded. This resource SHALL be provided to the application when
the resource upload or download observer methods are called. Thesevers
SHOULD be used to implement any application specific operations that shall be

12

processed once a resource has been up- or downloaded, e.ipt thersesource
description to a backing store.

It is application defined as to what happens to an anonymous sessiod owne
resources once the session is ended. In some applications the redddaeed
to the removed. However, in others perhaps they persist for othergto us

Sessions that require user identity are provided by the cldksasSession
andAbstractUserSession. These classes mixin the ability to store and retrieve
the user associated with the session.

Other optional session functionality can be mixed in with the following inter-
faces:

e EngineAssignableSession: used to mixin grant and revoke machine
translation engine access to users, and

e RoleAssignableSession: used to grant and revoke roles to and from
users.

The mixin interface@ngineRetrievableSession andUserRetrievableSession
allow for the retrieval of engine objects and user objects from some laaskane.
The retrieval methods are passed a predicate argument that SHAL edbeoudter
the engine and user objects that are returned. This could be used tddtman
SQL statement that queries a relational backing store to retrieve a seggigiries.
The user retrieval methodlserRetrievableSession: :retrieveUsers(), is
defined to allow administrators assign engines or roles to users. Hovileyém-
plementation SHALL have the last word as to exactly what happens in a particu
application.

The grant and revoking of MT engine access rights and roles to andusers
will be discussed in Sectidn 4.3.

4.2 Session Negotiation

On session creation the server and the client MAY come to some agreement on
what a client can expect from a server and what the server caotdrpm a client.

For example, the client may wish to submit a PDF document for translation. If the
server cannot handle PDF documents then the client may not wish to stasiars
since the server is lacking support for the client’s future request@vesely, a
server that only supports translation memories in XLIFF format is not conipatib
with a client that only supports TMX. The final choice as to whether a ses$sio

13

finalised for use SHALL rest with the server. However, clients MAY terréra
session at session negotiation time if the server does not support thalitesa
the client requires.

Session negotiation is useful when two MT systems need to communicate with
each other. The session negotiation API allows the two systems to discostrarh
they are compatible or provide the services they require. In an MT systeTew
translation jobs are farmed out to other, possibly unknown, systems thisvelisc
ery is essential since it provides dynamic capability information and akaitsoc
system choice: let’s give this new service a try since it supports the seticépa-
bilities. Session negotiation keeps the knowledge of which capabilities a servic
provides in the service, not the consumer of the service.

Session negotiation is an optional part of this API. If session negotiation is
implemented then negotiation SHALL be completed before the session is fully
established and before any client request is serviced. It is applicatimedeas to
what course of action to take when capabilities do not match: either tearttiewn
session forcefully or leave the client to decide. However, there may letisits
where session negotiation is not required. If the server- and clientkitle API's
implementation have static expectations and requirements then session negotiation
may not be required since both “sides” of the application intrinsically “kneach
other.

Session negotiation SHALL proceed by exchanging server- and cligmts-
pabilities

4.2.1 Capabilities
The capabilities come in four board flavours:

e API: These capabilities determine the nature of the API, i.e., version.

¢ Resources: these capabilities describe the file types that the serviagpean s
port. Supporting means that the service will store and use the resounce in a
appropriate way.

e Features: the operations that can be expected from an MT service put ma
not be available in every MT service.

e Prerequisites: the prerequisites that the client SHALL ensure are tforebe
some or all of the MT service’s features become unavailable to a client, e.g.,
payment.

14

Name | Meaning | Group |
API_VERSION | The semantic version of the API. API
RES_FILE_TMX | Translation Memory eXchanf#} (TMX) file for- Resource
mat supported.
RES_FILE TBX | TermBase eXchanf@j (TBX) file format sup-| Resource
ported.
RES_FILE_UTX | Universal Terminology eXchanf§} (UTX) file Resource
format supported.
RES_FILE_SRX | Segmentation Rules eXchafitje(SRX) file for- | Resource
mat supported.
RES_FILE_ITS | Internationalization Tag S{8] (ITS) file format | Resource
supported.
RES_FILE XLIFF | XML Localisation Interchange File Formi&] | Resource
(XLIFF) file format supported.
RES_FILE_TTX | SDL Trados translation memofife format sup-| Resource
port.
FET_RES_UPLOAD | Sessions can upload resources to the MT serverFeature
This feature MAY be disabled for particular ses-
sions or resource types and is application defined.
FET_RES_DOWNLOAD | Session can download resources that are ownedreature
by them from the MT service. This feature MAY
be disable for particular sessions or resource types
and is application defined.
PRE_REQ_PAYMENT | A payment model is in operation for the MTPrerequisite
service. The service, at least, requires payment
for some operations. Freemium only serviges
SHALL NOT specify this capability.

Table 4.1: Capability names.

Capabilities are flat representations of aspects of the supportedce$inuas,
features and expectations. Depending on the implementation these couiddpe str
or enumerations, either way they SHALL be unique and follow the standard n
ing shown in Tablé4]1.

The Trados translation memory format is a proprietory format developed by
SDL. It is included since some MT systems may wrap SDL products which can
support this translation memory format.

The capability class diagram is shown in Figure]4.2. The unique
identifier for a capability is its name as shown iapability inter-
face. The four flavours of capability are shown: the two of note are

15

9T

‘welbeip aseuaul sanljiqede) ' ainbi4

«interface»

Capability

+getName() : string

T

«interface»

APICapability

«interface»
ResourceCapability

«interface»
FeatureCapability

«interface»
PrerequisiteCapability,

+getVersion() : SemanticVersion

+getlowerVersion() : string
+getHigherVersion() : string

+getPrerequisiteCapability() : PrerequisiteCapability

«interface»
SemanticVersion

+getMajor() : int
———————— +getMinor() : int
+getPatch() : int
+getPreRelease() : string(]
+getBuild() : string(]

APICapability and ResourceCapability. In order to characterise sup-
port for resource kinds the version range is specified by the lowakthayh-

est version supported: s@®asourceCapability::getLowerVersion() and
ResourceCapability::getHigherVersion() respectively. These methods re-
turn strings which SHALL be meaningful to the implementation. The comparison
of these version strings SHALL be the implementation’s responsibility.

The API is versioned usingemantic versionirﬁb Semantic versioning im-
poses rules on the meaning on the increments of version in order to haye an a
propriate level of control of dependency versioning. This allows gomess of
this API to upgrade easily and safely. A semantic version has the ¥o#.:
which are non-negative integers that denotes the major, minor and patch ve
sion of the API. Pre-release and build identifiers can also be addedl &g
alpha.2-build.2012.01.22. Semantic versioning imposes an ordering so that recent
and previous releases can be compared, i.e., 1.0.0-alpa0-beta<1.0.0-rc.1
<1.0.0-rc.}build.1<1.0.0<1.3.%#build.1 <2.0.0.

Once the client, after an optional authentication step, has sent its capabili-
ties the MT service SHALL compare them with its capabilities. The MT service
SHALL then return the unsupported client capabilities back to the client. If the
application determines that a meaningful conversation cannot be cautiedth
the client then the application server-side SHOULD terminate the sessior- Othe
wise, the decision to terminate the session is delegated to the client. However, this
API does not imposany restrictions on which party terminates the session, it is
completely the responsibility of the implementer to choose the appropriate course
of action for the specific application.

More formally, the negotiation class diagram is shown in Figuré 4.3. Two
interfaces are used to represent a client’s capability negotiation regunédghe
response that the application constructs. The response is to be sknblihe
client. The client can then decide whether to continue the session if it has not
already been torn down by the service. Using ¢ié¢entCapabilityRequest
interface the client specifies:

e The version of the MT API it expects to be presented with (see
ClientCapabilityRequest: :getVersionCapability()), and

e The resource kinds that the client will be expected to be supported (see
ClientCapabilityRequest: :getResourceCapabilities()).

1See Semantic Versioning 2.0.0-rc.hattp: //semver.org/

17

http://semver.org/

Using theConcreteNegotiator: :negotiate() the service SHALL con-
struct an instance of thélientCapabilityResponse interface. This interface
specifies:

e Whether the client’'s API version is supported (see
ClientCapabilityResponse: :isClientAPISupported()),

e Which of the resource capabilities, provided by the clientrarttesupported
(seeClientCapabilityResponse: :getUnsupportedResourceCapabilities()),
and

e A description of the feature capabilities of the MT service along with their
prerequisite capabilities, e.g., whether payment may be needed to use the
feature (se€lientCapabilityResponse: :getFeatureCapabilities()).

Once the negotiation is complete, the service can inspect the responsarand te
down the client’s session if it deems necassary. However, the negotiatiparrse
MUST be returned to the client.

4.3 Authorisation

The MT API does not, by itself, support any security features. This iddethe
application programmer to integrate with authentication systems if authentication
is necessary. However, in order to support operations that do esguiser then
some integration is needed with an external authentication provider. Thisaker

the external authentication and authorisation and the API representaticae i

and roles present in the application. Two interfaces are used to rapeesser,

and their authorisation role, in the APIl, nam&ker andRole (see Figuré 414).

These mixin interfaces SHOULD be used with the application’s representa-
tion of users and roles to implement the interfaces that require these objects.
The methodUser: :getIdentifier() SHALL return the user’s unique identi-
fier, andUser: :getRoles() SHALL return an array representing the roles as-
signed to the user. The role interface requires that the m&bbel: : getCode O
SHALL return a unique code number for the role &ude: : getName () SHALL
return a human readable name for the role. The implementation is free to de-
fine its own roles that are appropriate to the authorisation model used.xFor e
ample, an application may have three roles: superuser, administrator anmdlno
user. These roles will have fEigrent authorisations administrative, construction

18

and translation operations. TRele interface can be used to integrate an imple-
mentation’s roles into the API implementation (§bk@rRetrievableSession,

EngineAssignableSession, andRoleAssignableSession interfaces in Fig-
ure[4.1).

19

0¢

‘welbelp adepaiul uoenobsu Aljiqede) £ ainbi4

«interface»
APICapability

N

F—————

e ———— —a

«interface»
ResourceCapability

ClientCapabilityRequest

«interface»
FeatureCapability

«interface» «interface»

+getVersionCapability() : APICapability
+getResourceCapabilities() : Set<ResourceCapability>

ClientCapabilityResponse

+isClientAPISupported() : Boolean

Negotiator

+getUnsupportedResourceCapabilities() : Set<ResourceCapability>
+getFeatureCapabilities() : Set<FeatureCapability>

«interface»

__________ Negotiator

+negotiate(in negotiationRequest : ClientCapabilityRequest) : ClientCapabilityResponse

ConcreteNegotiator

+negotiate(in negotiationRequest : ClientCapabilityRequest) : ClientCapabilityResponse

«interface»
User

+getldentifier() : UUID
+getRoles() : Role[]

«interface»
Role
+getCode() :int
+getName() : string

Figure 4.4: Authorisation interface diagram.

21

Chapter 5

Scheduling

Machine translation consists of a number of operations which are computation
ally expensive. Constructing an MT service with many users requiresthbat
computational resources are shafaidy between the demands of the users. The
implementer of an MT service needs to define:

e Which computational resource or resources will be used to executerte co
putationally expensive operations,

e The latency of an operation before it is executed, and

¢ A policy to determine how user’s operations will be scheduled, i.e., priority.

The scheduling API also needs to suppoffatent kinds of computation re-
source management: from native threading to distributed resource nmasiaige
products. The pattern used in the scheduling API is detached executionatiith
fication on completion, whether successful or not. The implementer of thesAPI
able to choose which technology to use for the detached execution: {boets]
Open Grid Engine, or Amazon EC2 etc.

5.1 Tickets

The scheduling API SHALL issugcketswhen an operation is submitted to the un-
derlying detached execution implementation. A ticket is a receipt for, andielyiq
identifies an operation. When the operation is submittedkmserverSHALL be
provided which observes the progressing computation. On completionbthe o
server is invoked with the appropriate ticket to identify which operation bas c
pleted. This is the observer design pattern. The observer is applicafinadiand

22

the application programmer SHOULD take this opportunity to update any data that
relies on the computation.

Operation priorities SHALL be defined using the scheduling API. This allows
an application defined priority to be used to prioritise operations into the particu
detached execution environment. For example, a priority could, saypaidafor
MT service prioritise operations, invoked by users, which are on a htgh#. So,
say, a user on Rreemiumtariff would have their operations prioritised lower than
a user who pays for the service. Depending on the detached exeawticomenent
a priority MAY determine, not only, the latency of an operation, but also immeh
processor time a certain operation can expect when being execute,nixnite
levels.

Figure[5.1 shows the scheduling ticket class hierarchy. The ticket slasse
structures which only hold data pertinent about the submitted operatiagantes
of these classes SHALL be constructed by the methods, found in the gkPha-
chine translation engines and translators (see Séctibn 6.2 and Chapterettiod
that issue tickets for machine translation engines and translator objects).

The scheduling API provides ticket types for the operations available with M
engines (see Chaptel 6), and tranlsation tasks (see Chapter 7). Tokels-
rived from an abstract class call&dicket and SHALL be uniquely identified by a
UUID. They also hold the following data:

e Start date A datgtime stamp which is the date at which the ticket was is-
sued. This SHALL be the submission date of the task associated with the
ticket.

e SessionThe session that submitted the task.
e Priority: The priority value that was used to schedule the ticketed task.

e End date A protecteddatgtime stamp which denotes when the task com-
pleted, successfully or not.

Sub-classes dficket specialise to computationally expensive MT engine op-
erations and translations: the clas@agineTicket and TranslationTicket
respectively. Instances dngineTicket are associated with an MT engine.
This is the engine on which the operation is being done and is labeled as the
participatingEngine in Figure[5.1. The ticket for composing MT engines is
associated with two MT engine instances. The engine with which the participat-
ing engine is being composed, and the MT engine that will be created due to the

23

v

‘welbelp sse|d 19301 Bulnpayos :T1°g ainbi4

- | PrioityType__ _ __ |
-composingEngine «interface» 1 ———————
Engine Tidet Trarslatar
+getNarre() : String -
1 +getDescription() : String -participatingErgine -identifier : UUID
start_l:ete : l:a_te _translator 1 «interface»
-session : Session TidetQbserver
-resultantEngine 1 -priority : PriorityType
#endDate : Date -+notifySubrritted(in ticket : TicketType) : void
ergine -+notifyStarted(in ticket : TicketType) : void
-+notifySuccess(in ticket : TicketType) : void
-+notifyError(in ticket : TicketType, in exception : Exception) : void
tranglator
3 resultant
engine
— Ipi
1 - . -ticket Pri
EngineTidet TrarslationTidet | interface»
~ticket A 1
-+getPriority() : PriorityType
|
]
-ticket 1 :
; a
ConrpositionTidet EvaluationTidet QueryTidet 1 [C--———————————=
L 1 PriorityType, PriorityDescriptionType |
ticket «interface»
PricrityiViachani
TestingTidet TrainingTidet UpdateTidet

+getPriority(in descaription : PriorityDescriptionType) : Priority<Priority Type>

composition, i.e., the resultant MT engine. Translation tickets are associdted w
a translator object and will be described in Chapter 7.

Ticket observers are used to notify the world of changes in ticket stadie. T
TicketObserver interface defines the events which application programmers can
use to update application state. All of thécketObserver methods SHALL
be passed the ticket for which the task is associated. The interface dtfame
following events:

e Submission The implementation is called back once the ticketed task has
been submitted to the detached execution environment. See
TicketObserver: :notifySubmitted().

e Start When the task has been started in the detached execution environment
this event is raised. S@d cketObserver: :notifyStarted().

e Successful completio®n successful completion of the ticket task this event
is raised. Se&icketObserver: :notifySuccess().

e Error: If at any point an error occurs with the task of execution environment
the error callback is executed. The exception that is generated fronrtine e
is provided with the event. S@d cketObserver: :notifyError().

Implementers of th&icketObserver MAY implement all, some or none of
the methods. It is application defined as to which ticket event are of interest.

5.2 Priority

Two generic interfaces, shown in Figlire]5.1, define the prioritising featof the
scheduling API. ThébriorityMechanism is a factory interface that constructs
objects of typePriority. The mechanism takes an application defined priority
description and contructs an object that SHALL provide the priority fankanst-

ted operation. Th@riorityMechanism::getPriority() method SHALL be
used to construct the priority object and MAY be nondeterministic. Theiprior
description SHOULD contain data that can be used to produce a prioritysthat
appropriate for the application. For example, a user’'s payment plancamain-

ing credit could determine how their ticketed tasks are scheduled in a pdidiffo
service. Maybe the time of day is important in producing a priority, e.g., tasks
scheduled at night may attract a higher priority for some users.

25

Once thePriority object has been constructed the actual priority value
SHALL be retrieved by calling th@riority: :getPriority() method. This
method SHALL be idempotent. The priority value is stored in the ticket object and
SHALL be used to schedule tasks into the detached execution environment.

26

Chapter 6

Machine Trandation Engines

Machine translation engines are the entities that produce translations$sibly
unseen, sentences. Engines are built using primary resources redleuse
computationally expensive operations to produce translations. Engiak$abe
operations available that, depending on their nature, shall read or mutate en
state, e.g.

e Evaluating a engine,
e Composing engines,
e Testing engines, and

e Training SMT engines.

6.1 Engines

An engine is defined as the entity that will perform machine translation. This may
be a decoding pipeline in an SMT system or software that implements a rulg base
system. Engines are modelled as a derived resource and Figure 6.8 sBow
relationship to the resource interfaces.

The application programmer SHALL implement and extend this interface
hierarchy to suit the representation for the particular flavour of MT engin
being employed. The interfacEngine allows the programmer to define a
name and some descriptive text for an MT engifi®gine: :getName() and
Engine: :getDescription() respectively. The creation resources, defined us-
ing the DerivedResource: :getCreationResources(), SHOULD reference

27

«interface»
Resource
+getidentifier() : UUID

+getURI() : URI
+getBirthDate() : Date

«interface»
DerivedResource

«interface»

+getCreationResources() : Set<Resource>

<} Engine
+getName() : String

+getDescription() : String

Figure 6.1: MT Engine class diagram.

the primary resources used to construct an engine. This allows thenpraze
of the engine to be preserved in the representation.

6.2 Optional Engine Functionality

Mixin interfaces are used to add optional functionality to an MT engine. This a
lows the application programmer to choose mixins useful to the kind of MT engine
being constructed. Using mixins in this way prevents the application program-
mer from being tied to this API; it does not mandate that any class inheritance is
used. This is particularly useful when using languages that do nobsuppltiple
inheritance and can be used alongside existing frameworks and clasmshies.

The mixins provided define the following operations:

e Composition: compose one MT engine with another,

e Evaluation: score an MT engine,

Update parameters: mutate runtime optipasameters,
Querying: invoking translations one sentence at a time,
Training and retraining: for SMT engines to build appropriate models,

Testing: provide resources to test a constructed MT engine, and

28

e Updating: mutation of an existing engine to adapt to new data or rules.

The operations, in the mixins, that could represent computationally exgensi
operations use a asynchronous invocation pattern. In order to tracipénation
the caller of these methods receiveticket The ticket is used to represent an
“in flight” operation and, once complete, SHALL be used in a notification. Noti-
fications are used to inform the application of the state of a completed operation
submitted, starting, or completed successfully or failed.

Figure[6.2 shows the mixin interfaces for optional engine functionality. All of
the mixin interface methods MUST be passed a session object. This segsicin ob
SHALL represent the session that is invoking the operation. Sessiodestebed
in Sectior 4.11.

6.2.1 Ticketable Engines

TheTicketableEngine mixin defines a method that SHALL be used to retrieve

the issued tickets for operations on an engine. TieketableEngine: :retrieveTickets ()
takes a predicate object that SHALL be used to filter the tickets and retetroé s
EngineTicket objects which meets the predicate. It is implementation defined as

to which engine tickets are returned when user authorisation is employdg. On

users that are authorised to retrieve some or all engine tickets SHOUL [xdre ta

into account when implementirii cketableEngine interface. This is the base
interface of all the engine mixin interfaces.

6.2.2 Composing Engines

The composition mixin allows applications to chain engines together. This is
equivalent to function composition, i.e., suppose two engifyeandE,. Execut-

ing theComposableEngine: : compose () method usindz; as the owning object,
i.e., E;.composéEy), then the resultant engine is:

Eresuttant= E2(E1(9)),

wheresis a sentence begin translated.

The data exchange format for the engines is also defined in the fornaahpar
ters of the compose method. The interfaa@aExchangeFormat specifies which
format is to be used to exchange data from endieto engineE,. The exchange
format to use could be gleaned from session negotiation (see more @nNgess
gotiation in Section 412).

29

o€

:2'9 ainbi4

1Bu3g 1N

Ip SS9 UIXIW au

‘welbel

«winterface»
TicketableEngine

+retrieveTickets(in session : Session, in filter : Predicate<EngineTicket>) : Set<EngineTicket>

[m=———————

«interface»
ParameterisableEngine

+getParameters(in session : Session) : Map<KeyType, ParameterType>
+updateParameters(in session : Session, in newParameters : Map<KeyType, ParameterType>) : void

«interface»
ComposableEngine

+compose(in session : Session, in engine : Engine, in exchangeFormat : DataExchangeFormat, in resultantEngine : Engine,
in priority : Priarity<PriorityType>, in ticketObserver : TicketObserver<CompositionTicket>) : CompositionTicket

«interface»
DataExchangeFormat

+getlongName() : string
+getShortName() : string
+getVersion() : string
+getRevision() : string
+getReleaseDate() : Date
+getEndOfLifeDate() : Date

«interface»
EvaluatableEngine

L

=" 1 !

+getScores(in session : Session) : Set<Score>

+evaluate(in session : Session, in evaluationResources : Set<PrimaryResource>, in priarity : Priority<PriorityType>, in ticketObserver : TicketObserver<EvaluationTicket>) : EvaluationTicket

| sttt bl

«interface»
QueryableEngine

riorityType

L—— —_——

+query(in session : Session, in sourceSentence : string, in priority : Priority<PriorityType>, in ticketObserver : TicketObserver<QueryTicket>) : QueryTicket

| I h

«interface»
RetrainableEngine

+retrain(in session : Session, in retrainingResources : Set<PrimaryResource>, in priority : Priority<PriorityType>, in ticketObserver : TicketObserver<TrainingTicket>) : TrainingTicket

«interface»
TestableEngine

L

PriorityType |

+test(in session : Session, in testingResources : Set<PrimaryResource>, in priority : Priority<PriorityType>, in ticketObserver : TicketObserver<TestingTicket>) : TestingTicket

«interface»
TrainableEngine

| h

riorityType

[—

+train(in session : Session, in trainingResources : Set<PrimaryResource>, in priority : Priority<PriorityType>, in ticketObserver : TicketObserver<TrainingTicket>) : TrainingTicket

«interface»
UpdatableEngine

L—

+update(in session : Session, in parameters : ParametersType, in priority : Priority<PriorityType>, in ticketObserver : TicketObserver<UpdateTicket>) : UpdateTicket
+getParameters(in session : Session, in priority : Priority<PriorityType>, in observer : TicketObserver<EngineTicket>) : EngineTicket

——————————— b
X |

riorityType

1 KeyType, ParameterType |

«interface»
ScoreScheme

+getName() : string

+getDescription() : string

«interface»
Score

+getScheme() : ScoreScheme
+getScore() : double

+getResources() : Set<PrimaryResource>

Since this operator could take a considerable amount of time this operation
is ticketed and prioritised. Therefore, an observer SHALL be provitlatishall
receive notifications. Also, @ompositionTicket is returned to the caller.

6.2.3 Evaluating Engines

One important benchmark of an engine’s translation performance is scor-
ing. Many scoring schemes exist, e.g., BLEU and METEOR, and the
EvaluatableEngine mixin allows engines to be ranked using any scoring
scheme. The&valuatableEngine::evaluate() method SHALL be imple-
mented for the scoring scheme(s) used. The primary resources usexh-to ¢
erate the score are passed into the method amgaduationTicket is re-
turned. Since this is a ticketed operation a ticket observer is required which
will receive notifications as the evalutation operation proceeds. This ften
long running task is also prioritised. Once complete a record of the score or
scores SHALL be constructed using tBeore and ScoreScheme interfaces.
TheEvalutableEngine: :getScores() method SHALL be used to retrieve the
scores for the engine.

TheScore interface defines:

e Scoring ScheméheScoringScheme defines the scheme used and SHALL
be retrieved with th&core: : getScheme () method.

e Score A double precision value which is the generated score. The
Score: :getScore() method SHALL be used to retrieve the score.

e Resource Provanenc@ny primary resources that were used to generate the
score SHALL be retrievable using tiSeore: :getResources().

6.2.4 Queryable Engines

Users of MT systems require that translations are done on a sentersegHeyice
basis to test a constructed engine. TheryableEngine mixin supports this use
case. Invoking thQueryableEngine: :query() method with a sentence, and a
priority SHALL return query ticket. This operation is ticketed since the it could
take a considerable amount of time, even though it is only a single sentence. A
observer SHALL be provided to notify the application of the query opematio

31

6.25 Trainableand Re-trainable Engines

TheTrainableEngine andRetrainableEngine mixin interfaces are included

for SMT systems. However, it is not unreasonable that these mixins wilkbd u

in a non-SMT engine implementation. Typically training and re-training an SMT
engine can take a considerable amount of time even using small corpoogedl
ations in these mixin interfaces are ticketed and prioritised. As with all the ticketed
operations, a ticket observer SHALL be required. Primary resoweesised to
train and re-train SMT engine and a collection of these instances SHALadsed

to the TrainableEngine::train() and RetrainableEngine::retrain()
methods.

6.2.6 Testable Engines

Testing a constructed or updated engine is a crucial step in developingnmach
translation engines: the developer needs some level on confidencecthairisia-
tion performance of an engine meets some benchmark or criteria. Testingiae e
could take a considerable amount of time and, thereforeTéls@ableEngine
mixin interface tickets the testing operation. Thestable::test() method
SHALL be implemented to carry out ticketed testing tasks. This method SHALL
be given a ticket observer, a priority, and a collection of primary ressuto use

as test vectors.

6.2.7 Updatable Engines

Engines from time-to-time will require maintenance. In rule-based systems
new rules could be required, and in SMT based systems tuning operations
may be needed once training is complete. TpdatableEngine mixin al-
lows for these potentially long running and mutating operations to be imple-
mented. The engine’s updatable parameters SHALL be fetched by implementing
theUpdatableEngine: :getParameters() method. Since retrieving parameters
could potentially take some time it is ticketed and prioritised.

Updating, or mutating, the engine SHALL be achieved by implementing the
UpdatableEngine: :update () method. This operation is ticketed and requires a
ticket observer. A priority is used to fairly schedule this updating request.

32

6.2.8 Parameterisable Engines

Machine translation engine software MAY require options and settings ierord

to configure the operation of an engine. These name-value pairs are gaille
rametersin this APIl. TheParameterisableEngine interface SHALL mixin

a getter and a setter for engine parameters. To retrieve an engine’'s cur-
rent parameters tharameterisableEngine: :getParameters() SHALL be

used. Commiting parameters back to the engine SHALL be done using the
ParameterisableEngine: :updateParameters() method. These operations
are expected to complete quickly, since they are accessing files or membgrea
thereforenot ticketed.

33

Chapter 7

Trandators

Translators are a conglomeration of an MT engine, translation memoriesad g
saries. A translator SHALL specify at least one of these resourchis. allows
translators to support translations using any combination of MT, TM or gliess

It is the responsibility of application programmers to handle these resouareas
appropriate way for the flavour of translation required.

Translations are typically computationally expensive and can take a conside
able amount of time to complete. In an MT system that is multi-user computation
resources should be shared fairly between the demands of the submitigld-tra
tions. As with MT engine operations (see Chapter 6), translations SHAlticke
eted and a ticket observer is REQUIRED to receive notifications of tigggse of
a translation task.

The standard models a translator as a derived resourcBdseeedResource
interface in Figuré_3]1). An abstract and associative class catlenslator is
defined, and is shown in Figufe 7.1. There are two methods for perforaning
translation:

e Primary Resource Translatior primary resource uploaded to the MT sys-
tem can be translated. It is application defined as to which kind of primary
resources are supported for translation. If supported, it is implementiion
fined as to whether any pre- or port-processing is required, e.g. filenfijte
If the primary resource is not supported thieketObserver::notifyError()
SHOULD be called immediately. For a description of ticket observers see
Sectior{ 5.11.

e Sentence-by-sentence Translatidranslations can be supported that consist
of a single sentence. Recall that MT engines can be queried sentgnce-b

34

GE

‘wesBelp sseo 1ojejsuel] T/ ainbi-

Translator

+scheduleTranslation(in session : Session, in resourceToTranslate : PrimaryResource, in priority : Priority<PriorityType>, in translationObserver : TicketObserver<TranslationTicket>) : TranslationTicket
+scheduleTranslation(in session : Session, in sourceSentence : string, in priority : Priority<PriorityType>, in translationObserver : TicketObserver<TranslationTicket>) : TranslationTicket

+retrieveTranslations(in session : Session, in filter : Predicate<TranslationTicket>) : Set<TranslationTicket>

1 ~translator 1 _translator

0.* -engine 0.* -glossaries

«interface» «interface»
Gossary

-translator

Q.* -translationVemory

«interface»
TranslationlViermory

sentence (see Sectibn 612.4) to perform a translation using only the engine.
However here, TM and glossaries can be mixed into a richer translation that
uses any translation pipeline that may be implemented.

The methods defined in tHEranslator abstract class SHALL be passed a
session object. This session object SHALL represent the session thebking
the operation. A detailed description of sessions can be found in Secflon 4.1

The abstract clasBranslator holds references to, optionally, an MT engine,
translation memories and glossaries. Translations are scheduled usingthe p
morphic methodlranslator: :scheduleTranslation(). One version of this
method takes a primary resource object, and the other a string object, thibse me
ods SHOULD be used for document and sentence-by-sentence tiemstspec-
tively. The polymorphic translation method SHALL be provided with a priority
and a ticket observer and returngmanslationTicket object as a receipt for
the translation task. This ticket SHALL be made available in the ticket observer
callback methods.

A single translator can be used to schedule many translations, i.e.,
the same resources used to translate many primary resources or sentence
To query the translations that have been scheduled but not completed the
Translation: :retrieveTranslations() method SHALL be implemented.
This method takes a predicate object to filter the translations. It is implementa-
tion defined as to which user’s sessions are authorised to retrieve wdnahetiion
tickets. The authorisation model SHALL be application defined but MAY be de
pendent on which usé&ession owns a translator object.

Implementers of the abstrattranslator class should extend it to use their
favourite detached execution environment to execute the translation thsks.
left to the application programmer to decide how the computational resoukes a
shared between translations. For example, using a distributed resounagena
ment system such a cluster or grid computing separate job queues canfige co
ured to segregate the logically disparate translation tasks.

36

Bibliography

[1]
[2]

[3]

[4]

[5]

[6]

SRX Standarchttp://okapi.opentag.com/help/lib/ui/segmentation/srx.htmll

TMX 1.4b Specificationhttp: //www.gala-global.org/oscarStandards/tmx/,
2005.

Internationalization Tag Set (ITS) Version 1.0.
http://www.w3.org/TR/its/}, 2007.

Systems to manage terminology, knowledge, and content - TermBase eX-
change (TBX)http://www.ttt.org/oscarStandards/tbx/, 2008.

XLIFF Version1.2http://docs.oasis-open.org/x1iff/x1iff-core/x1iff-core.html,
2008.

UTX Specification Version 1.1’ http://www.aamt.info/english/utx/utx1l.11-specification-
2011.

37

http://okapi.opentag.com/help/lib/ui/segmentation/srx.html
http://www.gala-global.org/oscarStandards/tmx/
http://www.w3.org/TR/its/
http://www.ttt.org/oscarStandards/tbx/
http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html
http://www.aamt.info/english/utx/utx1.11-specification-e.pdf

	Introduction
	Overview
	Architecture
	Notational Coventions

	Implementation
	Language Bindings
	Namespace
	Multithreading
	Reference Implementation

	Resources
	Sessions, Negotiation and Authorisation
	Sessions
	Session Negotiation
	Capabilities

	Authorisation

	Scheduling
	Tickets
	Priority

	Machine Translation Engines
	Engines
	Optional Engine Functionality
	Ticketable Engines
	Composing Engines
	Evaluating Engines
	Queryable Engines
	Trainable and Re-trainable Engines
	Testable Engines
	Updatable Engines
	Parameterisable Engines

	Translators

