
Pipeline Creation Language (PCL)
User Manual
Version: 1.0.2-beta

Ian Johnson

July 9, 2013

Abstract

Pipeline Creation Language (PCL) is a general purpose language for creating non-

recurrent software pipelines. This manual describes the syntax of PCL, how to

compile it, and run it. Also, how to adapt your existing scripts or programs for use

with PCL.

PCL was developed as part of the MosesCore project sponsored by the Eu-

ropean Commission’s Seventh Framework Programme (Grant Number 288487)

http://www.statmt.org/mosescore/. For more information on the Seventh

Framework Programme please see http://cordis.europa.eu/fp7/home_en.

html.

http://www.statmt.org/mosescore/
http://cordis.europa.eu/fp7/home_en.html
http://cordis.europa.eu/fp7/home_en.html

Contents

1 Introduction 1
1.1 License and Availability . 1

2 PCL Compiler 2
2.1 PCL Syntax . 2

2.1.1 Imports . 4

2.1.2 Port Definition . 5

2.1.3 Configuration . 7

2.1.4 Declarations . 7

2.1.5 Definition . 9

2.1.6 Identifier . 17

2.1.7 Qualified Identifier . 17

2.1.8 Literal . 18

2.1.9 Example PCL file . 19

2.2 Usage . 21

3 PCL Runtime 23
3.1 Pipeline Configuration . 24

3.2 Running a Pipeline . 24

3.3 Gotchas . 25

3.4 Using PCL in your own Python programs 25

4 Adapting to PCL 28
4.1 Python Wrapper . 28

4.2 Future Work . 31

i

List of Figures

2.1 PCL file syntax. 3

2.2 imports : Importing PCL files. 4

2.3 port definition : Component port definition. 5

2.4 configuration : Component configuration. 7

2.5 Example declaration of PCL configuration. 7

2.6 declarations : Imported component construction. 8

2.7 configuration mapping : Declaration configuration mapping . 8

2.8 Example of component construction. 8

2.9 component expression : Component definition. 9

2.10 merge mapping : Merge component mapping. 13

2.11 wire mapping : Wire mapping. 14

2.12 mapping : Mapping. 14

2.13 condition expression : If component’s condition expression. . 16

2.14 configuration identifier : If component’s condition expres-

sion configuration identifier. 17

2.15 identifier : Identifier. 18

2.16 qualified identifier : Qualified identifier. 19

2.17 literal : Literal. 20

2.18 Example PCL file. 21

4.1 sleep.py: An example Python wrapper for PCL. 31

ii

Chapter 1

Introduction

Pipeline Creation Language (PCL) is a general purpose language for creating non-

recurrent software pipelines. PCL is a small grammar for combining computation

using re-usable components which can be shared or distributed. A number of com-

binator operators are defined which execute components sequentially or in parallel.

Also, a number of pre-defined components can be used to “glue” components to-

gether, merge parallel outputs, or conditional execute components.

PCL was developed as part of the MosesCore project sponsored by the Eu-

ropean Commission’s Seventh Framework Programme (Grant Number 288487)

http://www.statmt.org/mosescore/. For more information on the Seventh

Framework Programme please see http://cordis.europa.eu/fp7/home_en.

html.

1.1 License and Availability

PCL compiler and runtime has been released under a LGPL v3.01 license. It is

available from GitHub using the following command:

git clone https://github.com/ianj-als/pcl.git

1See the GNU Lesser General Public License at http://www.gnu.org/copyleft/lesser.
html

1

http://www.statmt.org/mosescore/
http://cordis.europa.eu/fp7/home_en.html
http://cordis.europa.eu/fp7/home_en.html
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html

Chapter 2

PCL Compiler

PLCc is the PCL compiler. It is located in the src/pclc directory of the Git clone

and your path should be set according. This chapter introduces the PCL syntax

using railroad diagrams. Railroad diagrams illustrate valid PCL and are read from

left to right, following the lines as a train would. The symbols in the yellow ovals

are to be typed as is. The symbols in the tan rectangles references another railroad

diagram. The referenced diagram should be used to expand the rectangle in more

valid PCL. Hexagons contain character classes and specify a range of characters

that will be accepted.

2.1 PCL Syntax

PCL is a free-form language which allows the programmer to use arbitrary white-

space to format your component definitions. Comments are a single line and should

start with the # and can appear at any point in a PCL file. The top level syntax of a

PCL file is shown in Figure 2.1, and consists of the following sections:

• Imports: Imports can be optionally specified. Importing, as in other lan-

guage, makes available other components to the PCL component being writ-

ten.

• Component: This starts the component definition and provides the name.

The component’s name must be the same as the filename. E.g., a component

in fred.pcl must be called fred.

• Inputs: Defines the inputs of the component. This information is used to

verify that the outputs of a previous component is compatible with another.

2

Figure 2.1: PCL file syntax.

3

• Outputs: Defines the outputs of the component. This information is used to

verify that the inputs of a subsequent component is compatible with another.

• Configuration: Optional configuration for the component. This is static data

that shall be used to construct imported components used in this component.

• Declarations: Optional declarations of components used in this component.

This is where the import components are constructed.

• Definition: This portion is the component definition. It is an expression

which defines how the constructed components are to be combined to create

the computation required.

2.1.1 Imports

Figure 2.2: imports : Importing PCL files.

Extant PCL components can be used in other PCL components. The mech-

anism for using components is through importing. There can be zero or more

imports in a PCL file. Figure 2.2 shows the syntax for importing.

The imported component is referenced using an identifier which can be fully

qualified using a dot separated name. If the component is referenced using one or

more dots the sequence of identifiers, apart from the last one, is used to address a

package of components. The last identifier specifies the component name. The en-

vironment variable PCL IMPORT PATH is a colon separated list of directories from

which a search shall take place for the PCL components. If this environment vari-

able is not set then the current working directory is used as a starting point for the

component search.

Each imported component must specify an alias. This is the name by

which this component shall be referred to in this PCL file. E.g., import

components.utility.sleep as sleep comp shall import a PCL component

called sleep from the package components.utility and shall be refereed to as,

i.e. has the alias, sleep comp.

4

2.1.2 Port Definition

Figure 2.3: port definition : Component port definition.

A port definition informs the PCL compiler about the nature of a component’s

input or an output. Components can have 2, 3 or 4 ports: one input and output port,

one input port and two output ports, two input ports and one output port, or two

5

input and output ports. Figure 2.3 shows the syntax for this grammatical construct.

A port can carry one or more signals. A signal is a piece of data that flows

through ports and has a unique name to that port, and can be fully qualified1. The

signal names, for a port, are declared in a port definition. The “shape” of a port

definition declares whether an input or an output has one or two ports. For example,

consider the following input and output port definitions:

• A component with one input and one output port. Input signals are tom,

dick, harry and output signals are disley and standedge.

component tunnel

inputs tom, dick, harry

outputs disley, standedge

...

• A component with one input and two output ports. Input signal is

fruit.banana. The top output port signal is veg.carrot and the bottom

output port signals are fruit.super, and fruit.salad.

component split

inputs fruit.banana

outputs (veg.carrot), (fruit.super, fruit.salad)

...

• A component with two inputs and one output port. Input signals for the top

port are tea and coffee, and the signals for the bottom port are milk, and

water. The output port’s single signal is drink.

component pot

inputs (tea, coffee), (milk, water)

outputs drink

...

• A component with two input and output ports. Input signals for the top port

are zippy and george, and the signals for the bottom port are rod, jane,

and freddy. The output signals are for the top port are geoffrey, and the

bottom port signals are bungle and zippo.
1It may be easier to group signals through the use of a hierarchical naming convention, e.g.,

a.b.c and a.b.d.

6

component rainbow

inputs (zippy, george), (rod, jane, freddy)

outputs (geoffrey), (bungle, zippo)

...

2.1.3 Configuration

Figure 2.4: configuration : Component configuration.

A component’s configuration is static data that is primarily used for construct-

ing import components. Configuration data is named using identifiers, which can

be fully qualified. Figure 2.4 shows the configuration syntax. Configuration iden-

tifiers may also be used in if components see Section 2.1.5 for details. A PCL can

declare zero or more configuration identifiers.

Figure 2.5 shows an example of configuration being declared in a PCL file.

Here the parallel sleep component shall be constructed using two configura-

tion values, namely sleep command and sleep time.

import sleep as sleep

component parallel_sleep

...

configuration sleep_command, sleep_time

...

Figure 2.5: Example declaration of PCL configuration.

2.1.4 Declarations

The declaration section of a PCL file is where the imported components can be

constructed using the configuration available in the importing component’s PCL.

Figure 2.6 shows the syntax for component construction. All declarations are as-

signed to an identifier which shall be unique. The import alias (see Section 2.1.1)

7

Figure 2.6: declarations : Imported component construction.

is used to reference the imported component from which an instance is created.

There is an optional with clause which allows configuration to be mapped into a

component’s constructor. Figure 2.7 shows the configuration mapping syntax

Figure 2.7: configuration mapping : Declaration configuration mapping

The PCL snippet in Figure 2.8 shows an example of constructing imported

components. Here two instances of the same component are constructed, namely

import sleep as sleep_component

import message as message_component

component parallel_sleep

input sleep_time

outputs (complete), (complete)

configuration sleep_command

declare

top_sleep := new sleep_component

with sleep_command -> command.sleep

bottom_sleep := new sleep_component

with sleep_command -> command.sleep

message_world := new message_component

...

Figure 2.8: Example of component construction.

the sleep component, which has the alias sleep component. The sleep com-

ponent specifies the configuration command.sleep so the with clause maps the

parallel sleep component’s configuration to the sleep component’s configu-

8

ration. The message component, on the other hand, requires no configuration in

order to construct it.

2.1.5 Definition

This section of the PCL file is where the component’s computation is to be defined.

The components constructed in the declarations are to be combined to produce a

composite component. Figure 2.9 shows the recursive syntax, which builds a single

expression, for this section.

Figure 2.9: component expression : Component definition.

9

Composition

The >>> combinator sequences two components, one after the other. For example

comp one >>> comp two will produce a component which will apply the output

of comp one to the input of comp two.

Consider two components both with one input and output port, the first com-

ponent, c1, has an input signal called b and output signal called c, and the second

component, c2, has an input signal called c and an output signal called d. Then

composing these components, c1 >>> c2, yields a component whose input signal

is called b and an output signal called d.

In order for the components to compose the output of the left-hand side must

be compatible with the input of the right-hand side. That is, the number of ports

must be identical and the signals must correspond. PCLc will produce an error

during compilation if the components are not compatible.

First

The first combinator takes a single component and produces a two input and

output port component. The top, or first, element of the input is applied to the

component, whilst the bottom, or second, input element passes through the resul-

tant component untouched. This second input signal’s value is remembered across

the computation of the provided component.

Consider a component, c, with one input and one output port whose signals

are b and c respectively. Applying the first combinator to c, with f irst c, yields

a component that has two input ports with the port specification (b), (d), and two

output ports with specification, (c), (d).

Second

The second combinator takes a single component and produces a two input and

output port component. The bottom, or second, element of the input is applied to

the component, whilst the top, or first, input element passes through the resultant

component untouched. This first input signal’s value is remembered across the

computation of the provided component.

Consider a component, c, with one input and one output port whose signals are

b and c respectively. Applying the second combinator to c, with second c, yields

a component that has two input ports with the port specification (d), (b), and two

output ports with specification, (d), (c).

10

Parallel

The *** combinator composes two components such that they run in parallel.

This combinator is best explained in terms of the first, second and composition

combinators. Thus,

a ∗ ∗ ∗ b = f irst a >>> second b

Hence, for two components:

• c1: One input port, with port specification b, and one output port, with spec-

ification c, and

• c2: One input port, with port specification d, and one output port, with spec-

ification e.

Then c1 ∗ ∗ ∗ c2 shall yield a two input and output port component with:

• Input port specification (b), (d), and

• Output port specification (c), (e).

Split

Split is a pre-defined component which has one input port and two output ports.

Split simply takes the signals on it’s input and copies them to both output ports.

Hence, splitting the input to the output.

Fanout

The &&& combinator yields a component with one input port and two output ports.

It is defined as:

a &&& b = split >>> (f irst a ∗ ∗ ∗ second b)

Since split is begin used both components, a and b, require their input port sig-

nals to be compatible with the input to split.

Consider two components:

• c1: One input port, with port specification b, and one output port, with spec-

ification c, and

• c2: One input port, with port specification b, and one output port, with spec-

ification d.

11

Then c1 &&& c2 shall yield a one input and two output port component with:

• Input port specification b, and

• Output port specification (c), (d).

PCLc verifies that components, used with the fanout combinator, have com-

patible ports and signals. The compiler will report errors if there are incompatible

components used.

Merge

The merge component is a pre-defined component that expects a mapping and

merges the output from a two output port component to a single port component.

Hence, a merge component has two input ports and one output port.

The merge mapping syntax is shown in Figure 2.10. The merge mapping spec-

ifies which signals from the top and bottom input ports shall be mapped to the

output port to uniquely named signals. Constant values can also be introduced to

the output. Further to this, signals can be dropped, that is, a signal that is not passed

onto the subsequent component.

Consider a component with two output ports, with the following port specifi-

cation

(src. f ile.name, src. f ile.size), (ob j. f ile.name, ob j. f ile.size)

that needs merging into a single port, with specification:

source f ilename, ob ject f ilename, source language

The following merge expression could be used:

merge top[src.file.name] -> source_filename,

top[src.file.size] -> _,

bottom[obj.file.name] -> object_filename,

bottom[obj.file.size] -> _,

"PCL" -> source_language

This merge mapping does the following:

• The signal src.file.name, in the top input port, is mapped to the output

port signal source filename,

12

Figure 2.10: merge mapping : Merge component mapping.

• The signal src.file.size, in the top input port, is dropped and is not

present in the output port signals,

• The signal obj.file.name, in the bottom input port, is mapped to the out-

put port signal object filename,

• The signal obj.file.size, in the bottom input port, is dropped and is not

13

present in the output port signals, and

• The string literal PCL is mapped into the output port’s source language

signal.

Other constant literals can be used in a merge mapping and are described in Section

2.1.8.

Wire

Wire components are used to adapt one component’s output signals to match the

expected input signals of a subsequent component. Wires can only be used to adapt

adjacent components that have an equal number of ports, i.e., the resultant wire

component always has the same number of input ports as output ports. The wire

mapping determines whether a one or two port component is being adapted, this is

shown in Figure 2.11. The mapping syntax is shown in Figure 2.12. In common

Figure 2.11: wire mapping : Wire mapping.

Figure 2.12: mapping : Mapping.

with the merge mapping, signals can be mapped into other signals, dropped, or

assigned literal values.

Consider the following wire component:

wire src.file.name -> source_filename,

src.file.size -> _,

"PCL" -> source_language

14

This mapping adapts two components with one output and one input port with the

following port specifications,

src. f ile.name, src. f ile.size

and

source f ilename, source language

respectively.

A two input and output port wire is defined thus,

wire (src.file.name -> source_filename,

src.file.size -> _,

"PCL" -> source_language),

(obj.file.name -> object_filename,

obj.file.size -> _,

"Python" -> object_language)

This mapping adapts two components with two output and two input ports with the

following port specifications,

(src. f ile.name, src. f ile.size), (ob j. f ile.name, ob j. f ile.size)

and

(source f ilename, source language), (ob ject f ilename, ob ject language)

respectively.

If

The if component provides a mechanism to conditionally execute components in

a pipeline. The first argument to the if component is a condition expression, the

second is the then component, and the third is the else component. The then and

else components must:

• only specify one input port,

• specify identical signals on the input ports,

• have identical numbers of output ports (one or two), and

15

• specify identical signals in their output ports.

If the condition expression is evaluated to a truthy value the then component

shall be executed, otherwise the else component is executed. In Figure 2.13 the

Figure 2.13: condition expression : If component’s condition expression.

recursive syntax for the condition expression is shown. A condition expression is

built up using the logical operators (or, and, and xor)2, and the relational opera-

tors (==, !=, >, <, >=, and <=)3. The identifier and qualified identifier

refer to the signals in the input ports of the then and else components. Also, con-

figuration identifiers may be used in a condition expression, the grammar of which

is shown in Figure 2.14. This allows both the values of input port signals and
2Hopefully these operators require no explanation.
3And these! ;)

16

Figure 2.14: configuration identifier : If component’s condition expression
configuration identifier.

configuration to be used to decide on which component to execute.

Consider the following PCL snippet:

...

component conditional

inputs a, b

outputs z

configuration f

...

as

if (a == True or a != b) and @f == False

then_component

else_component

...

The then component shall only be executed if the input a is true or a and b are

equal, and the configuration f is false.

2.1.6 Identifier

In common with other programming languages PCL offers identifiers which can

start with a letter or an underscore and then any number of letters, numbers or

underscores, or diagrammatically see Figure 2.15.

2.1.7 Qualified Identifier

Qualified identifiers allows PCL developers to namespace their identifiers using dot

separated identifiers, e.g., tokeniser.source.filename. Their syntax is shown

in Figure 2.16. Qualified identifiers are available for use in:

• Imports: qualified identifiers are used to address compiled PCL components

(see Section 2.1.1),

17

Figure 2.15: identifier : Identifier.

• Port definitions: input and output signals can be namespaced for clarity (see

Section 2.1.2),

• Configuration: configuration identifiers can be namespaced for clarity (see

Section 2.1.3),

• Declarations: configuration mapping may required namespaced configura-

tion to be used (see Section 2.1.4),

• Merge and wire mappings: mapped port can contain namespaced signal

names (see Section 2.1.5 and Section 2.1.5 respectively), and

• If conditions: configuration used in if condition expressions may be names-

paced (see Section 2.1.5).

2.1.8 Literal

Literal constants can be used to inject values into component constructors, merge

and wire mappings, and if condition expressions. They take the form of:

• Numbers: integer and floating point, e.g., -7, 2.71828, 6.674e-11,

• Strings: string must be quoted using double quotes (") and special characters

can be escaped using a backslash (\), e.g. "This is a line of text\n",

and "Quoting is \"allowed\" by escaping the quotes", and

• Booleans: true and false.

Figure 2.17 shows their syntax.

18

Figure 2.16: qualified identifier : Qualified identifier.

2.1.9 Example PCL file

This example PCL file can be found in the parallel sleep example PCL. This

component constructs two sleep components using a static sleep command to ex-

ecute. The two sleep components are composed using the fanout operation, such

that they run in parallel. Other example PCL files can be found in the examples

19

Figure 2.17: literal : Literal.

directory of your Git clone.

20

import sleep as sleep

component parallel_sleep

input sleep_time

outputs (complete), (complete)

configuration sleep_command

declare

top_sleep := new sleep with sleep_command -> sleep_command

bottom_sleep := new sleep with sleep_command -> sleep_command

as

top_sleep &&& bottom_sleep

Figure 2.18: Example PCL file.

2.2 Usage

Ensure you have src/pclc/pclc.py in your platform path. Running pclc.py

-h yields:

Usage: pclc.py [options] [PCL file]

Options:

-h, --help show this help message and exit

-l LOGLEVEL, --loglevel=LOGLEVEL

parser log file reporting level

[default: WARN]

-i, --instrument Generated code shall instrument

components

-v, --version show version and exit

The command-line options are:

• -h, --help: Display the help message,

• -l, --loglevel: The logging level for the pclc.log file that is created

during compilation. This file, depending on log level, shall show information

about the parsing internals of PCLc,

• -i, --instrument: Specifying this flag shall add code to the generated

component which shall log to standard error when the component’s con-

21

structed and used components start and finish. The log messages are time

stamped so can be used as a rudimentary profiling tool, and

• -v, --version: Show the version of PCLc.

For example, change directory to src/examples/parallel sleep and issue

the command:

pclc.py -i parallel_sleep.pcl

The pcl extension is not required so running the compiler with:

pclc.py -i parallel_sleep

has the same effect. The compilation process will generate three new files:

• parallel sleep.py: The object code from the compilation. PCL compiles

to Python and this file shall be used by the runtime to build the final pipeline,

• init .py: Since the compiled PCL is a Python module, in order to import

it at runtime PCLc must write this file to show that this is a Python package,

and

• pclc.log: The log file for the compilation. This is mainly used for support

but may be of interest to others.

In the next chapter you will see how to run pipelines using the Python based

runtime.

22

Chapter 3

PCL Runtime

The PCL runtime is an optional method of running a pipeline. It can be found in the

src/pcl-run directory of the Git clone. Ensure this directory is in your platform

path and issue:

pcl-run.py -h

This yields:

Usage: pcl-run.py [options] [PCL configuration]

Options:

-h, --help show this help message and exit

-v, --version show version and exit

-n NO_WORKERS, --noworkers=NO_WORKERS

number of pipeline evaluation

workers [default: 5]

The command-line options are:

• -h, --help: Display the help message,

• -v, --version: Show the version of PCLc.

• -n, --noworkers: The components are executed in a thread pool. This

option determines the maximum size of this thread pool. If you find that

components that are expected to execute in parallel are running sequentially,

then increasing the number of threads in the pool may help.

23

3.1 Pipeline Configuration

The pipeline configuration file contains the static configuration used by compo-

nents to construct other components, and the pipeline’s inputs. The filename must

be the same as the component you wish to run with a .cfg extension, e.g., the

parallel sleep configuration file is called parallel sleep.cfg. The con-

figuration file contains two sections [Configuration], for configuration values,

and [Inputs], for pipeline inputs. Each section contains key value pairs, e.g., the

parallel sleep configuration file looks like this:

[Configuration]

sleep_command = /bin/sleep

[Inputs]

sleep_time = 5

Environment variables can be used in configuration files with $(VAR NAME). The

environment variable, if it exists, shall be substituted and used in the pipeline.

3.2 Running a Pipeline

At the end of the last chapter you compiled the parallel sleep com-

ponent from the examples directory. To run this pipeline return to the

examples/parallel sleep direcotry and run:

pcl-run.py parallel_sleep.cfg

or

pcl-run.py parallel_sleep

After 5 seconds the runtime should display on stdout:

({’complete’: True}, {’complete’: True})

If, on the other hand, you have compiled this pipeline with instrumentation

enabled (see Section 2.2) you should see something like this:

07/02/13 15:45:40.851373: MainThread: Component parallel_sleep

is constructing bottom_sleep (id = 38338448) with

configuration {’sleep_command’: ’/bin/sleep’}

(sleep instance declared at line 27)

24

07/02/13 15:45:40.851504: MainThread: Component parallel_sleep

is constructing top_sleep (id = 38392400) with

configuration {’sleep_command’: ’/bin/sleep’}

(sleep instance declared at line 26)

07/02/13 15:45:40.852697: Thread-2: Component parallel_sleep

is starting top_sleep (id = 38392400) with input

{’sleep_time’: 5} and state {’sleep_command’: ’/bin/sleep’}

07/02/13 15:45:40.856738: Thread-2: Component parallel_sleep

is starting bottom_sleep (id = 38338448) with input

{’sleep_time’: 5} and state {’sleep_command’: ’/bin/sleep’}

07/02/13 15:45:45.857495: Thread-1: Component parallel_sleep

is finishing top_sleep (id = 38392400) with input

{’complete’: True} and state {’sleep_command’: ’/bin/sleep’}

07/02/13 15:45:45.859939: Thread-5: Component parallel_sleep

is finishing bottom_sleep (id = 38338448) with input

{’complete’: True} and state {’sleep_command’: ’/bin/sleep’}

({’complete’: True}, {’complete’: True})

The timestamped lines appear on stderr.

3.3 Gotchas

PCL allows for components to be defined in hierarchical namespace. All directo-

ries, in your PCL component heirarchical namespace, that do not contain PCL files

must contain init .py in order for the Python runtime to “see” these directories

as Python packages. Failure to do so will yield an error in the form:

ERROR: Failed to import PCL module parallel_sleep: No module

named parallel_sleep

3.4 Using PCL in your own Python programs

If you wish to running PCL pipelines in your own programs a function ex-

ists in src/pcl-run/runner/runner.py called execute module(executor,

pcl import path, pcl module, get configuration fn, get inputs fn).

This function returns a 2-tuple whose first element is the expected outputs of the

pipeline, and the second element is the output of the executed pipeline.

25

For example, the parallel sleep pipeline would output:

(([’complete’], [’complete’]),

({’complete’: True}, {’complete’: True}))

The inputs are:

• executor: A concurrent.futures.ThreadPoolExecutor object,

• pcl import path: A colon separated string of directories from which to

search for PCL components,

e.g., com.mammon.wizz.components.pre processing:

com.mammon.wizz.components.workers.

• pcl module: A dot separated string representing the path to a compiled PCL

module, e.g., trail.pipelines.gonzo,

• get configuration fn: A function which shall receive an iterable which

contains the expected configuration for the component. This fucntion shall

return a dictionary whose keys are the expected configuration along with

their values, e.g.,

def get_configuration(expected_configuration):

configuration = dict()

for config_key in expected_configurations:

configuration[config_key] =

You need to implement this function

get_configuration_from_provider(config_key)

return configuration

• get inputs fn: A function that shall receive the input port specification

for the component. A tuple indicates a two port input and shall contain two

iterable collections containing the signals for both input ports, otherwise it is

an iterable collection of signal names for the single output port. The function

shall return a 2-tuple of dictionaries whose keys are the expected input signal

names and values when the component has two input ports. Or, a dictionary

whose keys represent the signals of a single input port, e.g.,

26

def get_inputs(expected_inputs):

def build_inputs_fn(inputs):

input_dict = dict()

for an_input in inputs:

input_dict[an_input] =

You need to implement this function

get_input_from_provider(an_input)

return input_dict

if isinstance(expected_inputs, tuple):

inputs = list()

for set_inputs in expected_inputs:

inputs.append(build_inputs_fn(set_inputs))

inputs = tuple(pipeline_inputs)

else:

inputs = build_inputs_fn(expected_inputs)

return inputs

27

Chapter 4

Adapting to PCL

Today PCL gives you a convenient way of composing pre-existing PCL component

together in order to build packages of computation. To build PCL components

from your existing programs a Python file is required which wraps your code. The

Python contains six functions that inform PCLc about the nature of the component

defined:

• Component’s name,

• Input and output port specifications,

• Configuration and pre-processing configuration, and

• The component’s computation.

Care must be taken when adapting your existing work to PCL pipelines.

Threading issues and batch or on-line processing must be considered as the dy-

namics of your final pipeline may depend on it. Also, any state that may need to

accumulate over the lifetime of a PCL component must be handled by the adaptor

for your programs.

4.1 Python Wrapper

The Python wrappers for your programs can inhabit the same hierarchical package

structure as your PCL hierarchy. This is because the PCL hierarchy mirrors the

Python one1.

1This is the reason why init .py files must be manually placed in directories in your PCL
heirarchy which have no PCL files.

28

Six functions are required in your Python wrapper, they are:

• get name(): Returns an object representing the name of the component.

The str () function should be implemented to return a meaninful name.

E.g.,

def get_name():

return ’tokenisation’

• get inputs(): Returns the inputs of the component. Components should

only be defined with one input port, which is defined by returning a single

list of input port signal names. E.g.,

def get_inputs():

return [’port.in.a’, ’port.in.b’]

• get outputs() - Returns the outputs of the component. Components

should only be defined with one output port, which is defined by returning a

single list of output port signal names. E.g.,

def get_outputs():

return [’port.out.a’, ’port.out.b’, ’port.out.c’]

• get configuration(): Returns a list of names that represent the static

data that shall be used to construct the component. E.g.,

def get_configuration():

return [’buffer.file’, ’buffer.size’]

• configure(args): This function is the component designer’s chance to

preprocess configuration injected at runtime. The args parameter is a dic-

tionary that contains all the configuration provided to the entire pipeline.

This function is to filter out, and optionally preprocess, the configuration

used by this component. This function shall return an object containing con-

figuration necessary to construct this component. E.g. this example returns

a dictionary of configuration,

import os

def configure(args):

29

buffer_file = os.path.abspath(args[’buffer.file’])

return {’buffer.dir’ : os.path.dirname(buffer_file),

’buffer.file’ : os.path.basename(buffer_file),

’buffer.size’ : args[’buffer.size’]}

• initialise(config): This function is where the component designer de-

fines the component’s computation. The function receives the object re-

turned from the configure() function and must return a function that takes

two parameters, an input object, and a state object. The input object, a in the

example below, is a dictionary that is received from the previous component

in the pipeline. The keys of this dictionary are the signal names from the

previous component’s output port. The state object, s in the example below,

is a dictionary containing the configuration for the component. The keys

of the configuration dictionary are defined by the get configuration()

function. The returned function should be used to define the component’s

computation. E.g.,

import subprocess

def initialise(config):

def sleep_function(a, s):

proc = subprocess.Popen([config[’sleep_command’],

str(a[’sleep_time’])])

proc.communicate()

return {’complete’ : True}

return sleep_function

The function returned by initialise() is executed in the thread pool used

by the runtime (see Chapter 3). It is implementation defined as to whether

this function blocks, waiting for a computation to complete, or not.

An example of a complete Python wrapper file is shown in Figure 4.1. This

wrapper if used in the parallel sleep example PCL which can be found in

examples/parallel sleep directory of your Git clone.

30

import subprocess

def get_name():

return "sleep"

def get_inputs():

return [’sleep_time’]

def get_outputs():

return [’complete’]

def get_configuration():

return [’sleep_command’]

def configure(args):

return {’sleep_command’ : args[’sleep_command’]}

def initialise(config):

def sleep_function(a, s):

proc = subprocess.Popen([config[’sleep_command’],

str(a[’sleep_time’])])

proc.communicate()

return {’complete’ : True}

return sleep_function

Figure 4.1: sleep.py: An example Python wrapper for PCL.

4.2 Future Work

It is envisaged that the PCL syntax will be extended in order that these “bottom

level” PCL components can be defined in PCL. This will no longer require that

these components be defined in Python wrappers. However, this is for v2!

31

	Introduction
	License and Availability

	PCL Compiler
	PCL Syntax
	Imports
	Port Definition
	Configuration
	Declarations
	Definition
	Identifier
	Qualified Identifier
	Literal
	Example PCL file

	Usage

	PCL Runtime
	Pipeline Configuration
	Running a Pipeline
	Gotchas
	Using PCL in your own Python programs

	Adapting to PCL
	Python Wrapper
	Future Work

