/* * The little filesystem * * Copyright (c) 2017 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "lfs.h" #include "lfs_util.h" /// Caching block device operations /// static inline void lfs_cache_drop(lfs_t *lfs, lfs_cache_t *rcache) { // do not zero, cheaper if cache is readonly or only going to be // written with identical data (during relocates) (void)lfs; rcache->block = 0xffffffff; } static inline void lfs_cache_zero(lfs_t *lfs, lfs_cache_t *pcache) { // zero to avoid information leak memset(pcache->buffer, 0xff, lfs->cfg->prog_size); pcache->block = 0xffffffff; } static int lfs_bd_read(lfs_t *lfs, const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_size_t hint, lfs_block_t block, lfs_off_t off, void *buffer, lfs_size_t size) { uint8_t *data = buffer; LFS_ASSERT(block != 0xffffffff); if (off+size > lfs->cfg->block_size) { return LFS_ERR_CORRUPT; } while (size > 0) { if (pcache && block == pcache->block && off >= pcache->off && off < pcache->off + pcache->size) { // is already in pcache? lfs_size_t diff = lfs_min(size, pcache->size - (off-pcache->off)); memcpy(data, &pcache->buffer[off-pcache->off], diff); data += diff; off += diff; size -= diff; continue; } if (block == rcache->block && off >= rcache->off && off < rcache->off + rcache->size) { // is already in rcache? lfs_size_t diff = lfs_min(size, rcache->size - (off-rcache->off)); if (pcache && block == pcache->block) { diff = lfs_min(diff, pcache->off - off); } memcpy(data, &rcache->buffer[off-rcache->off], diff); data += diff; off += diff; size -= diff; continue; } if (size >= hint && off % lfs->cfg->read_size == 0 && size >= lfs->cfg->read_size) { // bypass cache? lfs_size_t diff = size - (size % lfs->cfg->read_size); int err = lfs->cfg->read(lfs->cfg, block, off, data, diff); if (err) { return err; } data += diff; off += diff; size -= diff; continue; } // load to cache, first condition can no longer fail LFS_ASSERT(block < lfs->cfg->block_count); rcache->block = block; rcache->off = lfs_aligndown(off, lfs->cfg->prog_size); rcache->size = lfs_min(lfs_min( lfs_alignup(off+hint, lfs->cfg->prog_size), lfs->cfg->block_size) - rcache->off, lfs->cfg->cache_size); int err = lfs->cfg->read(lfs->cfg, rcache->block, rcache->off, rcache->buffer, rcache->size); if (err) { return err; } } return 0; } static int lfs_bd_cmp(lfs_t *lfs, const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_size_t hint, lfs_block_t block, lfs_off_t off, const void *buffer, lfs_size_t size) { const uint8_t *data = buffer; for (lfs_off_t i = 0; i < size; i++) { uint8_t dat; int err = lfs_bd_read(lfs, pcache, rcache, hint-i, block, off+i, &dat, 1); if (err) { return err; } if (dat != data[i]) { return false; } } return true; } static int lfs_bd_flush(lfs_t *lfs, lfs_cache_t *pcache, lfs_cache_t *rcache, bool validate) { if (pcache->block != 0xffffffff && pcache->block != 0xfffffffe) { LFS_ASSERT(pcache->block < lfs->cfg->block_count); lfs_size_t diff = lfs_alignup(pcache->size, lfs->cfg->prog_size); int err = lfs->cfg->prog(lfs->cfg, pcache->block, pcache->off, pcache->buffer, diff); if (err) { return err; } if (validate) { // check data on disk lfs_cache_drop(lfs, rcache); int res = lfs_bd_cmp(lfs, NULL, rcache, diff, pcache->block, pcache->off, pcache->buffer, diff); if (res < 0) { return res; } if (!res) { return LFS_ERR_CORRUPT; } } lfs_cache_zero(lfs, pcache); } return 0; } static int lfs_bd_sync(lfs_t *lfs, lfs_cache_t *pcache, lfs_cache_t *rcache, bool validate) { lfs_cache_drop(lfs, rcache); int err = lfs_bd_flush(lfs, pcache, rcache, validate); if (err) { return err; } return lfs->cfg->sync(lfs->cfg); } static int lfs_bd_prog(lfs_t *lfs, lfs_cache_t *pcache, lfs_cache_t *rcache, bool validate, lfs_block_t block, lfs_off_t off, const void *buffer, lfs_size_t size) { const uint8_t *data = buffer; LFS_ASSERT(block != 0xffffffff); LFS_ASSERT(off + size <= lfs->cfg->block_size); while (size > 0) { if (block == pcache->block && off >= pcache->off && off < pcache->off + lfs->cfg->cache_size) { // already fits in pcache? lfs_size_t diff = lfs_min(size, lfs->cfg->cache_size - (off-pcache->off)); memcpy(&pcache->buffer[off-pcache->off], data, diff); data += diff; off += diff; size -= diff; pcache->size = off - pcache->off; if (pcache->size == lfs->cfg->cache_size) { // eagerly flush out pcache if we fill up int err = lfs_bd_flush(lfs, pcache, rcache, validate); if (err) { return err; } } continue; } // pcache must have been flushed, either by programming and // entire block or manually flushing the pcache LFS_ASSERT(pcache->block == 0xffffffff); // prepare pcache, first condition can no longer fail pcache->block = block; pcache->off = lfs_aligndown(off, lfs->cfg->prog_size); pcache->size = 0; } return 0; } static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block) { LFS_ASSERT(block < lfs->cfg->block_count); return lfs->cfg->erase(lfs->cfg, block); } /// Internal operations predeclared here /// static int lfs_fs_pred(lfs_t *lfs, const lfs_block_t dir[2], lfs_mdir_t *pdir); static int32_t lfs_fs_parent(lfs_t *lfs, const lfs_block_t dir[2], lfs_mdir_t *parent); static int lfs_fs_relocate(lfs_t *lfs, const lfs_block_t oldpair[2], lfs_block_t newpair[2]); static int lfs_fs_deorphan(lfs_t *lfs); static int lfs_fs_demove(lfs_t *lfs); static int lfs_fs_forceconsistency(lfs_t *lfs); static int lfs_deinit(lfs_t *lfs); /// Block allocator /// static int lfs_alloc_lookahead(void *p, lfs_block_t block) { lfs_t *lfs = (lfs_t*)p; lfs_block_t off = ((block - lfs->free.off) + lfs->cfg->block_count) % lfs->cfg->block_count; if (off < lfs->free.size) { lfs->free.buffer[off / 32] |= 1U << (off % 32); } return 0; } static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) { while (true) { while (lfs->free.i != lfs->free.size) { lfs_block_t off = lfs->free.i; lfs->free.i += 1; lfs->free.ack -= 1; if (!(lfs->free.buffer[off / 32] & (1U << (off % 32)))) { // found a free block *block = (lfs->free.off + off) % lfs->cfg->block_count; // eagerly find next off so an alloc ack can // discredit old lookahead blocks while (lfs->free.i != lfs->free.size && (lfs->free.buffer[lfs->free.i / 32] & (1U << (lfs->free.i % 32)))) { lfs->free.i += 1; lfs->free.ack -= 1; } return 0; } } // check if we have looked at all blocks since last ack if (lfs->free.ack == 0) { LFS_WARN("No more free space %"PRIu32, lfs->free.i + lfs->free.off); return LFS_ERR_NOSPC; } lfs->free.off = (lfs->free.off + lfs->free.size) % lfs->cfg->block_count; lfs->free.size = lfs_min(lfs->cfg->lookahead, lfs->free.ack); lfs->free.i = 0; // find mask of free blocks from tree memset(lfs->free.buffer, 0, lfs->cfg->lookahead/8); int err = lfs_fs_traverse(lfs, lfs_alloc_lookahead, lfs); if (err) { return err; } } } static void lfs_alloc_ack(lfs_t *lfs) { lfs->free.ack = lfs->cfg->block_count; } /// Metadata pair and directory operations /// static inline void lfs_pair_swap(lfs_block_t pair[2]) { lfs_block_t t = pair[0]; pair[0] = pair[1]; pair[1] = t; } static inline bool lfs_pair_isnull(const lfs_block_t pair[2]) { return pair[0] == 0xffffffff || pair[1] == 0xffffffff; } static inline int lfs_pair_cmp( const lfs_block_t paira[2], const lfs_block_t pairb[2]) { return !(paira[0] == pairb[0] || paira[1] == pairb[1] || paira[0] == pairb[1] || paira[1] == pairb[0]); } static inline bool lfs_pair_sync( const lfs_block_t paira[2], const lfs_block_t pairb[2]) { return (paira[0] == pairb[0] && paira[1] == pairb[1]) || (paira[0] == pairb[1] && paira[1] == pairb[0]); } static inline void lfs_pair_fromle32(lfs_block_t pair[2]) { pair[0] = lfs_fromle32(pair[0]); pair[1] = lfs_fromle32(pair[1]); } static inline void lfs_pair_tole32(lfs_block_t pair[2]) { pair[0] = lfs_tole32(pair[0]); pair[1] = lfs_tole32(pair[1]); } static void lfs_ctz_fromle32(struct lfs_ctz *ctz) { ctz->head = lfs_fromle32(ctz->head); ctz->size = lfs_fromle32(ctz->size); } static void lfs_ctz_tole32(struct lfs_ctz *ctz) { ctz->head = lfs_tole32(ctz->head); ctz->size = lfs_tole32(ctz->size); } static inline void lfs_superblock_fromle32(lfs_superblock_t *superblock) { superblock->version = lfs_fromle32(superblock->version); superblock->block_size = lfs_fromle32(superblock->block_size); superblock->block_count = lfs_fromle32(superblock->block_count); superblock->inline_max = lfs_fromle32(superblock->inline_max); superblock->attr_max = lfs_fromle32(superblock->attr_max); superblock->name_max = lfs_fromle32(superblock->name_max); } static inline void lfs_superblock_tole32(lfs_superblock_t *superblock) { superblock->version = lfs_tole32(superblock->version); superblock->block_size = lfs_tole32(superblock->block_size); superblock->block_count = lfs_tole32(superblock->block_count); superblock->inline_max = lfs_tole32(superblock->inline_max); superblock->attr_max = lfs_tole32(superblock->attr_max); superblock->name_max = lfs_tole32(superblock->name_max); } /// Entry tag operations /// #define LFS_MKTAG(type, id, size) \ (((uint32_t)(type) << 22) | ((uint32_t)(id) << 12) | (uint32_t)(size)) #define LFS_MKATTR(type, id, buffer, size, next) \ &(const lfs_mattr_t){LFS_MKTAG(type, id, size), (buffer), (next)} static inline bool lfs_tag_isvalid(uint32_t tag) { return !(tag & 0x80000000); } static inline bool lfs_tag_isuser(uint32_t tag) { return (tag & 0x40000000); } static inline uint16_t lfs_tag_type(uint32_t tag) { return (tag & 0x7fc00000) >> 22; } static inline uint16_t lfs_tag_subtype(uint32_t tag) { return (tag & 0x7c000000) >> 22; } static inline uint16_t lfs_tag_id(uint32_t tag) { return (tag & 0x003ff000) >> 12; } static inline lfs_size_t lfs_tag_size(uint32_t tag) { return tag & 0x00000fff; } // operations on set of globals static inline void lfs_global_xor(lfs_global_t *a, const lfs_global_t *b) { for (int i = 0; i < sizeof(lfs_global_t)/4; i++) { a->u32[i] ^= b->u32[i]; } } static inline bool lfs_global_iszero(const lfs_global_t *a) { for (int i = 0; i < sizeof(lfs_global_t)/4; i++) { if (a->u32[i] != 0) { return false; } } return true; } static inline void lfs_global_zero(lfs_global_t *a) { memset(a, 0, sizeof(lfs_global_t)); } static inline void lfs_global_fromle32(lfs_global_t *a) { lfs_pair_fromle32(a->l.movepair); a->l.moveid = lfs_fromle16(a->l.moveid); } static inline void lfs_global_tole32(lfs_global_t *a) { lfs_pair_tole32(a->l.movepair); a->l.moveid = lfs_tole16(a->l.moveid); } static inline void lfs_global_move(lfs_t *lfs, const lfs_block_t pair[2], uint16_t id) { lfs_global_t diff; lfs_global_zero(&diff); diff.l.movepair[0] ^= lfs->globals.g.movepair[0] ^ pair[0]; diff.l.movepair[1] ^= lfs->globals.g.movepair[1] ^ pair[1]; diff.l.moveid ^= lfs->globals.g.moveid ^ id; lfs_global_fromle32(&lfs->locals); lfs_global_xor(&lfs->locals, &diff); lfs_global_tole32(&lfs->locals); lfs_global_xor(&lfs->globals, &diff); } static inline void lfs_global_orphans(lfs_t *lfs, int8_t orphans) { lfs->locals.l.deorphaned ^= (lfs->globals.g.orphans == 0); lfs->locals.l.deorphaned ^= (lfs->globals.g.orphans + orphans == 0); lfs->globals.g.orphans += orphans; } // commit logic struct lfs_commit { lfs_block_t block; lfs_off_t off; uint32_t ptag; uint32_t crc; lfs_off_t begin; lfs_off_t end; lfs_off_t ack; }; struct lfs_diskoff { lfs_block_t block; lfs_off_t off; }; static int32_t lfs_commit_get(lfs_t *lfs, lfs_block_t block, lfs_off_t off, uint32_t tag, uint32_t getmask, uint32_t gettag, int32_t getdiff, void *buffer, bool stopatcommit) { // iterate over dir block backwards (for faster lookups) while (off >= 2*sizeof(tag)+lfs_tag_size(tag)) { off -= sizeof(tag)+lfs_tag_size(tag); if (lfs_tag_type(tag) == LFS_TYPE_CRC && stopatcommit) { break; } else if (lfs_tag_type(tag) == LFS_TYPE_DELETE) { if (lfs_tag_id(tag) <= lfs_tag_id(gettag + getdiff)) { getdiff += LFS_MKTAG(0, 1, 0); } } else if ((tag & getmask) == ((gettag + getdiff) & getmask)) { if (buffer) { lfs_size_t diff = lfs_min( lfs_tag_size(gettag), lfs_tag_size(tag)); int err = lfs_bd_read(lfs, &lfs->pcache, &lfs->rcache, diff, block, off+sizeof(tag), buffer, diff); if (err) { return err; } memset((uint8_t*)buffer + diff, 0, lfs_tag_size(gettag) - diff); } return tag - getdiff; } uint32_t ntag; int err = lfs_bd_read(lfs, &lfs->pcache, &lfs->rcache, sizeof(ntag), block, off, &ntag, sizeof(ntag)); if (err) { return err; } tag ^= lfs_fromle32(ntag); } return LFS_ERR_NOENT; } static int lfs_commit_prog(lfs_t *lfs, struct lfs_commit *commit, const void *buffer, lfs_size_t size) { lfs_off_t skip = lfs_min(lfs_max(commit->ack, commit->off) - commit->off, size); int err = lfs_bd_prog(lfs, &lfs->pcache, &lfs->rcache, false, commit->block, commit->off + skip, (const uint8_t*)buffer + skip, size - skip); if (err) { return err; } commit->crc = lfs_crc(commit->crc, buffer, size); commit->off += size; commit->ack = lfs_max(commit->off, commit->ack); return 0; } static int lfs_commit_attrs(lfs_t *lfs, struct lfs_commit *commit, uint16_t id, const struct lfs_attr *attrs); static int lfs_commit_move(lfs_t *lfs, struct lfs_commit *commit, uint32_t frommask, uint32_t fromtag, uint32_t tomask, uint32_t totag, const lfs_mdir_t *dir, const lfs_mattr_t *attrs); static int lfs_commit_attr(lfs_t *lfs, struct lfs_commit *commit, uint32_t tag, const void *buffer) { if (lfs_tag_subtype(tag) == LFS_FROM_MOVE) { // special case for moves return lfs_commit_move(lfs, commit, 0x003ff000, LFS_MKTAG(0, lfs_tag_size(tag), 0), 0x003ff000, LFS_MKTAG(0, lfs_tag_id(tag), 0), buffer, NULL); } else if (lfs_tag_subtype(tag) == LFS_FROM_ATTRS) { // special case for custom attributes return lfs_commit_attrs(lfs, commit, lfs_tag_id(tag), buffer); } // check if we fit lfs_size_t size = lfs_tag_size(tag); if (commit->off + sizeof(tag)+size > commit->end) { return LFS_ERR_NOSPC; } // write out tag uint32_t ntag = lfs_tole32((tag & 0x7fffffff) ^ commit->ptag); int err = lfs_commit_prog(lfs, commit, &ntag, sizeof(ntag)); if (err) { return err; } if (!(tag & 0x80000000)) { // from memory err = lfs_commit_prog(lfs, commit, buffer, size); if (err) { return err; } } else { // from disk const struct lfs_diskoff *disk = buffer; for (lfs_off_t i = 0; i < size; i++) { // rely on caching to make this efficient uint8_t dat; err = lfs_bd_read(lfs, &lfs->pcache, &lfs->rcache, size-i, disk->block, disk->off+i, &dat, 1); if (err) { return err; } err = lfs_commit_prog(lfs, commit, &dat, 1); if (err) { return err; } } } commit->ptag = tag & 0x7fffffff; return 0; } static int lfs_commit_attrs(lfs_t *lfs, struct lfs_commit *commit, uint16_t id, const struct lfs_attr *attrs) { for (const struct lfs_attr *a = attrs; a; a = a->next) { int err = lfs_commit_attr(lfs, commit, LFS_MKTAG(0x100 | a->type, id, a->size), a->buffer); if (err) { return err; } } return 0; } static int lfs_commit_move(lfs_t *lfs, struct lfs_commit *commit, uint32_t frommask, uint32_t fromtag, uint32_t tomask, uint32_t totag, const lfs_mdir_t *dir, const lfs_mattr_t *attrs) { // iterate through list and commits, only committing unique entries lfs_off_t off = dir->off; uint32_t ntag = dir->etag; while (attrs || off > sizeof(uint32_t)) { struct lfs_diskoff disk; uint32_t tag; const void *buffer; if (attrs) { tag = attrs->tag; buffer = attrs->buffer; attrs = attrs->next; } else { LFS_ASSERT(off > sizeof(ntag)+lfs_tag_size(ntag)); off -= sizeof(ntag)+lfs_tag_size(ntag); tag = ntag; buffer = &disk; disk.block = dir->pair[0]; disk.off = off + sizeof(tag); int err = lfs_bd_read(lfs, &lfs->pcache, &lfs->rcache, sizeof(ntag), dir->pair[0], off, &ntag, sizeof(ntag)); if (err) { return err; } ntag = lfs_fromle32(ntag); ntag ^= tag; tag |= 0x80000000; } if (lfs_tag_type(tag) == LFS_TYPE_DELETE && lfs_tag_id(tag) <= lfs_tag_id(fromtag)) { // something was deleted, we need to move around it fromtag += LFS_MKTAG(0, 1, 0); } else if ((tag & frommask) == (fromtag & frommask)) { // check if type has already been committed int32_t res = lfs_commit_get(lfs, commit->block, commit->off, commit->ptag, lfs_tag_isuser(tag) ? 0x7ffff000 : 0x7c3ff000, (tag & ~tomask) | totag, 0, NULL, true); if (res < 0 && res != LFS_ERR_NOENT) { return res; } if (res == LFS_ERR_NOENT) { // update id and commit, as we are currently unique int err = lfs_commit_attr(lfs, commit, (tag & ~tomask) | totag, buffer); if (err) { return err; } } } } return 0; } static int lfs_commit_globals(lfs_t *lfs, struct lfs_commit *commit, lfs_global_t *locals) { if (lfs_global_iszero(&lfs->locals)) { return 0; } lfs_global_xor(locals, &lfs->locals); int err = lfs_commit_attr(lfs, commit, LFS_MKTAG(LFS_TYPE_GLOBALS + locals->l.deorphaned, 0x3ff, 10), locals); lfs_global_xor(locals, &lfs->locals); return err; } static int lfs_commit_crc(lfs_t *lfs, struct lfs_commit *commit) { // align to program units lfs_off_t off = lfs_alignup(commit->off + 2*sizeof(uint32_t), lfs->cfg->prog_size); // read erased state from next program unit uint32_t tag = 0; int err = lfs_bd_read(lfs, &lfs->pcache, &lfs->rcache, sizeof(tag), commit->block, off, &tag, sizeof(tag)); if (err && err != LFS_ERR_CORRUPT) { return err; } // build crc tag tag = lfs_fromle32(tag); tag = (0x80000000 & ~tag) | LFS_MKTAG(LFS_TYPE_CRC, 0x3ff, off - (commit->off+sizeof(uint32_t))); // write out crc uint32_t footer[2]; footer[0] = lfs_tole32(tag ^ commit->ptag); commit->crc = lfs_crc(commit->crc, &footer[0], sizeof(footer[0])); footer[1] = lfs_tole32(commit->crc); err = lfs_bd_prog(lfs, &lfs->pcache, &lfs->rcache, false, commit->block, commit->off, &footer, sizeof(footer)); if (err) { return err; } commit->off += sizeof(tag)+lfs_tag_size(tag); commit->ptag = tag; // flush buffers err = lfs_bd_sync(lfs, &lfs->pcache, &lfs->rcache, false); if (err) { return err; } // successful commit, check checksum to make sure uint32_t crc = 0xffffffff; lfs_size_t size = commit->off - lfs_tag_size(tag) - commit->begin; for (lfs_off_t i = 0; i < size; i++) { // leave it up to caching to make this efficient uint8_t dat; err = lfs_bd_read(lfs, NULL, &lfs->rcache, size-i, commit->block, commit->begin+i, &dat, 1); if (err) { return err; } crc = lfs_crc(crc, &dat, 1); } if (err) { return err; } if (crc != commit->crc) { return LFS_ERR_CORRUPT; } return 0; } // internal dir operations static int lfs_dir_alloc(lfs_t *lfs, lfs_mdir_t *dir) { // allocate pair of dir blocks (backwards, so we write block 1 first) for (int i = 0; i < 2; i++) { int err = lfs_alloc(lfs, &dir->pair[(i+1)%2]); if (err) { return err; } } // rather than clobbering one of the blocks we just pretend // the revision may be valid int err = lfs_bd_read(lfs, &lfs->pcache, &lfs->rcache, sizeof(dir->rev), dir->pair[0], 0, &dir->rev, sizeof(dir->rev)); if (err) { return err; } dir->rev = lfs_fromle32(dir->rev); if (err && err != LFS_ERR_CORRUPT) { return err; } // set defaults dir->off = sizeof(dir->rev); dir->etag = 0; dir->count = 0; dir->tail[0] = 0xffffffff; dir->tail[1] = 0xffffffff; dir->erased = false; dir->split = false; lfs_global_zero(&dir->locals); // don't write out yet, let caller take care of that return 0; } static int32_t lfs_dir_fetchmatch(lfs_t *lfs, lfs_mdir_t *dir, const lfs_block_t pair[2], uint32_t findmask, uint32_t findtag, const void *findbuffer) { dir->pair[0] = pair[0]; dir->pair[1] = pair[1]; int32_t foundtag = LFS_ERR_NOENT; // find the block with the most recent revision uint32_t rev[2]; for (int i = 0; i < 2; i++) { int err = lfs_bd_read(lfs, &lfs->pcache, &lfs->rcache, sizeof(rev[i]), dir->pair[i], 0, &rev[i], sizeof(rev[i])); rev[i] = lfs_fromle32(rev[i]); if (err && err != LFS_ERR_CORRUPT) { return err; } if (err == LFS_ERR_CORRUPT) { rev[i] = rev[(i+1)%2] - 1; } } if (lfs_scmp(rev[1], rev[0]) > 0) { lfs_pair_swap(dir->pair); lfs_pair_swap(rev); } // load blocks and check crc for (int i = 0; i < 2; i++) { lfs_off_t off = sizeof(dir->rev); uint32_t ptag = 0; uint32_t crc = 0xffffffff; dir->rev = lfs_tole32(rev[0]); crc = lfs_crc(crc, &dir->rev, sizeof(dir->rev)); dir->rev = lfs_fromle32(dir->rev); dir->off = 0; uint32_t tempfoundtag = foundtag; uint16_t tempcount = 0; lfs_block_t temptail[2] = {0xffffffff, 0xffffffff}; bool tempsplit = false; lfs_global_t templocals; lfs_global_zero(&templocals); while (true) { // extract next tag uint32_t tag; int err = lfs_bd_read(lfs, &lfs->pcache, &lfs->rcache, lfs->cfg->block_size, dir->pair[0], off, &tag, sizeof(tag)); if (err) { if (err == LFS_ERR_CORRUPT) { // can't continue? dir->erased = false; break; } return err; } crc = lfs_crc(crc, &tag, sizeof(tag)); tag = lfs_fromle32(tag) ^ ptag; // next commit not yet programmed if (lfs_tag_type(ptag) == LFS_TYPE_CRC && !lfs_tag_isvalid(tag)) { dir->erased = true; break; } // check we're in valid range if (off + sizeof(tag)+lfs_tag_size(tag) > lfs->cfg->block_size) { dir->erased = false; break; } if (lfs_tag_type(tag) == LFS_TYPE_CRC) { // check the crc attr uint32_t dcrc; err = lfs_bd_read(lfs, &lfs->pcache, &lfs->rcache, lfs->cfg->block_size, dir->pair[0], off+sizeof(tag), &dcrc, sizeof(dcrc)); if (err) { if (err == LFS_ERR_CORRUPT) { dir->erased = false; break; } return err; } dcrc = lfs_fromle32(dcrc); if (crc != dcrc) { dir->erased = false; break; } foundtag = tempfoundtag; dir->off = off + sizeof(tag)+lfs_tag_size(tag); dir->etag = tag; dir->count = tempcount; dir->tail[0] = temptail[0]; dir->tail[1] = temptail[1]; dir->split = tempsplit; dir->locals = templocals; lfs->seed ^= crc; crc = 0xffffffff; } else { // crc the entry first, leaving it in the cache for (lfs_off_t j = 0; j < lfs_tag_size(tag); j++) { uint8_t dat; err = lfs_bd_read(lfs, NULL, &lfs->rcache, lfs->cfg->block_size, dir->pair[0], off+sizeof(tag)+j, &dat, 1); if (err) { if (err == LFS_ERR_CORRUPT) { dir->erased = false; break; } return err; } crc = lfs_crc(crc, &dat, 1); } // keep track of id count if (lfs_tag_id(tag) < 0x3ff && lfs_tag_id(tag) >= tempcount) { tempcount = lfs_tag_id(tag)+1; } // check for special tags if (lfs_tag_subtype(tag) == LFS_TYPE_TAIL) { tempsplit = (lfs_tag_type(tag) & 1); err = lfs_bd_read(lfs, &lfs->pcache, &lfs->rcache, lfs->cfg->block_size, dir->pair[0], off+sizeof(tag), &temptail, sizeof(temptail)); if (err) { if (err == LFS_ERR_CORRUPT) { dir->erased = false; break; } } lfs_pair_fromle32(temptail); } else if (lfs_tag_subtype(tag) == LFS_TYPE_GLOBALS) { templocals.l.deorphaned = (lfs_tag_type(tag) & 1); err = lfs_bd_read(lfs, &lfs->pcache, &lfs->rcache, lfs->cfg->block_size, dir->pair[0], off+sizeof(tag), &templocals, 10); if (err) { if (err == LFS_ERR_CORRUPT) { dir->erased = false; break; } } } else if (lfs_tag_subtype(tag) == LFS_TYPE_DELETE) { LFS_ASSERT(tempcount > 0); tempcount -= 1; if (lfs_tag_id(tag) == lfs_tag_id(tempfoundtag)) { tempfoundtag = LFS_ERR_NOENT; } else if (lfs_tag_isvalid(tempfoundtag) && lfs_tag_id(tag) < lfs_tag_id(tempfoundtag)) { tempfoundtag -= LFS_MKTAG(0, 1, 0); } } else if ((tag & findmask) == (findtag & findmask)) { // found a match? if (lfs_tag_type(findtag) == LFS_TYPE_DIRSTRUCT) { lfs_block_t child[2]; err = lfs_bd_read(lfs, &lfs->pcache, &lfs->rcache, lfs->cfg->block_size, dir->pair[0], off+sizeof(tag), &child, sizeof(child)); if (err < 0) { if (err == LFS_ERR_CORRUPT) { dir->erased = false; break; } return err; } lfs_pair_fromle32(child); if (lfs_pair_cmp(child, (const lfs_block_t *)findbuffer) == 0) { tempfoundtag = tag; } } else if (lfs_tag_type(findtag) == LFS_TYPE_NAME) { int res = lfs_bd_cmp(lfs, NULL, &lfs->rcache, lfs_tag_size(findtag), dir->pair[0], off+sizeof(tag), findbuffer, lfs_tag_size(findtag)); if (res < 0) { if (res == LFS_ERR_CORRUPT) { dir->erased = false; break; } return res; } if (res) { tempfoundtag = tag; } } else { tempfoundtag = tag; } } } ptag = tag; off += sizeof(tag)+lfs_tag_size(tag); } // consider what we have good enough if (dir->off > 0) { // synthetic move if (lfs_pair_cmp(dir->pair, lfs->globals.g.movepair) == 0) { if (lfs->globals.g.moveid == lfs_tag_id(foundtag)) { foundtag = LFS_ERR_NOENT; } else if (lfs_tag_isvalid(foundtag) && lfs->globals.g.moveid < lfs_tag_id(foundtag)) { foundtag -= LFS_MKTAG(0, 1, 0); } } return foundtag; } // failed, try the other crc? lfs_pair_swap(dir->pair); lfs_pair_swap(rev); } LFS_ERROR("Corrupted dir pair at %"PRIu32" %"PRIu32, dir->pair[0], dir->pair[1]); return LFS_ERR_CORRUPT; } static int lfs_dir_fetch(lfs_t *lfs, lfs_mdir_t *dir, const lfs_block_t pair[2]) { int32_t res = lfs_dir_fetchmatch(lfs, dir, pair, 0xffffffff, 0xffffffff, NULL); if (res < 0 && res != LFS_ERR_NOENT) { return res; } return 0; } static int32_t lfs_dir_find(lfs_t *lfs, lfs_mdir_t *dir, const lfs_block_t pair[2], bool fs, uint32_t findmask, uint32_t findtag, const void *findbuffer) { dir->split = true; dir->tail[0] = pair[0]; dir->tail[1] = pair[1]; while ((dir->split || fs) && !lfs_pair_isnull(dir->tail)) { int32_t tag = lfs_dir_fetchmatch(lfs, dir, dir->tail, findmask, findtag, findbuffer); if (tag != LFS_ERR_NOENT) { return tag; } } return LFS_ERR_NOENT; } static int32_t lfs_dir_get(lfs_t *lfs, lfs_mdir_t *dir, uint32_t getmask, uint32_t gettag, void *buffer) { int32_t getdiff = 0; if (lfs_pair_cmp(dir->pair, lfs->globals.g.movepair) == 0 && lfs_tag_id(gettag) <= lfs->globals.g.moveid) { // synthetic moves getdiff = LFS_MKTAG(0, 1, 0); } return lfs_commit_get(lfs, dir->pair[0], dir->off, dir->etag, getmask, gettag, getdiff, buffer, false); } static int lfs_dir_compact(lfs_t *lfs, lfs_mdir_t *dir, const lfs_mattr_t *attrs, lfs_mdir_t *source, uint16_t begin, uint16_t end) { // save some state in case block is bad const lfs_block_t oldpair[2] = {dir->pair[1], dir->pair[0]}; bool relocated = false; // There's nothing special about our global delta, so feed it back // into the global global delta lfs_global_xor(&lfs->locals, &dir->locals); lfs_global_zero(&dir->locals); while (true) { // setup compaction bool splitted = false; bool exhausted = false; struct lfs_commit commit; commit.block = dir->pair[1]; commit.ack = 0; commit: // setup erase state exhausted = false; dir->count = end - begin; int16_t ackid = -1; // setup commit state commit.off = 0; commit.crc = 0xffffffff; commit.ptag = 0; // space is complicated, we need room for tail, crc, globals, // cleanup delete, and we cap at half a block to give room // for metadata updates commit.begin = 0; commit.end = lfs_min( lfs_alignup(lfs->cfg->block_size/2, lfs->cfg->prog_size), lfs->cfg->block_size - 38); if (!splitted) { // increment revision count dir->rev += 1; if (lfs->cfg->block_cycles && dir->rev % lfs->cfg->block_cycles == 0) { if (lfs_pair_cmp(dir->pair, (const lfs_block_t[2]){0, 1}) == 0) { // we're writing too much to the superblock, // should we expand? lfs_ssize_t res = lfs_fs_size(lfs); if (res < 0) { return res; } // do we have enough space to expand? if (res < lfs->cfg->block_count/2) { LFS_DEBUG("Expanding superblock at rev %"PRIu32, dir->rev); exhausted = true; goto split; } } else { // we're writing too much, time to relocate exhausted = true; goto relocate; } } // erase block to write to int err = lfs_bd_erase(lfs, dir->pair[1]); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } } // write out header uint32_t rev = lfs_tole32(dir->rev); int err = lfs_commit_prog(lfs, &commit, &rev, sizeof(rev)); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } // commit with a move for (uint16_t id = begin; id < end || commit.off < commit.ack; id++) { err = lfs_commit_move(lfs, &commit, 0x003ff000, LFS_MKTAG(0, id, 0), 0x003ff000, LFS_MKTAG(0, id - begin, 0), source, attrs); if (err && !(splitted && err == LFS_ERR_NOSPC)) { if (err == LFS_ERR_NOSPC) { goto split; } else if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } ackid = id; } // reopen reserved space at the end commit.end = lfs->cfg->block_size - 8; if (ackid >= end) { // extra garbage attributes were written out during split, // need to clean up err = lfs_commit_attr(lfs, &commit, LFS_MKTAG(LFS_TYPE_DELETE, ackid, 0), NULL); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } } if (lfs_pair_cmp(dir->pair, (const lfs_block_t[2]){0, 1}) == 0) { // move over (duplicate) superblock if we are root err = lfs_commit_move(lfs, &commit, 0x7c000000, LFS_MKTAG(LFS_TYPE_SUPERBLOCK, 0, 0), 0x7ffff000, LFS_MKTAG(LFS_TYPE_SUPERBLOCK, 0, 0), source, attrs); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } } if (!relocated) { // commit any globals, unless we're relocating, // in which case our parent will steal our globals err = lfs_commit_globals(lfs, &commit, &dir->locals); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } } if (!lfs_pair_isnull(dir->tail)) { // commit tail, which may be new after last size check lfs_pair_tole32(dir->tail); err = lfs_commit_attr(lfs, &commit, LFS_MKTAG(LFS_TYPE_TAIL + dir->split, 0x3ff, sizeof(dir->tail)), dir->tail); lfs_pair_fromle32(dir->tail); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } } err = lfs_commit_crc(lfs, &commit); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } // successful compaction, swap dir pair to indicate most recent lfs_pair_swap(dir->pair); dir->off = commit.off; dir->etag = commit.ptag; dir->erased = true; break; split: // commit no longer fits, need to split dir, // drop caches and create tail splitted = !exhausted; if (lfs->pcache.block != 0xffffffff) { commit.ack -= lfs->pcache.size; lfs_cache_drop(lfs, &lfs->pcache); } if (!exhausted && ackid < 0) { // If we can't fit in this block, we won't fit in next block return LFS_ERR_NOSPC; } lfs_mdir_t tail; err = lfs_dir_alloc(lfs, &tail); if (err) { return err; } tail.split = dir->split; tail.tail[0] = dir->tail[0]; tail.tail[1] = dir->tail[1]; err = lfs_dir_compact(lfs, &tail, attrs, source, ackid+1, end); if (err) { return err; } end = ackid+1; dir->tail[0] = tail.pair[0]; dir->tail[1] = tail.pair[1]; dir->split = true; if (exhausted) { lfs->root[0] = tail.pair[0]; lfs->root[1] = tail.pair[1]; } goto commit; relocate: // commit was corrupted, drop caches and prepare to relocate block relocated = true; lfs_cache_drop(lfs, &lfs->pcache); if (!exhausted) { LFS_DEBUG("Bad block at %"PRIu32, dir->pair[1]); } // can't relocate superblock, filesystem is now frozen if (lfs_pair_cmp(oldpair, (const lfs_block_t[2]){0, 1}) == 0) { LFS_WARN("Superblock %"PRIu32" has become unwritable", oldpair[1]); return LFS_ERR_NOSPC; } // relocate half of pair err = lfs_alloc(lfs, &dir->pair[1]); if (err && (err != LFS_ERR_NOSPC && !exhausted)) { return err; } continue; } if (!relocated) { // successful commit, update globals lfs_global_xor(&dir->locals, &lfs->locals); lfs_global_zero(&lfs->locals); } else { // update references if we relocated LFS_DEBUG("Relocating %"PRIu32" %"PRIu32" to %"PRIu32" %"PRIu32, oldpair[0], oldpair[1], dir->pair[0], dir->pair[1]); int err = lfs_fs_relocate(lfs, oldpair, dir->pair); if (err) { return err; } } return 0; } static int lfs_dir_commit(lfs_t *lfs, lfs_mdir_t *dir, const lfs_mattr_t *attrs) { lfs_mattr_t cancelattr; lfs_global_t canceldiff; lfs_global_zero(&canceldiff); if (lfs_pair_cmp(dir->pair, lfs->globals.g.movepair) == 0) { // Wait, we have the move? Just cancel this out here // We need to, or else the move can become outdated canceldiff.l.movepair[0] ^= lfs->globals.g.movepair[0] ^ 0xffffffff; canceldiff.l.movepair[1] ^= lfs->globals.g.movepair[1] ^ 0xffffffff; canceldiff.l.moveid ^= lfs->globals.g.moveid ^ 0x3ff; lfs_global_fromle32(&lfs->locals); lfs_global_xor(&lfs->locals, &canceldiff); lfs_global_tole32(&lfs->locals); cancelattr.tag = LFS_MKTAG(LFS_TYPE_DELETE, lfs->globals.l.moveid, 0); cancelattr.next = attrs; attrs = &cancelattr; } // calculate new directory size uint32_t deletetag = 0xffffffff; for (const lfs_mattr_t *a = attrs; a; a = a->next) { if (lfs_tag_id(a->tag) < 0x3ff && lfs_tag_id(a->tag) >= dir->count) { dir->count = lfs_tag_id(a->tag)+1; } if (lfs_tag_type(a->tag) == LFS_TYPE_DELETE) { LFS_ASSERT(dir->count > 0); dir->count -= 1; deletetag = a->tag; if (dir->count == 0) { // should we actually drop the directory block? lfs_mdir_t pdir; int err = lfs_fs_pred(lfs, dir->pair, &pdir); if (err && err != LFS_ERR_NOENT) { return err; } if (err != LFS_ERR_NOENT && pdir.split) { // steal tail and global state pdir.split = dir->split; pdir.tail[0] = dir->tail[0]; pdir.tail[1] = dir->tail[1]; lfs_global_xor(&lfs->locals, &dir->locals); return lfs_dir_commit(lfs, &pdir, LFS_MKATTR(LFS_TYPE_TAIL + pdir.split, 0x3ff, pdir.tail, sizeof(pdir.tail), NULL)); } } } } while (true) { if (!dir->erased) { goto compact; } // try to commit struct lfs_commit commit = { .block = dir->pair[0], .off = dir->off, .crc = 0xffffffff, .ptag = dir->etag, .begin = dir->off, .end = lfs->cfg->block_size - 8, .ack = 0, }; for (const lfs_mattr_t *a = attrs; a; a = a->next) { if (lfs_tag_type(a->tag) != LFS_TYPE_DELETE) { lfs_pair_tole32(dir->tail); int err = lfs_commit_attr(lfs, &commit, a->tag, a->buffer); lfs_pair_fromle32(dir->tail); if (err) { if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) { goto compact; } return err; } } } if (lfs_tag_isvalid(deletetag)) { // special case for deletes, since order matters int err = lfs_commit_attr(lfs, &commit, deletetag, NULL); if (err) { if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) { goto compact; } return err; } } int err = lfs_commit_globals(lfs, &commit, &dir->locals); if (err) { if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) { goto compact; } return err; } err = lfs_commit_crc(lfs, &commit); if (err) { if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) { goto compact; } return err; } // successful commit, update dir dir->off = commit.off; dir->etag = commit.ptag; // successful commit, update globals lfs_global_xor(&dir->locals, &lfs->locals); lfs_global_zero(&lfs->locals); break; compact: // fall back to compaction lfs_cache_drop(lfs, &lfs->pcache); err = lfs_dir_compact(lfs, dir, attrs, dir, 0, dir->count); if (err) { return err; } break; } // update globals that are affected lfs_global_xor(&lfs->globals, &canceldiff); // update any directories that are affected lfs_mdir_t copy = *dir; // two passes, once for things that aren't us, and one // for things that are for (lfs_mlist_t *d = lfs->mlist; d; d = d->next) { if (lfs_pair_cmp(d->m.pair, copy.pair) == 0) { d->m = *dir; if (d->id == lfs_tag_id(deletetag)) { d->m.pair[0] = 0xffffffff; d->m.pair[1] = 0xffffffff; } else if (d->id > lfs_tag_id(deletetag)) { d->id -= 1; if (d->type == LFS_TYPE_DIR) { ((lfs_dir_t*)d)->pos -= 1; } } while (d->id >= d->m.count && d->m.split) { // we split and id is on tail now d->id -= d->m.count; int err = lfs_dir_fetch(lfs, &d->m, d->m.tail); if (err) { return err; } } } } return 0; } static int32_t lfs_dir_lookup(lfs_t *lfs, lfs_mdir_t *dir, const char **path) { // we reduce path to a single name if we can find it const char *name = *path; *path = NULL; // default to root dir int32_t tag = LFS_MKTAG(LFS_TYPE_DIR, 0x3ff, 0); lfs_block_t pair[2] = {lfs->root[0], lfs->root[1]}; while (true) { nextname: // skip slashes name += strspn(name, "/"); lfs_size_t namelen = strcspn(name, "/"); // skip '.' and root '..' if ((namelen == 1 && memcmp(name, ".", 1) == 0) || (namelen == 2 && memcmp(name, "..", 2) == 0)) { name += namelen; goto nextname; } // skip if matched by '..' in name const char *suffix = name + namelen; lfs_size_t sufflen; int depth = 1; while (true) { suffix += strspn(suffix, "/"); sufflen = strcspn(suffix, "/"); if (sufflen == 0) { break; } if (sufflen == 2 && memcmp(suffix, "..", 2) == 0) { depth -= 1; if (depth == 0) { name = suffix + sufflen; goto nextname; } } else { depth += 1; } suffix += sufflen; } // found path if (name[0] == '\0') { return tag; } // update what we've found if path is only a name if (strchr(name, '/') == NULL) { *path = name; } // only continue if we hit a directory if (lfs_tag_type(tag) != LFS_TYPE_DIR) { return LFS_ERR_NOTDIR; } // grab the entry data if (lfs_tag_id(tag) != 0x3ff) { int32_t res = lfs_dir_get(lfs, dir, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tag_id(tag), 8), pair); if (res < 0) { return res; } lfs_pair_fromle32(pair); } // find entry matching name tag = lfs_dir_find(lfs, dir, pair, false, 0x7c000fff, LFS_MKTAG(LFS_TYPE_NAME, 0, namelen), name); if (tag < 0) { return tag; } // to next name name += namelen; } } static int lfs_dir_getinfo(lfs_t *lfs, lfs_mdir_t *dir, uint16_t id, struct lfs_info *info) { if (id == 0x3ff) { // special case for root strcpy(info->name, "/"); info->type = LFS_TYPE_DIR; return 0; } int32_t tag = lfs_dir_get(lfs, dir, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_NAME, id, lfs->name_max+1), info->name); if (tag < 0) { return tag; } info->type = lfs_tag_type(tag); struct lfs_ctz ctz; tag = lfs_dir_get(lfs, dir, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_STRUCT, id, sizeof(ctz)), &ctz); if (tag < 0) { return tag; } lfs_ctz_fromle32(&ctz); if (lfs_tag_type(tag) == LFS_TYPE_CTZSTRUCT) { info->size = ctz.size; } else if (lfs_tag_type(tag) == LFS_TYPE_INLINESTRUCT) { info->size = lfs_tag_size(tag); } return 0; } /// Top level directory operations /// int lfs_mkdir(lfs_t *lfs, const char *path) { // deorphan if we haven't yet, needed at most once after poweron int err = lfs_fs_forceconsistency(lfs); if (err) { return err; } lfs_mdir_t cwd; int32_t res = lfs_dir_lookup(lfs, &cwd, &path); if (!(res == LFS_ERR_NOENT && path)) { return (res < 0) ? res : LFS_ERR_EXIST; } // check that name fits lfs_size_t nlen = strlen(path); if (nlen > lfs->name_max) { return LFS_ERR_NAMETOOLONG; } // build up new directory lfs_alloc_ack(lfs); lfs_mdir_t dir; err = lfs_dir_alloc(lfs, &dir); if (err) { return err; } dir.tail[0] = cwd.tail[0]; dir.tail[1] = cwd.tail[1]; err = lfs_dir_commit(lfs, &dir, NULL); if (err) { return err; } // get next slot and commit uint16_t id = cwd.count; cwd.tail[0] = dir.pair[0]; cwd.tail[1] = dir.pair[1]; lfs_pair_tole32(dir.pair); err = lfs_dir_commit(lfs, &cwd, LFS_MKATTR(LFS_TYPE_DIR, id, path, nlen, LFS_MKATTR(LFS_TYPE_DIRSTRUCT, id, dir.pair, sizeof(dir.pair), LFS_MKATTR(LFS_TYPE_SOFTTAIL, 0x3ff, cwd.tail, sizeof(cwd.tail), NULL)))); lfs_pair_fromle32(dir.pair); if (err) { return err; } return 0; } int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) { int32_t tag = lfs_dir_lookup(lfs, &dir->m, &path); if (tag < 0) { return tag; } if (lfs_tag_type(tag) != LFS_TYPE_DIR) { return LFS_ERR_NOTDIR; } lfs_block_t pair[2]; if (lfs_tag_id(tag) == 0x3ff) { // handle root dir separately pair[0] = lfs->root[0]; pair[1] = lfs->root[1]; } else { // get dir pair from parent int32_t res = lfs_dir_get(lfs, &dir->m, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tag_id(tag), 8), pair); if (res < 0) { return res; } lfs_pair_fromle32(pair); } // fetch first pair int err = lfs_dir_fetch(lfs, &dir->m, pair); if (err) { return err; } // setup entry dir->head[0] = dir->m.pair[0]; dir->head[1] = dir->m.pair[1]; dir->id = 0; dir->pos = 0; // add to list of mdirs dir->type = LFS_TYPE_DIR; dir->next = (lfs_dir_t*)lfs->mlist; lfs->mlist = (lfs_mlist_t*)dir; return 0; } int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) { // remove from list of mdirs for (lfs_mlist_t **p = &lfs->mlist; *p; p = &(*p)->next) { if (*p == (lfs_mlist_t*)dir) { *p = (*p)->next; break; } } return 0; } int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) { memset(info, 0, sizeof(*info)); // special offset for '.' and '..' if (dir->pos == 0) { info->type = LFS_TYPE_DIR; strcpy(info->name, "."); dir->pos += 1; return 1; } else if (dir->pos == 1) { info->type = LFS_TYPE_DIR; strcpy(info->name, ".."); dir->pos += 1; return 1; } while (true) { if (dir->id == dir->m.count) { if (!dir->m.split) { return false; } int err = lfs_dir_fetch(lfs, &dir->m, dir->m.tail); if (err) { return err; } dir->id = 0; } int err = lfs_dir_getinfo(lfs, &dir->m, dir->id, info); if (err && err != LFS_ERR_NOENT) { return err; } dir->id += 1; if (err != LFS_ERR_NOENT) { break; } } dir->pos += 1; return true; } int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off) { // simply walk from head dir int err = lfs_dir_rewind(lfs, dir); if (err) { return err; } // first two for ./.. dir->pos = lfs_min(2, off); off -= dir->pos; while (off != 0) { dir->id = lfs_min(dir->m.count, off); dir->pos += dir->id; off -= dir->id; if (dir->id == dir->m.count) { if (!dir->m.split) { return LFS_ERR_INVAL; } err = lfs_dir_fetch(lfs, &dir->m, dir->m.tail); if (err) { return err; } } } return 0; } lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir) { (void)lfs; return dir->pos; } int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir) { // reload the head dir int err = lfs_dir_fetch(lfs, &dir->m, dir->head); if (err) { return err; } dir->m.pair[0] = dir->head[0]; dir->m.pair[1] = dir->head[1]; dir->id = 0; dir->pos = 0; return 0; } /// File index list operations /// static int lfs_ctz_index(lfs_t *lfs, lfs_off_t *off) { lfs_off_t size = *off; lfs_off_t b = lfs->cfg->block_size - 2*4; lfs_off_t i = size / b; if (i == 0) { return 0; } i = (size - 4*(lfs_popc(i-1)+2)) / b; *off = size - b*i - 4*lfs_popc(i); return i; } static int lfs_ctz_find(lfs_t *lfs, const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_block_t head, lfs_size_t size, lfs_size_t pos, lfs_block_t *block, lfs_off_t *off) { if (size == 0) { *block = 0xffffffff; *off = 0; return 0; } lfs_off_t current = lfs_ctz_index(lfs, &(lfs_off_t){size-1}); lfs_off_t target = lfs_ctz_index(lfs, &pos); while (current > target) { lfs_size_t skip = lfs_min( lfs_npw2(current-target+1) - 1, lfs_ctz(current)); int err = lfs_bd_read(lfs, pcache, rcache, sizeof(head), head, 4*skip, &head, sizeof(head)); head = lfs_fromle32(head); if (err) { return err; } LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count); current -= 1 << skip; } *block = head; *off = pos; return 0; } static int lfs_ctz_extend(lfs_t *lfs, lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_block_t head, lfs_size_t size, lfs_block_t *block, lfs_off_t *off) { while (true) { // go ahead and grab a block lfs_block_t nblock; int err = lfs_alloc(lfs, &nblock); if (err) { return err; } LFS_ASSERT(nblock >= 2 && nblock <= lfs->cfg->block_count); err = lfs_bd_erase(lfs, nblock); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } if (size == 0) { *block = nblock; *off = 0; return 0; } size -= 1; lfs_off_t index = lfs_ctz_index(lfs, &size); size += 1; // just copy out the last block if it is incomplete if (size != lfs->cfg->block_size) { for (lfs_off_t i = 0; i < size; i++) { uint8_t data; err = lfs_bd_read(lfs, NULL, rcache, size-i, head, i, &data, 1); if (err) { return err; } err = lfs_bd_prog(lfs, pcache, rcache, true, nblock, i, &data, 1); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } } *block = nblock; *off = size; return 0; } // append block index += 1; lfs_size_t skips = lfs_ctz(index) + 1; for (lfs_off_t i = 0; i < skips; i++) { head = lfs_tole32(head); err = lfs_bd_prog(lfs, pcache, rcache, true, nblock, 4*i, &head, 4); head = lfs_fromle32(head); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } if (i != skips-1) { err = lfs_bd_read(lfs, NULL, rcache, sizeof(head), head, 4*i, &head, sizeof(head)); head = lfs_fromle32(head); if (err) { return err; } } LFS_ASSERT(head >= 2 && head <= lfs->cfg->block_count); } *block = nblock; *off = 4*skips; return 0; relocate: LFS_DEBUG("Bad block at %"PRIu32, nblock); // just clear cache and try a new block lfs_cache_drop(lfs, pcache); } } static int lfs_ctz_traverse(lfs_t *lfs, const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_block_t head, lfs_size_t size, int (*cb)(void*, lfs_block_t), void *data) { if (size == 0) { return 0; } lfs_off_t index = lfs_ctz_index(lfs, &(lfs_off_t){size-1}); while (true) { int err = cb(data, head); if (err) { return err; } if (index == 0) { return 0; } lfs_block_t heads[2]; int count = 2 - (index & 1); err = lfs_bd_read(lfs, pcache, rcache, count*sizeof(head), head, 0, &heads, count*sizeof(head)); heads[0] = lfs_fromle32(heads[0]); heads[1] = lfs_fromle32(heads[1]); if (err) { return err; } for (int i = 0; i < count-1; i++) { err = cb(data, heads[i]); if (err) { return err; } } head = heads[count-1]; index -= count; } } /// Top level file operations /// int lfs_file_opencfg(lfs_t *lfs, lfs_file_t *file, const char *path, int flags, const struct lfs_file_config *cfg) { // deorphan if we haven't yet, needed at most once after poweron if ((flags & 3) != LFS_O_RDONLY) { int err = lfs_fs_forceconsistency(lfs); if (err) { return err; } } // setup simple file details int err = 0; file->cfg = cfg; file->flags = flags; file->pos = 0; file->cache.buffer = NULL; // allocate entry for file if it doesn't exist int32_t tag = lfs_dir_lookup(lfs, &file->m, &path); if (tag < 0 && !(tag == LFS_ERR_NOENT && path)) { err = tag; goto cleanup; } // get id, add to list of mdirs to catch update changes file->id = lfs_tag_id(tag); file->type = LFS_TYPE_REG; file->next = (lfs_file_t*)lfs->mlist; lfs->mlist = (lfs_mlist_t*)file; if (tag == LFS_ERR_NOENT) { if (!(flags & LFS_O_CREAT)) { err = LFS_ERR_NOENT; goto cleanup; } // check that name fits lfs_size_t nlen = strlen(path); if (nlen > lfs->name_max) { err = LFS_ERR_NAMETOOLONG; goto cleanup; } // get next slot and create entry to remember name file->id = file->m.count; err = lfs_dir_commit(lfs, &file->m, LFS_MKATTR(LFS_TYPE_REG, file->id, path, nlen, LFS_MKATTR(LFS_TYPE_INLINESTRUCT, file->id, NULL, 0, NULL))); if (err) { err = LFS_ERR_NAMETOOLONG; goto cleanup; } tag = LFS_MKTAG(LFS_TYPE_INLINESTRUCT, 0, 0); } else if (flags & LFS_O_EXCL) { err = LFS_ERR_EXIST; goto cleanup; } else if (lfs_tag_type(tag) != LFS_TYPE_REG) { err = LFS_ERR_ISDIR; goto cleanup; } else if (flags & LFS_O_TRUNC) { // truncate if requested tag = LFS_MKTAG(LFS_TYPE_INLINESTRUCT, file->id, 0); file->flags |= LFS_F_DIRTY; } else { // try to load what's on disk, if it's inlined we'll fix it later tag = lfs_dir_get(lfs, &file->m, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_STRUCT, file->id, 8), &file->ctz); if (tag < 0) { err = tag; goto cleanup; } lfs_ctz_fromle32(&file->ctz); } // fetch attrs for (const struct lfs_attr *a = file->cfg->attrs; a; a = a->next) { if ((file->flags & 3) != LFS_O_WRONLY) { int32_t res = lfs_dir_get(lfs, &file->m, 0x7ffff000, LFS_MKTAG(0x100 | a->type, file->id, a->size), a->buffer); if (res < 0 && res != LFS_ERR_NOENT) { err = res; goto cleanup; } } if ((file->flags & 3) != LFS_O_RDONLY) { if (a->size > lfs->attr_max) { err = LFS_ERR_NOSPC; goto cleanup; } file->flags |= LFS_F_DIRTY; } } // allocate buffer if needed if (file->cfg->buffer) { file->cache.buffer = file->cfg->buffer; } else { file->cache.buffer = lfs_malloc(lfs->cfg->cache_size); if (!file->cache.buffer) { err = LFS_ERR_NOMEM; goto cleanup; } } // zero to avoid information leak lfs_cache_zero(lfs, &file->cache); if (lfs_tag_type(tag) == LFS_TYPE_INLINESTRUCT) { // load inline files file->ctz.head = 0xfffffffe; file->ctz.size = lfs_tag_size(tag); file->flags |= LFS_F_INLINE; file->cache.block = file->ctz.head; file->cache.off = 0; file->cache.size = lfs->cfg->cache_size; // don't always read (may be new/trunc file) if (file->ctz.size > 0) { int32_t res = lfs_dir_get(lfs, &file->m, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_STRUCT, file->id, file->ctz.size), file->cache.buffer); if (res < 0) { err = res; goto cleanup; } } } return 0; cleanup: // clean up lingering resources file->flags |= LFS_F_ERRED; lfs_file_close(lfs, file); return err; } int lfs_file_open(lfs_t *lfs, lfs_file_t *file, const char *path, int flags) { static const struct lfs_file_config defaults = {0}; return lfs_file_opencfg(lfs, file, path, flags, &defaults); } int lfs_file_close(lfs_t *lfs, lfs_file_t *file) { int err = lfs_file_sync(lfs, file); // remove from list of mdirs for (lfs_mlist_t **p = &lfs->mlist; *p; p = &(*p)->next) { if (*p == (lfs_mlist_t*)file) { *p = (*p)->next; break; } } // clean up memory if (!file->cfg->buffer) { lfs_free(file->cache.buffer); } return err; } static int lfs_file_relocate(lfs_t *lfs, lfs_file_t *file) { while (true) { // just relocate what exists into new block lfs_block_t nblock; int err = lfs_alloc(lfs, &nblock); if (err) { return err; } err = lfs_bd_erase(lfs, nblock); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } // either read from dirty cache or disk for (lfs_off_t i = 0; i < file->off; i++) { uint8_t data; err = lfs_bd_read(lfs, &file->cache, &lfs->rcache, file->off-i, file->block, i, &data, 1); if (err) { return err; } err = lfs_bd_prog(lfs, &lfs->pcache, &lfs->rcache, true, nblock, i, &data, 1); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } } // copy over new state of file memcpy(file->cache.buffer, lfs->pcache.buffer, lfs->cfg->cache_size); file->cache.block = lfs->pcache.block; file->cache.off = lfs->pcache.off; file->cache.size = lfs->pcache.size; lfs_cache_zero(lfs, &lfs->pcache); file->block = nblock; return 0; relocate: LFS_DEBUG("Bad block at %"PRIu32, nblock); // just clear cache and try a new block lfs_cache_drop(lfs, &lfs->pcache); } } static int lfs_file_flush(lfs_t *lfs, lfs_file_t *file) { if (file->flags & LFS_F_READING) { file->flags &= ~LFS_F_READING; } if (file->flags & LFS_F_WRITING) { lfs_off_t pos = file->pos; if (!(file->flags & LFS_F_INLINE)) { // copy over anything after current branch lfs_file_t orig = { .ctz.head = file->ctz.head, .ctz.size = file->ctz.size, .flags = LFS_O_RDONLY, .pos = file->pos, .cache = lfs->rcache, }; lfs_cache_drop(lfs, &lfs->rcache); while (file->pos < file->ctz.size) { // copy over a byte at a time, leave it up to caching // to make this efficient uint8_t data; lfs_ssize_t res = lfs_file_read(lfs, &orig, &data, 1); if (res < 0) { return res; } res = lfs_file_write(lfs, file, &data, 1); if (res < 0) { return res; } // keep our reference to the rcache in sync if (lfs->rcache.block != 0xffffffff) { lfs_cache_drop(lfs, &orig.cache); lfs_cache_drop(lfs, &lfs->rcache); } } // write out what we have while (true) { int err = lfs_bd_flush(lfs, &file->cache, &lfs->rcache, true); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } return err; } break; relocate: LFS_DEBUG("Bad block at %"PRIu32, file->block); err = lfs_file_relocate(lfs, file); if (err) { return err; } } } else { file->ctz.size = lfs_max(file->pos, file->ctz.size); } // actual file updates file->ctz.head = file->block; file->ctz.size = file->pos; file->flags &= ~LFS_F_WRITING; file->flags |= LFS_F_DIRTY; file->pos = pos; } return 0; } int lfs_file_sync(lfs_t *lfs, lfs_file_t *file) { while (true) { int err = lfs_file_flush(lfs, file); if (err) { return err; } if ((file->flags & LFS_F_DIRTY) && !(file->flags & LFS_F_ERRED) && !lfs_pair_isnull(file->m.pair)) { // update dir entry uint16_t type; const void *buffer; lfs_size_t size; struct lfs_ctz ctz; if (file->flags & LFS_F_INLINE) { // inline the whole file type = LFS_TYPE_INLINESTRUCT; buffer = file->cache.buffer; size = file->ctz.size; } else { // update the ctz reference type = LFS_TYPE_CTZSTRUCT; // copy ctz so alloc will work during a relocate ctz = file->ctz; lfs_ctz_tole32(&ctz); buffer = &ctz; size = sizeof(ctz); } // commit file data and attributes err = lfs_dir_commit(lfs, &file->m, LFS_MKATTR(type, file->id, buffer, size, LFS_MKATTR(LFS_FROM_ATTRS, file->id, file->cfg->attrs, 0, NULL))); if (err) { if (err == LFS_ERR_NOSPC && (file->flags & LFS_F_INLINE)) { goto relocate; } return err; } file->flags &= ~LFS_F_DIRTY; } return 0; relocate: // inline file doesn't fit anymore file->block = 0xfffffffe; file->off = file->pos; lfs_alloc_ack(lfs); err = lfs_file_relocate(lfs, file); if (err) { return err; } file->flags &= ~LFS_F_INLINE; file->flags |= LFS_F_WRITING; } } lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file, void *buffer, lfs_size_t size) { uint8_t *data = buffer; lfs_size_t nsize = size; if ((file->flags & 3) == LFS_O_WRONLY) { return LFS_ERR_BADF; } if (file->flags & LFS_F_WRITING) { // flush out any writes int err = lfs_file_flush(lfs, file); if (err) { return err; } } if (file->pos >= file->ctz.size) { // eof if past end return 0; } size = lfs_min(size, file->ctz.size - file->pos); nsize = size; while (nsize > 0) { // check if we need a new block if (!(file->flags & LFS_F_READING) || file->off == lfs->cfg->block_size) { if (!(file->flags & LFS_F_INLINE)) { int err = lfs_ctz_find(lfs, NULL, &file->cache, file->ctz.head, file->ctz.size, file->pos, &file->block, &file->off); if (err) { return err; } } else { file->block = 0xfffffffe; file->off = file->pos; } file->flags |= LFS_F_READING; } // read as much as we can in current block lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off); int err = lfs_bd_read(lfs, NULL, &file->cache, lfs->cfg->block_size, file->block, file->off, data, diff); if (err) { return err; } file->pos += diff; file->off += diff; data += diff; nsize -= diff; } return size; } lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file, const void *buffer, lfs_size_t size) { const uint8_t *data = buffer; lfs_size_t nsize = size; if ((file->flags & 3) == LFS_O_RDONLY) { return LFS_ERR_BADF; } if (file->flags & LFS_F_READING) { // drop any reads int err = lfs_file_flush(lfs, file); if (err) { return err; } } if ((file->flags & LFS_O_APPEND) && file->pos < file->ctz.size) { file->pos = file->ctz.size; } if (!(file->flags & LFS_F_WRITING) && file->pos > file->ctz.size) { // fill with zeros lfs_off_t pos = file->pos; file->pos = file->ctz.size; while (file->pos < pos) { lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1); if (res < 0) { return res; } } } if ((file->flags & LFS_F_INLINE) && file->pos + nsize > lfs->inline_max) { // inline file doesn't fit anymore file->block = 0xfffffffe; file->off = file->pos; lfs_alloc_ack(lfs); int err = lfs_file_relocate(lfs, file); if (err) { file->flags |= LFS_F_ERRED; return err; } file->flags &= ~LFS_F_INLINE; file->flags |= LFS_F_WRITING; } while (nsize > 0) { // check if we need a new block if (!(file->flags & LFS_F_WRITING) || file->off == lfs->cfg->block_size) { if (!(file->flags & LFS_F_INLINE)) { if (!(file->flags & LFS_F_WRITING) && file->pos > 0) { // find out which block we're extending from int err = lfs_ctz_find(lfs, NULL, &file->cache, file->ctz.head, file->ctz.size, file->pos-1, &file->block, &file->off); if (err) { file->flags |= LFS_F_ERRED; return err; } // mark cache as dirty since we may have read data into it lfs_cache_zero(lfs, &file->cache); } // extend file with new blocks lfs_alloc_ack(lfs); int err = lfs_ctz_extend(lfs, &file->cache, &lfs->rcache, file->block, file->pos, &file->block, &file->off); if (err) { file->flags |= LFS_F_ERRED; return err; } } else { file->block = 0xfffffffe; file->off = file->pos; } file->flags |= LFS_F_WRITING; } // program as much as we can in current block lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off); while (true) { int err = lfs_bd_prog(lfs, &file->cache, &lfs->rcache, true, file->block, file->off, data, diff); if (err) { if (err == LFS_ERR_CORRUPT) { goto relocate; } file->flags |= LFS_F_ERRED; return err; } break; relocate: err = lfs_file_relocate(lfs, file); if (err) { file->flags |= LFS_F_ERRED; return err; } } file->pos += diff; file->off += diff; data += diff; nsize -= diff; lfs_alloc_ack(lfs); } file->flags &= ~LFS_F_ERRED; return size; } lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file, lfs_soff_t off, int whence) { // write out everything beforehand, may be noop if rdonly int err = lfs_file_flush(lfs, file); if (err) { return err; } // update pos if (whence == LFS_SEEK_SET) { file->pos = off; } else if (whence == LFS_SEEK_CUR) { if (off < 0 && (lfs_off_t)-off > file->pos) { return LFS_ERR_INVAL; } file->pos = file->pos + off; } else if (whence == LFS_SEEK_END) { if (off < 0 && (lfs_off_t)-off > file->ctz.size) { return LFS_ERR_INVAL; } file->pos = file->ctz.size + off; } return file->pos; } int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size) { if ((file->flags & 3) == LFS_O_RDONLY) { return LFS_ERR_BADF; } lfs_off_t oldsize = lfs_file_size(lfs, file); if (size < oldsize) { // need to flush since directly changing metadata int err = lfs_file_flush(lfs, file); if (err) { return err; } // lookup new head in ctz skip list err = lfs_ctz_find(lfs, NULL, &file->cache, file->ctz.head, file->ctz.size, size, &file->ctz.head, &(lfs_off_t){0}); if (err) { return err; } file->ctz.size = size; file->flags |= LFS_F_DIRTY; } else if (size > oldsize) { lfs_off_t pos = file->pos; // flush+seek if not already at end if (file->pos != oldsize) { int err = lfs_file_seek(lfs, file, 0, LFS_SEEK_END); if (err < 0) { return err; } } // fill with zeros while (file->pos < size) { lfs_ssize_t res = lfs_file_write(lfs, file, &(uint8_t){0}, 1); if (res < 0) { return res; } } // restore pos int err = lfs_file_seek(lfs, file, pos, LFS_SEEK_SET); if (err < 0) { return err; } } return 0; } lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file) { (void)lfs; return file->pos; } int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file) { lfs_soff_t res = lfs_file_seek(lfs, file, 0, LFS_SEEK_SET); if (res < 0) { return res; } return 0; } lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file) { (void)lfs; if (file->flags & LFS_F_WRITING) { return lfs_max(file->pos, file->ctz.size); } else { return file->ctz.size; } } /// General fs operations /// int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info) { lfs_mdir_t cwd; int32_t tag = lfs_dir_lookup(lfs, &cwd, &path); if (tag < 0) { return tag; } return lfs_dir_getinfo(lfs, &cwd, lfs_tag_id(tag), info); } int lfs_remove(lfs_t *lfs, const char *path) { // deorphan if we haven't yet, needed at most once after poweron int err = lfs_fs_forceconsistency(lfs); if (err) { return err; } lfs_mdir_t cwd; err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } int32_t tag = lfs_dir_lookup(lfs, &cwd, &path); if (tag < 0) { return tag; } lfs_mdir_t dir; if (lfs_tag_type(tag) == LFS_TYPE_DIR) { // must be empty before removal lfs_block_t pair[2]; int32_t res = lfs_dir_get(lfs, &cwd, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tag_id(tag), 8), pair); if (res < 0) { return res; } lfs_pair_fromle32(pair); err = lfs_dir_fetch(lfs, &dir, pair); if (err) { return err; } if (dir.count > 0 || dir.split) { return LFS_ERR_NOTEMPTY; } // mark fs as orphaned lfs_global_orphans(lfs, +1); } // delete the entry err = lfs_dir_commit(lfs, &cwd, LFS_MKATTR(LFS_TYPE_DELETE, lfs_tag_id(tag), NULL, 0, NULL)); if (err) { return err; } if (lfs_tag_type(tag) == LFS_TYPE_DIR) { // fix orphan lfs_global_orphans(lfs, -1); err = lfs_fs_pred(lfs, dir.pair, &cwd); if (err) { return err; } // steal state cwd.tail[0] = dir.tail[0]; cwd.tail[1] = dir.tail[1]; lfs_global_xor(&lfs->locals, &dir.locals); err = lfs_dir_commit(lfs, &cwd, LFS_MKATTR(LFS_TYPE_SOFTTAIL, 0x3ff, cwd.tail, sizeof(cwd.tail), NULL)); if (err) { return err; } } return 0; } int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath) { // deorphan if we haven't yet, needed at most once after poweron int err = lfs_fs_forceconsistency(lfs); if (err) { return err; } // find old entry lfs_mdir_t oldcwd; int32_t oldtag = lfs_dir_lookup(lfs, &oldcwd, &oldpath); if (oldtag < 0) { return oldtag; } // find new entry lfs_mdir_t newcwd; int32_t prevtag = lfs_dir_lookup(lfs, &newcwd, &newpath); if (prevtag < 0 && prevtag != LFS_ERR_NOENT) { return prevtag; } uint16_t newid = lfs_tag_id(prevtag); lfs_mdir_t prevdir; if (prevtag == LFS_ERR_NOENT) { // check that name fits lfs_size_t nlen = strlen(newpath); if (nlen > lfs->name_max) { return LFS_ERR_NAMETOOLONG; } // get next id newid = newcwd.count; } else if (lfs_tag_type(prevtag) != lfs_tag_type(oldtag)) { return LFS_ERR_ISDIR; } else if (lfs_tag_type(prevtag) == LFS_TYPE_DIR) { // must be empty before removal lfs_block_t prevpair[2]; int32_t res = lfs_dir_get(lfs, &newcwd, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_STRUCT, newid, 8), prevpair); if (res < 0) { return res; } lfs_pair_fromle32(prevpair); // must be empty before removal err = lfs_dir_fetch(lfs, &prevdir, prevpair); if (err) { return err; } if (prevdir.count > 0 || prevdir.split) { return LFS_ERR_NOTEMPTY; } // mark fs as orphaned lfs_global_orphans(lfs, +1); } // create move to fix later lfs_global_move(lfs, oldcwd.pair, lfs_tag_id(oldtag)); // move over all attributes err = lfs_dir_commit(lfs, &newcwd, LFS_MKATTR(lfs_tag_type(oldtag), newid, newpath, strlen(newpath), LFS_MKATTR(LFS_FROM_MOVE, newid, &oldcwd, lfs_tag_id(oldtag), NULL))); if (err) { return err; } // let commit clean up after move (if we're different! otherwise move // logic already fixed it for us) if (lfs_pair_cmp(oldcwd.pair, newcwd.pair) != 0) { err = lfs_dir_commit(lfs, &oldcwd, NULL); if (err) { return err; } } if (prevtag != LFS_ERR_NOENT && lfs_tag_type(prevtag) == LFS_TYPE_DIR) { // fix orphan lfs_global_orphans(lfs, -1); err = lfs_fs_pred(lfs, prevdir.pair, &newcwd); if (err) { return err; } // steal state newcwd.tail[0] = prevdir.tail[0]; newcwd.tail[1] = prevdir.tail[1]; lfs_global_xor(&lfs->locals, &prevdir.locals); err = lfs_dir_commit(lfs, &newcwd, LFS_MKATTR(LFS_TYPE_SOFTTAIL, 0x3ff, newcwd.tail, sizeof(newcwd.tail), NULL)); if (err) { return err; } } return 0; } lfs_ssize_t lfs_getattr(lfs_t *lfs, const char *path, uint8_t type, void *buffer, lfs_size_t size) { lfs_mdir_t cwd; int32_t res = lfs_dir_lookup(lfs, &cwd, &path); if (res < 0) { return res; } uint16_t id = lfs_tag_id(res); if (id == 0x3ff) { // special case for root id = 0; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } } res = lfs_dir_get(lfs, &cwd, 0x7ffff000, LFS_MKTAG(0x100 | type, id, lfs_min(size, lfs->attr_max)), buffer); if (res < 0 && res != LFS_ERR_NOENT) { return res; } return (res == LFS_ERR_NOENT) ? 0 : lfs_tag_size(res); } int lfs_setattr(lfs_t *lfs, const char *path, uint8_t type, const void *buffer, lfs_size_t size) { if (size > lfs->attr_max) { return LFS_ERR_NOSPC; } lfs_mdir_t cwd; int32_t res = lfs_dir_lookup(lfs, &cwd, &path); if (res < 0) { return res; } uint16_t id = lfs_tag_id(res); if (id == 0x3ff) { // special case for root id = 0; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } } return lfs_dir_commit(lfs, &cwd, LFS_MKATTR(0x100 | type, id, buffer, size, NULL)); } /// Filesystem operations /// static int lfs_init(lfs_t *lfs, const struct lfs_config *cfg) { lfs->cfg = cfg; int err = 0; // check that block size is a multiple of cache size is a multiple // of prog and read sizes LFS_ASSERT(lfs->cfg->cache_size % lfs->cfg->read_size == 0); LFS_ASSERT(lfs->cfg->cache_size % lfs->cfg->prog_size == 0); LFS_ASSERT(lfs->cfg->block_size % lfs->cfg->cache_size == 0); // check that the block size is large enough to fit ctz pointers LFS_ASSERT(4*lfs_npw2(0xffffffff / (lfs->cfg->block_size-2*4)) <= lfs->cfg->block_size); // setup read cache if (lfs->cfg->read_buffer) { lfs->rcache.buffer = lfs->cfg->read_buffer; } else { lfs->rcache.buffer = lfs_malloc(lfs->cfg->cache_size); if (!lfs->rcache.buffer) { err = LFS_ERR_NOMEM; goto cleanup; } } // setup program cache if (lfs->cfg->prog_buffer) { lfs->pcache.buffer = lfs->cfg->prog_buffer; } else { lfs->pcache.buffer = lfs_malloc(lfs->cfg->cache_size); if (!lfs->pcache.buffer) { err = LFS_ERR_NOMEM; goto cleanup; } } // zero to avoid information leaks lfs_cache_zero(lfs, &lfs->rcache); lfs_cache_zero(lfs, &lfs->pcache); // setup lookahead, must be multiple of 32-bits LFS_ASSERT(lfs->cfg->lookahead % 32 == 0); LFS_ASSERT(lfs->cfg->lookahead > 0); if (lfs->cfg->lookahead_buffer) { lfs->free.buffer = lfs->cfg->lookahead_buffer; } else { lfs->free.buffer = lfs_malloc(lfs->cfg->lookahead/8); if (!lfs->free.buffer) { err = LFS_ERR_NOMEM; goto cleanup; } } // check that the size limits are sane LFS_ASSERT(lfs->cfg->inline_max <= LFS_INLINE_MAX); LFS_ASSERT(lfs->cfg->inline_max <= lfs->cfg->cache_size); lfs->inline_max = lfs->cfg->inline_max; if (!lfs->inline_max) { lfs->inline_max = lfs_min(LFS_INLINE_MAX, lfs->cfg->cache_size); } LFS_ASSERT(lfs->cfg->attr_max <= LFS_ATTR_MAX); lfs->attr_max = lfs->cfg->attr_max; if (!lfs->attr_max) { lfs->attr_max = LFS_ATTR_MAX; } LFS_ASSERT(lfs->cfg->name_max <= LFS_NAME_MAX); lfs->name_max = lfs->cfg->name_max; if (!lfs->name_max) { lfs->name_max = LFS_NAME_MAX; } // setup default state lfs->root[0] = 0xffffffff; lfs->root[1] = 0xffffffff; lfs->mlist = NULL; lfs->seed = 0; lfs->globals.g.movepair[0] = 0xffffffff; lfs->globals.g.movepair[1] = 0xffffffff; lfs->globals.g.moveid = 0x3ff; lfs->globals.g.orphans = 0; lfs_global_zero(&lfs->locals); return 0; cleanup: lfs_deinit(lfs); return err; } static int lfs_deinit(lfs_t *lfs) { // free allocated memory if (!lfs->cfg->read_buffer) { lfs_free(lfs->rcache.buffer); } if (!lfs->cfg->prog_buffer) { lfs_free(lfs->pcache.buffer); } if (!lfs->cfg->lookahead_buffer) { lfs_free(lfs->free.buffer); } return 0; } int lfs_format(lfs_t *lfs, const struct lfs_config *cfg) { int err = lfs_init(lfs, cfg); if (err) { return err; } // create free lookahead memset(lfs->free.buffer, 0, lfs->cfg->lookahead/8); lfs->free.off = 0; lfs->free.size = lfs_min(lfs->cfg->lookahead, lfs->cfg->block_count); lfs->free.i = 0; lfs_alloc_ack(lfs); // create root dir lfs_mdir_t root; err = lfs_dir_alloc(lfs, &root); if (err) { goto cleanup; } // write one superblock lfs_superblock_t superblock = { .magic = {"littlefs"}, .version = LFS_DISK_VERSION, .block_size = lfs->cfg->block_size, .block_count = lfs->cfg->block_count, .attr_max = lfs->attr_max, .name_max = lfs->name_max, .inline_max = lfs->inline_max, }; lfs_superblock_tole32(&superblock); err = lfs_dir_commit(lfs, &root, LFS_MKATTR(LFS_TYPE_ROOT, 0, &superblock, sizeof(superblock), NULL)); if (err) { goto cleanup; } // sanity check that fetch works err = lfs_dir_fetch(lfs, &root, (const lfs_block_t[2]){0, 1}); if (err) { goto cleanup; } cleanup: lfs_deinit(lfs); return err; } int lfs_mount(lfs_t *lfs, const struct lfs_config *cfg) { int err = lfs_init(lfs, cfg); if (err) { return err; } // find root/superblock lfs_mdir_t root; lfs_superblock_t superblock; int32_t tag = lfs_dir_find(lfs, &root, (const lfs_block_t[2]){0, 1}, false, 0x7fc00000, LFS_MKTAG(LFS_TYPE_ROOT, 0, 8), "littlefs"); if (tag < 0) { err = tag; goto cleanup; } int32_t res = lfs_dir_get(lfs, &root, 0x7c000000, LFS_MKTAG(LFS_TYPE_SUPERBLOCK, 0, sizeof(superblock)), &superblock); if (res < 0) { err = res; goto cleanup; } lfs_superblock_fromle32(&superblock); lfs->root[0] = root.pair[0]; lfs->root[1] = root.pair[1]; // check version uint16_t major_version = (0xffff & (superblock.version >> 16)); uint16_t minor_version = (0xffff & (superblock.version >> 0)); if ((major_version != LFS_DISK_VERSION_MAJOR || minor_version > LFS_DISK_VERSION_MINOR)) { LFS_ERROR("Invalid version %"PRIu32".%"PRIu32, major_version, minor_version); err = LFS_ERR_INVAL; goto cleanup; } // check superblock configuration if (superblock.attr_max) { if (superblock.attr_max > lfs->attr_max) { LFS_ERROR("Unsupported attr_max (%"PRIu32" > %"PRIu32")", superblock.attr_max, lfs->attr_max); err = LFS_ERR_INVAL; goto cleanup; } lfs->attr_max = superblock.attr_max; } if (superblock.name_max) { if (superblock.name_max > lfs->name_max) { LFS_ERROR("Unsupported name_max (%"PRIu32" > %"PRIu32")", superblock.name_max, lfs->name_max); err = LFS_ERR_INVAL; goto cleanup; } lfs->name_max = superblock.name_max; } if (superblock.inline_max) { if (superblock.inline_max > lfs->inline_max) { LFS_ERROR("Unsupported inline_max (%"PRIu32" > %"PRIu32")", superblock.inline_max, lfs->inline_max); err = LFS_ERR_INVAL; goto cleanup; } lfs->inline_max = superblock.inline_max; } // scan for any global updates lfs_mdir_t dir = {.tail = {0, 1}}; while (!lfs_pair_isnull(dir.tail)) { err = lfs_dir_fetch(lfs, &dir, dir.tail); if (err) { err = LFS_ERR_INVAL; goto cleanup; } // xor together indirect deletes lfs_global_xor(&lfs->locals, &dir.locals); } // update littlefs with globals lfs_global_fromle32(&lfs->locals); lfs_global_xor(&lfs->globals, &lfs->locals); lfs_global_zero(&lfs->locals); if (!lfs_pair_isnull(lfs->globals.g.movepair)) { LFS_DEBUG("Found move %"PRIu32" %"PRIu32" %"PRIu32, lfs->globals.g.movepair[0], lfs->globals.g.movepair[1], lfs->globals.g.moveid); } // setup free lookahead lfs->free.off = lfs->seed % lfs->cfg->block_size; lfs->free.size = 0; lfs->free.i = 0; lfs_alloc_ack(lfs); return 0; cleanup: lfs_unmount(lfs); return err; } int lfs_unmount(lfs_t *lfs) { return lfs_deinit(lfs); } /// Filesystem filesystem operations /// int lfs_fs_traverse(lfs_t *lfs, int (*cb)(void *data, lfs_block_t block), void *data) { if (lfs_pair_isnull(lfs->root)) { return 0; } // iterate over metadata pairs lfs_mdir_t dir = {.tail = {0, 1}}; while (!lfs_pair_isnull(dir.tail)) { for (int i = 0; i < 2; i++) { int err = cb(data, dir.tail[i]); if (err) { return err; } } // iterate through ids in directory int err = lfs_dir_fetch(lfs, &dir, dir.tail); if (err) { return err; } for (uint16_t id = 0; id < dir.count; id++) { struct lfs_ctz ctz; int32_t tag = lfs_dir_get(lfs, &dir, 0x7c3ff000, LFS_MKTAG(LFS_TYPE_STRUCT, id, sizeof(ctz)), &ctz); if (tag < 0) { if (tag == LFS_ERR_NOENT) { continue; } return tag; } lfs_ctz_fromle32(&ctz); if (lfs_tag_type(tag) == LFS_TYPE_CTZSTRUCT) { err = lfs_ctz_traverse(lfs, NULL, &lfs->rcache, ctz.head, ctz.size, cb, data); if (err) { return err; } } } } // iterate over any open files for (lfs_file_t *f = (lfs_file_t*)lfs->mlist; f; f = f->next) { if (f->type != LFS_TYPE_REG) { continue; } if ((f->flags & LFS_F_DIRTY) && !(f->flags & LFS_F_INLINE)) { int err = lfs_ctz_traverse(lfs, &f->cache, &lfs->rcache, f->ctz.head, f->ctz.size, cb, data); if (err) { return err; } } if ((f->flags & LFS_F_WRITING) && !(f->flags & LFS_F_INLINE)) { int err = lfs_ctz_traverse(lfs, &f->cache, &lfs->rcache, f->block, f->pos, cb, data); if (err) { return err; } } } return 0; } static int lfs_fs_pred(lfs_t *lfs, const lfs_block_t pair[2], lfs_mdir_t *pdir) { if (lfs_pair_isnull(lfs->root)) { return LFS_ERR_NOENT; } // iterate over all directory directory entries pdir->tail[0] = 0; pdir->tail[1] = 1; while (!lfs_pair_isnull(pdir->tail)) { if (lfs_pair_cmp(pdir->tail, pair) == 0) { return 0; } int err = lfs_dir_fetch(lfs, pdir, pdir->tail); if (err) { return err; } } return LFS_ERR_NOENT; } static int32_t lfs_fs_parent(lfs_t *lfs, const lfs_block_t pair[2], lfs_mdir_t *parent) { if (lfs_pair_isnull(lfs->root)) { return LFS_ERR_NOENT; } // search for both orderings so we can reuse the find function for (int i = 0; i < 2; i++) { int32_t tag = lfs_dir_find(lfs, parent, (const lfs_block_t[2]){0, 1}, true, 0x7fc00fff, LFS_MKTAG(LFS_TYPE_DIRSTRUCT, 0, 8), pair); if (tag != LFS_ERR_NOENT) { return tag; } } return LFS_ERR_NOENT; } static int lfs_fs_relocate(lfs_t *lfs, const lfs_block_t oldpair[2], lfs_block_t newpair[2]) { // update internal root if (lfs_pair_cmp(oldpair, lfs->root) == 0) { LFS_DEBUG("Relocating root %"PRIu32" %"PRIu32, newpair[0], newpair[1]); lfs->root[0] = newpair[0]; lfs->root[1] = newpair[1]; } // update internally tracked dirs for (lfs_mlist_t *d = lfs->mlist; d; d = d->next) { if (lfs_pair_cmp(oldpair, d->m.pair) == 0) { d->m.pair[0] = newpair[0]; d->m.pair[1] = newpair[1]; } } // find parent lfs_mdir_t parent; int32_t tag = lfs_fs_parent(lfs, oldpair, &parent); if (tag < 0 && tag != LFS_ERR_NOENT) { return tag; } if (tag != LFS_ERR_NOENT) { // update disk, this creates a desync lfs_global_orphans(lfs, +1); lfs_pair_tole32(newpair); int err = lfs_dir_commit(lfs, &parent, &(lfs_mattr_t){.tag=tag, .buffer=newpair}); lfs_pair_fromle32(newpair); if (err) { return err; } // next step, clean up orphans lfs_global_orphans(lfs, -1); } // find pred int err = lfs_fs_pred(lfs, oldpair, &parent); if (err && err != LFS_ERR_NOENT) { return err; } // if we can't find dir, it must be new if (err != LFS_ERR_NOENT) { // replace bad pair, either we clean up desync, or no desync occured parent.tail[0] = newpair[0]; parent.tail[1] = newpair[1]; err = lfs_dir_commit(lfs, &parent, LFS_MKATTR(LFS_TYPE_TAIL + parent.split, 0x3ff, parent.tail, sizeof(parent.tail), NULL)); if (err) { return err; } } return 0; } static int lfs_fs_deorphan(lfs_t *lfs) { // Fix any orphans lfs_mdir_t pdir = {.split = true}; lfs_mdir_t dir = {.tail = {0, 1}}; // iterate over all directory directory entries while (!lfs_pair_isnull(dir.tail)) { int err = lfs_dir_fetch(lfs, &dir, dir.tail); if (err) { return err; } // check head blocks for orphans if (!pdir.split) { // check if we have a parent lfs_mdir_t parent; int32_t tag = lfs_fs_parent(lfs, pdir.tail, &parent); if (tag < 0 && tag != LFS_ERR_NOENT) { return tag; } if (tag == LFS_ERR_NOENT) { // we are an orphan LFS_DEBUG("Fixing orphan %"PRIu32" %"PRIu32, pdir.tail[0], pdir.tail[1]); pdir.tail[0] = dir.tail[0]; pdir.tail[1] = dir.tail[1]; err = lfs_dir_commit(lfs, &pdir, LFS_MKATTR(LFS_TYPE_SOFTTAIL, 0x3ff, pdir.tail, sizeof(pdir.tail), NULL)); if (err) { return err; } break; } lfs_block_t pair[2]; int32_t res = lfs_dir_get(lfs, &parent, 0x7ffff000, tag, pair); if (res < 0) { return res; } lfs_pair_fromle32(pair); if (!lfs_pair_sync(pair, pdir.tail)) { // we have desynced LFS_DEBUG("Fixing half-orphan %"PRIu32" %"PRIu32, pair[0], pair[1]); pdir.tail[0] = pair[0]; pdir.tail[1] = pair[1]; err = lfs_dir_commit(lfs, &pdir, LFS_MKATTR(LFS_TYPE_SOFTTAIL, 0x3ff, pdir.tail, sizeof(pdir.tail), NULL)); if (err) { return err; } break; } } memcpy(&pdir, &dir, sizeof(pdir)); } // mark orphans as fixed lfs_global_orphans(lfs, -lfs->globals.g.orphans); return 0; } static int lfs_fs_demove(lfs_t *lfs) { // Fix bad moves LFS_DEBUG("Fixing move %"PRIu32" %"PRIu32" %"PRIu32, lfs->globals.g.movepair[0], lfs->globals.g.movepair[1], lfs->globals.g.moveid); // fetch and delete the moved entry lfs_mdir_t movedir; int err = lfs_dir_fetch(lfs, &movedir, lfs->globals.g.movepair); if (err) { return err; } // rely on cancel logic inside commit err = lfs_dir_commit(lfs, &movedir, NULL); if (err) { return err; } return 0; } static int lfs_fs_forceconsistency(lfs_t *lfs) { if (lfs->globals.g.orphans) { int err = lfs_fs_deorphan(lfs); if (err) { return err; } } if (lfs->globals.g.moveid != 0x3ff) { int err = lfs_fs_demove(lfs); if (err) { return err; } } return 0; } static int lfs_fs_size_count(void *p, lfs_block_t block) { (void)block; lfs_size_t *size = p; *size += 1; return 0; } lfs_ssize_t lfs_fs_size(lfs_t *lfs) { lfs_size_t size = 0; int err = lfs_fs_traverse(lfs, lfs_fs_size_count, &size); if (err) { return err; } return size; }