/* * The little filesystem * * Copyright (c) 2017 Christopher Haster * Distributed under the MIT license */ #include "lfs.h" #include "lfs_util.h" #include #include #include /// Block device operations /// static int lfs_bd_flush(lfs_t *lfs) { if (lfs->pcache.off != -1) { int err = lfs->cfg->prog(lfs->cfg, lfs->pcache.block, lfs->pcache.off, lfs->cfg->prog_size, lfs->pcache.buffer); if (err) { return err; } lfs->pcache.off = -1; } return 0; } static int lfs_bd_read(lfs_t *lfs, lfs_block_t block, lfs_off_t off, lfs_size_t size, void *buffer) { uint8_t *data = buffer; // flush overlapping programs while (size > 0) { if (block == lfs->pcache.block && off >= lfs->pcache.off && off < lfs->pcache.off + lfs->cfg->prog_size) { // is already in cache? lfs_size_t diff = lfs_min(size, lfs->cfg->prog_size - (off-lfs->pcache.off)); memcpy(data, &lfs->pcache.buffer[off-lfs->pcache.off], diff); data += diff; off += diff; size -= diff; continue; } else if (block == lfs->rcache.block && off >= lfs->rcache.off && off < lfs->rcache.off + lfs->cfg->read_size) { // is already in cache? lfs_size_t diff = lfs_min(size, lfs->cfg->read_size - (off-lfs->rcache.off)); memcpy(data, &lfs->rcache.buffer[off-lfs->rcache.off], diff); data += diff; off += diff; size -= diff; continue; } // write out pending programs int err = lfs_bd_flush(lfs); if (err) { return err; } if (off % lfs->cfg->read_size == 0 && size >= lfs->cfg->read_size) { // bypass cache? lfs_size_t diff = size - (size % lfs->cfg->read_size); int err = lfs->cfg->read(lfs->cfg, block, off, diff, data); if (err) { return err; } data += diff; off += diff; size -= diff; continue; } // load to cache, first condition can no longer fail lfs->rcache.block = block; lfs->rcache.off = off - (off % lfs->cfg->read_size); err = lfs->cfg->read(lfs->cfg, lfs->rcache.block, lfs->rcache.off, lfs->cfg->read_size, lfs->rcache.buffer); if (err) { return err; } } return 0; } static int lfs_bd_prog(lfs_t *lfs, lfs_block_t block, lfs_off_t off, lfs_size_t size, const void *buffer) { const uint8_t *data = buffer; if (block == lfs->rcache.block) { // invalidate read cache lfs->rcache.off = -1; } while (size > 0) { if (block == lfs->pcache.block && off >= lfs->pcache.off && off < lfs->pcache.off + lfs->cfg->prog_size) { // is already in cache? lfs_size_t diff = lfs_min(size, lfs->cfg->prog_size - (off-lfs->pcache.off)); memcpy(&lfs->pcache.buffer[off-lfs->pcache.off], data, diff); data += diff; off += diff; size -= diff; continue; } // write out pending programs int err = lfs_bd_flush(lfs); if (err) { return err; } if (off % lfs->cfg->prog_size == 0 && size >= lfs->cfg->prog_size) { // bypass cache? lfs_size_t diff = size - (size % lfs->cfg->prog_size); int err = lfs->cfg->prog(lfs->cfg, block, off, diff, data); if (err) { return err; } data += diff; off += diff; size -= diff; continue; } // prepare cache, first condition can no longer fail lfs->pcache.block = block; lfs->pcache.off = off - (off % lfs->cfg->prog_size); } return 0; } static int lfs_bd_erase(lfs_t *lfs, lfs_block_t block) { return lfs->cfg->erase(lfs->cfg, block); } static int lfs_bd_sync(lfs_t *lfs) { int err = lfs_bd_flush(lfs); if (err) { return err; } return lfs->cfg->sync(lfs->cfg); } static int lfs_bd_cmp(lfs_t *lfs, lfs_block_t block, lfs_off_t off, lfs_size_t size, const void *buffer) { const uint8_t *data = buffer; for (lfs_off_t i = 0; i < size; i++) { uint8_t c; int err = lfs_bd_read(lfs, block, off+i, 1, &c); if (err) { return err; } if (c != data[i]) { return false; } } return true; } /// Block allocator /// static int lfs_alloc_lookahead(void *p, lfs_block_t block) { lfs_t *lfs = p; lfs_block_t off = (block - lfs->free.start) % lfs->cfg->block_count; if (off < lfs->cfg->lookahead) { lfs->free.lookahead[off / 32] |= 1U << (off % 32); } return 0; } static int lfs_alloc_scan(lfs_t *lfs, lfs_block_t *block) { lfs_block_t end = lfs->free.start + lfs->cfg->block_count; while (true) { while (lfs->free.off < lfs->cfg->lookahead) { lfs_block_t off = lfs->free.off; lfs->free.off += 1; if (!(lfs->free.lookahead[off / 32] & (1U << (off % 32)))) { // found a free block *block = (lfs->free.start + off) % lfs->cfg->block_count; return 0; } } // could not find block lfs->free.start += lfs->cfg->lookahead; lfs->free.off = 0; if (lfs_scmp(lfs->free.start, end) > 0) { return LFS_ERROR_NO_SPACE; } // find mask of free blocks from tree memset(lfs->free.lookahead, 0, lfs->cfg->lookahead/8); int err = lfs_traverse(lfs, lfs_alloc_lookahead, lfs); if (err) { return err; } } } static int lfs_alloc(lfs_t *lfs, lfs_block_t *block) { // try to scan for free block int err = lfs_alloc_scan(lfs, block); if (err != LFS_ERROR_NO_SPACE) { return err; } // still can't allocate a block? check for orphans err = lfs_deorphan(lfs); if (err) { return err; } // scan again or die trying return lfs_alloc_scan(lfs, block); } /// Metadata pair and directory operations /// static inline void lfs_pairswap(lfs_block_t pair[2]) { lfs_block_t t = pair[0]; pair[0] = pair[1]; pair[1] = t; } static inline bool lfs_pairisnull(const lfs_block_t pair[2]) { return !pair[0] || !pair[1]; } static inline int lfs_paircmp( const lfs_block_t paira[2], const lfs_block_t pairb[2]) { return !((paira[0] == pairb[0] && paira[1] == pairb[1]) || (paira[0] == pairb[1] && paira[1] == pairb[0])); } static int lfs_dir_alloc(lfs_t *lfs, lfs_dir_t *dir) { // Allocate pair of dir blocks for (int i = 0; i < 2; i++) { int err = lfs_alloc(lfs, &dir->pair[i]); if (err) { return err; } } // Rather than clobbering one of the blocks we just pretend // the revision may be valid int err = lfs_bd_read(lfs, dir->pair[0], 0, 4, &dir->d.rev); if (err) { return err; } // Set defaults dir->d.rev += 1; dir->d.size = sizeof(dir->d); dir->d.tail[0] = 0; dir->d.tail[1] = 0; dir->off = sizeof(dir->d); // Don't write out yet, let caller take care of that return 0; } static int lfs_dir_fetch(lfs_t *lfs, lfs_dir_t *dir, const lfs_block_t pair[2]) { // copy out pair, otherwise may be aliasing dir const lfs_block_t tpair[2] = {pair[0], pair[1]}; bool valid = false; // check both blocks for the most recent revision for (int i = 0; i < 2; i++) { struct lfs_disk_dir test; int err = lfs_bd_read(lfs, tpair[i], 0, sizeof(test), &test); if (err) { return err; } if (valid && lfs_scmp(test.rev, dir->d.rev) < 0) { continue; } uint32_t crc = 0xffffffff; crc = lfs_crc(crc, sizeof(test), &test); for (lfs_off_t j = sizeof(test); j < lfs->cfg->block_size; j += 4) { uint32_t word; int err = lfs_bd_read(lfs, tpair[i], j, 4, &word); if (err) { return err; } crc = lfs_crc(crc, 4, &word); } if (crc != 0) { continue; } valid = true; // setup dir in case it's valid dir->pair[0] = tpair[(i+0) % 2]; dir->pair[1] = tpair[(i+1) % 2]; dir->off = sizeof(dir->d); dir->d = test; } if (!valid) { LFS_ERROR("Corrupted dir pair at %d %d", tpair[0], tpair[1]); return LFS_ERROR_CORRUPT; } return 0; } static int lfs_dir_commit(lfs_t *lfs, lfs_dir_t *dir, const lfs_entry_t *entry, const void *data) { dir->d.rev += 1; lfs_pairswap(dir->pair); int err = lfs_bd_erase(lfs, dir->pair[0]); if (err) { return err; } uint32_t crc = 0xffffffff; crc = lfs_crc(crc, sizeof(dir->d), &dir->d); err = lfs_bd_prog(lfs, dir->pair[0], 0, sizeof(dir->d), &dir->d); if (err) { return err; } lfs_off_t off = sizeof(dir->d); lfs_size_t size = 0x7fffffff & dir->d.size; while (off < size) { if (entry && off == entry->off) { crc = lfs_crc(crc, sizeof(entry->d), &entry->d); int err = lfs_bd_prog(lfs, dir->pair[0], off, sizeof(entry->d), &entry->d); if (err) { return err; } off += sizeof(entry->d); if (data) { crc = lfs_crc(crc, entry->d.len - sizeof(entry->d), data); int err = lfs_bd_prog(lfs, dir->pair[0], off, entry->d.len - sizeof(entry->d), data); if (err) { return err; } off += entry->d.len - sizeof(entry->d); } } else { uint8_t data; int err = lfs_bd_read(lfs, dir->pair[1], off, 1, &data); if (err) { return err; } crc = lfs_crc(crc, 1, &data); err = lfs_bd_prog(lfs, dir->pair[0], off, 1, &data); if (err) { return err; } off += 1; } } while (off < lfs->cfg->block_size-4) { uint8_t data = 0xff; crc = lfs_crc(crc, 1, &data); err = lfs_bd_prog(lfs, dir->pair[0], off, 1, &data); if (err) { return err; } off += 1; } err = lfs_bd_prog(lfs, dir->pair[0], lfs->cfg->block_size-4, 4, &crc); if (err) { return err; } return lfs_bd_sync(lfs); } static int lfs_dir_shift(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) { dir->d.rev += 1; dir->d.size -= entry->d.len; lfs_pairswap(dir->pair); int err = lfs_bd_erase(lfs, dir->pair[0]); if (err) { return err; } uint32_t crc = 0xffffffff; crc = lfs_crc(crc, sizeof(dir->d), &dir->d); err = lfs_bd_prog(lfs, dir->pair[0], 0, sizeof(dir->d), &dir->d); if (err) { return err; } lfs_off_t woff = sizeof(dir->d); lfs_off_t roff = sizeof(dir->d); lfs_size_t size = 0x7fffffff & dir->d.size; while (woff < size) { if (roff == entry->off) { roff += entry->d.len; } else { uint8_t data; int err = lfs_bd_read(lfs, dir->pair[1], roff, 1, &data); if (err) { return err; } crc = lfs_crc(crc, 1, (void*)&data); err = lfs_bd_prog(lfs, dir->pair[0], woff, 1, &data); if (err) { return err; } woff += 1; roff += 1; } } while (woff < lfs->cfg->block_size-4) { uint8_t data = 0xff; crc = lfs_crc(crc, 1, &data); err = lfs_bd_prog(lfs, dir->pair[0], woff, 1, &data); if (err) { return err; } woff += 1; } err = lfs_bd_prog(lfs, dir->pair[0], lfs->cfg->block_size-4, 4, &crc); if (err) { return err; } return lfs_bd_sync(lfs); } static int lfs_dir_append(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry, const void *data) { // check if we fit, if top bit is set we do not and move on while (true) { if (dir->d.size + entry->d.len <= lfs->cfg->block_size - 4) { entry->pair[0] = dir->pair[0]; entry->pair[1] = dir->pair[1]; entry->off = dir->d.size; dir->d.size += entry->d.len; return lfs_dir_commit(lfs, dir, entry, data); } if (!(0x80000000 & dir->d.size)) { lfs_dir_t newdir; int err = lfs_dir_alloc(lfs, &newdir); if (err) { return err; } newdir.d.tail[0] = dir->d.tail[0]; newdir.d.tail[1] = dir->d.tail[1]; entry->pair[0] = newdir.pair[0]; entry->pair[1] = newdir.pair[1]; entry->off = newdir.d.size; newdir.d.size += entry->d.len; err = lfs_dir_commit(lfs, &newdir, entry, data); if (err) { return err; } dir->d.size |= 0x80000000; dir->d.tail[0] = newdir.pair[0]; dir->d.tail[1] = newdir.pair[1]; return lfs_dir_commit(lfs, dir, NULL, NULL); } int err = lfs_dir_fetch(lfs, dir, dir->d.tail); if (err) { return err; } } } static int lfs_dir_remove(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) { // either shift out the one entry or remove the whole dir block if (dir->d.size == sizeof(dir->d)) { lfs_dir_t pdir; int err = lfs_dir_fetch(lfs, &pdir, lfs->root); if (err) { return err; } while (lfs_paircmp(pdir.d.tail, dir->pair) != 0) { int err = lfs_dir_fetch(lfs, &pdir, pdir.d.tail); if (err) { return err; } } // TODO easier check for head block? (common case) if (!(pdir.d.size & 0x80000000)) { return lfs_dir_shift(lfs, dir, entry); } else { pdir.d.tail[0] = dir->d.tail[0]; pdir.d.tail[1] = dir->d.tail[1]; return lfs_dir_commit(lfs, &pdir, NULL, NULL); } } else { return lfs_dir_shift(lfs, dir, entry); } } static int lfs_dir_next(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry) { while (true) { if (dir->off + sizeof(entry->d) > (0x7fffffff & dir->d.size)) { if (!(0x80000000 & dir->d.size)) { entry->pair[0] = dir->pair[0]; entry->pair[1] = dir->pair[1]; entry->off = dir->off; return LFS_ERROR_NO_ENTRY; } int err = lfs_dir_fetch(lfs, dir, dir->d.tail); if (err) { return err; } dir->off = sizeof(dir->d); dir->pos += sizeof(dir->d); continue; } int err = lfs_bd_read(lfs, dir->pair[0], dir->off, sizeof(entry->d), &entry->d); if (err) { return err; } dir->off += entry->d.len; dir->pos += entry->d.len; if ((0xff & entry->d.type) == LFS_TYPE_REG || (0xff & entry->d.type) == LFS_TYPE_DIR) { entry->pair[0] = dir->pair[0]; entry->pair[1] = dir->pair[1]; entry->off = dir->off - entry->d.len; return 0; } } } static int lfs_dir_find(lfs_t *lfs, lfs_dir_t *dir, lfs_entry_t *entry, const char **path) { const char *pathname = *path; size_t pathlen; while (true) { nextname: // skip slashes pathname += strspn(pathname, "/"); pathlen = strcspn(pathname, "/"); // skip '.' and root '..' if ((pathlen == 1 && memcmp(pathname, ".", 1) == 0) || (pathlen == 2 && memcmp(pathname, "..", 2) == 0)) { pathname += pathlen; goto nextname; } // skip if matched by '..' in name const char *suffix = pathname + pathlen; size_t sufflen; int depth = 1; while (true) { suffix += strspn(suffix, "/"); sufflen = strcspn(suffix, "/"); if (sufflen == 0) { break; } if (sufflen == 2 && memcmp(suffix, "..", 2) == 0) { depth -= 1; if (depth == 0) { pathname = suffix + sufflen; goto nextname; } } else { depth += 1; } suffix += sufflen; } // find path while (true) { int err = lfs_dir_next(lfs, dir, entry); if (err) { return err; } if (entry->d.len - sizeof(entry->d) != pathlen) { continue; } int ret = lfs_bd_cmp(lfs, dir->pair[0], entry->off + sizeof(entry->d), pathlen, pathname); if (ret < 0) { return ret; } // Found match if (ret == true) { break; } } pathname += pathlen; pathname += strspn(pathname, "/"); if (pathname[0] == '\0') { return 0; } // continue on if we hit a directory if (entry->d.type != LFS_TYPE_DIR) { return LFS_ERROR_NOT_DIR; } int err = lfs_dir_fetch(lfs, dir, entry->d.u.dir); if (err) { return err; } *path = pathname; } return 0; } /// Top level directory operations /// int lfs_mkdir(lfs_t *lfs, const char *path) { // fetch parent directory lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } lfs_entry_t entry; err = lfs_dir_find(lfs, &cwd, &entry, &path); if (err != LFS_ERROR_NO_ENTRY) { return err ? err : LFS_ERROR_EXISTS; } // Build up new directory lfs_dir_t dir; err = lfs_dir_alloc(lfs, &dir); if (err) { return err; } dir.d.tail[0] = cwd.d.tail[0]; dir.d.tail[1] = cwd.d.tail[1]; err = lfs_dir_commit(lfs, &dir, NULL, NULL); if (err) { return err; } entry.d.type = LFS_TYPE_DIR; entry.d.len = sizeof(entry.d) + strlen(path); entry.d.u.dir[0] = dir.pair[0]; entry.d.u.dir[1] = dir.pair[1]; cwd.d.tail[0] = dir.pair[0]; cwd.d.tail[1] = dir.pair[1]; return lfs_dir_append(lfs, &cwd, &entry, path); } int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) { dir->pair[0] = lfs->root[0]; dir->pair[1] = lfs->root[1]; int err = lfs_dir_fetch(lfs, dir, dir->pair); if (err) { return err; } if (strspn(path, "/.") == strlen(path)) { // can only be something like '/././../.' dir->head[0] = dir->pair[0]; dir->head[1] = dir->pair[1]; dir->pos = sizeof(dir->d) - 2; dir->off = sizeof(dir->d); return 0; } lfs_entry_t entry; err = lfs_dir_find(lfs, dir, &entry, &path); if (err) { return err; } else if (entry.d.type != LFS_TYPE_DIR) { return LFS_ERROR_NOT_DIR; } err = lfs_dir_fetch(lfs, dir, entry.d.u.dir); if (err) { return err; } // setup head dir // special offset for '.' and '..' dir->head[0] = dir->pair[0]; dir->head[1] = dir->pair[1]; dir->pos = sizeof(dir->d) - 2; dir->off = sizeof(dir->d); return 0; } int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) { // Do nothing, dir is always synchronized return 0; } int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) { memset(info, 0, sizeof(*info)); // special offset for '.' and '..' if (dir->pos == sizeof(dir->d) - 2) { info->type = LFS_TYPE_DIR; strcpy(info->name, "."); dir->pos += 1; return 1; } else if (dir->pos == sizeof(dir->d) - 1) { info->type = LFS_TYPE_DIR; strcpy(info->name, ".."); dir->pos += 1; return 1; } lfs_entry_t entry; int err = lfs_dir_next(lfs, dir, &entry); if (err) { return (err == LFS_ERROR_NO_ENTRY) ? 0 : err; } info->type = entry.d.type & 0xff; if (info->type == LFS_TYPE_REG) { info->size = entry.d.u.file.size; } err = lfs_bd_read(lfs, dir->pair[0], entry.off + sizeof(entry.d), entry.d.len - sizeof(entry.d), info->name); if (err) { return err; } return 1; } int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off) { // simply walk from head dir int err = lfs_dir_rewind(lfs, dir); if (err) { return err; } dir->pos = off; while (off > (0x7fffffff & dir->d.size)) { off -= 0x7fffffff & dir->d.size; if (!(0x80000000 & dir->d.size)) { return LFS_ERROR_INVALID; } int err = lfs_dir_fetch(lfs, dir, dir->d.tail); if (err) { return err; } } dir->off = off; return 0; } lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir) { return dir->pos; } int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir) { // reload the head dir int err = lfs_dir_fetch(lfs, dir, dir->head); if (err) { return err; } dir->pair[0] = dir->head[0]; dir->pair[1] = dir->head[1]; dir->pos = sizeof(dir->d) - 2; dir->off = sizeof(dir->d); return 0; } /// Index list operations /// static int lfs_index(lfs_t *lfs, lfs_off_t *off) { lfs_off_t i = 0; while (*off >= lfs->cfg->block_size) { i += 1; *off -= lfs->cfg->block_size; *off += 4*lfs_min(lfs_ctz(i)+1, lfs->words-1); } return i; } static int lfs_index_find(lfs_t *lfs, lfs_block_t head, lfs_size_t size, lfs_size_t pos, lfs_block_t *block, lfs_off_t *off) { if (size == 0) { *block = 0; *off = 0; return 0; } lfs_off_t current = lfs_index(lfs, &(lfs_off_t){size-1}); lfs_off_t target = lfs_index(lfs, &pos); while (current > target) { lfs_size_t skip = lfs_min( lfs_npw2(current-target+1) - 1, lfs_min(lfs_ctz(current)+1, lfs->words-1) - 1); int err = lfs_bd_read(lfs, head, 4*skip, 4, &head); if (err) { return err; } current -= 1 << skip; } *block = head; *off = pos; return 0; } static int lfs_index_extend(lfs_t *lfs, lfs_block_t head, lfs_size_t size, lfs_off_t *block, lfs_block_t *off) { // go ahead and grab a block int err = lfs_alloc(lfs, block); if (err) { return err; } err = lfs_bd_erase(lfs, *block); if (err) { return err; } if (size == 0) { *off = 0; return 0; } size -= 1; lfs_off_t index = lfs_index(lfs, &size); size += 1; // just copy out the last block if it is incomplete if (size != lfs->cfg->block_size) { for (lfs_off_t i = 0; i < size; i++) { uint8_t data; int err = lfs_bd_read(lfs, head, i, 1, &data); if (err) { return err; } err = lfs_bd_prog(lfs, *block, i, 1, &data); if (err) { return err; } } *off = size; return 0; } // append block index += 1; lfs_size_t skips = lfs_min(lfs_ctz(index)+1, lfs->words-1); for (lfs_off_t i = 0; i < skips; i++) { int err = lfs_bd_prog(lfs, *block, 4*i, 4, &head); if (err) { return err; } if (i != skips-1) { err = lfs_bd_read(lfs, head, 4*i, 4, &head); if (err) { return err; } } } *off = 4*skips; return 0; } static int lfs_index_traverse(lfs_t *lfs, lfs_block_t head, lfs_size_t size, int (*cb)(void*, lfs_block_t), void *data) { if (size == 0) { return 0; } lfs_off_t index = lfs_index(lfs, &(lfs_off_t){size-1}); while (true) { int err = cb(data, head); if (err) { return err; } if (index == 0) { return 0; } err = lfs_bd_read(lfs, head, 0, 4, &head); if (err) { return err; } index -= 1; } return 0; } /// Top level file operations /// int lfs_file_open(lfs_t *lfs, lfs_file_t *file, const char *path, int flags) { file->flags = flags; // Allocate entry for file if it doesn't exist // TODO check open files lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } err = lfs_dir_find(lfs, &cwd, &file->entry, &path); if (err && err != LFS_ERROR_NO_ENTRY) { return err; } if (err == LFS_ERROR_NO_ENTRY) { if (!(flags & LFS_O_CREAT)) { return LFS_ERROR_NO_ENTRY; } // create entry to remember name file->entry.d.type = LFS_TYPE_REG; file->entry.d.len = sizeof(file->entry.d) + strlen(path); file->entry.d.u.file.head = 0; file->entry.d.u.file.size = 0; err = lfs_dir_append(lfs, &cwd, &file->entry, path); if (err) { return err; } } else if (file->entry.d.type == LFS_TYPE_DIR) { return LFS_ERROR_IS_DIR; } else if (flags & LFS_O_EXCL) { return LFS_ERROR_EXISTS; } file->wpos = 0; file->wblock = 0; file->rpos = 0; file->rblock = 0; if (flags & LFS_O_TRUNC) { file->entry.d.u.file.head = 0; file->entry.d.u.file.size = 0; } if (flags & LFS_O_APPEND) { file->wpos = file->entry.d.u.file.size; } return 0; } int lfs_file_close(lfs_t *lfs, lfs_file_t *file) { return lfs_file_sync(lfs, file); } static int lfs_file_flush(lfs_t *lfs, lfs_file_t *file) { if (file->wblock == 0) { // already in sync, may be rdonly return 0; } // copy over anything after the file lfs_off_t oldrpos = file->rpos; lfs_off_t oldwpos = file->wpos; file->rpos = file->wpos; file->rblock = 0; while (file->wpos < file->entry.d.u.file.size) { uint8_t data; lfs_ssize_t res = lfs_file_read(lfs, file, &data, 1); if (res < 0) { return res; } res = lfs_file_write(lfs, file, &data, 1); if (res < 0) { return res; } } // actual file updates file->entry.d.u.file.head = file->wblock; file->entry.d.u.file.size = file->wpos; file->rpos = oldrpos; file->rblock = 0; file->wpos = oldwpos; file->wblock = 0; return 0; } int lfs_file_sync(lfs_t *lfs, lfs_file_t *file) { if (file->wblock == 0) { // already in sync, may be rdonly return 0; } int err = lfs_file_flush(lfs, file); if (err) { return err; } // update dir entry lfs_dir_t cwd; err = lfs_dir_fetch(lfs, &cwd, file->entry.pair); if (err) { return err; } return lfs_dir_commit(lfs, &cwd, &file->entry, NULL); } lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file, const void *buffer, lfs_size_t size) { const uint8_t *data = buffer; lfs_size_t nsize = size; if ((file->flags & 3) == LFS_O_RDONLY) { return LFS_ERROR_INVALID; } while (nsize > 0) { // check if we need a new block if (!file->wblock || file->woff == lfs->cfg->block_size) { if (!file->wblock) { // find out which block we're extending from int err = lfs_index_find(lfs, file->entry.d.u.file.head, file->entry.d.u.file.size, file->wpos, &file->wblock, &file->woff); if (err) { return err; } } // extend file with new blocks int err = lfs_index_extend(lfs, file->wblock, file->wpos, &file->wblock, &file->woff); if (err) { return err; } } // program as much as we can in current block lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->woff); int err = lfs_bd_prog(lfs, file->wblock, file->woff, diff, data); if (err) { return err; } file->wpos += diff; file->woff += diff; data += diff; nsize -= diff; if (file->flags & LFS_O_APPEND) { file->entry.d.u.file.head = file->wblock; file->entry.d.u.file.size = file->wpos; } } if (file->flags & LFS_O_SYNC) { int err = lfs_file_sync(lfs, file); if (err) { return err; } } return size; } lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file, void *buffer, lfs_size_t size) { uint8_t *data = buffer; size = lfs_min(size, file->entry.d.u.file.size - file->rpos); lfs_size_t nsize = size; if ((file->flags & 3) == LFS_O_WRONLY) { return LFS_ERROR_INVALID; } while (nsize > 0) { // check if we need a new block if (!file->rblock || file->roff == lfs->cfg->block_size) { int err = lfs_index_find(lfs, file->entry.d.u.file.head, file->entry.d.u.file.size, file->rpos, &file->rblock, &file->roff); if (err) { return err; } } // read as much as we can in current block lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->roff); int err = lfs_bd_read(lfs, file->rblock, file->roff, diff, data); if (err) { return err; } file->rpos += diff; file->roff += diff; data += diff; nsize -= diff; } return size; } lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file, lfs_soff_t off, int whence) { // write out everything beforehand, may be noop if rdonly int err = lfs_file_flush(lfs, file); if (err) { return err; } // rpos is always correct pos, even in append mode // TODO keep rpos and wpos together? lfs_off_t prev = file->rpos; file->rblock = 0; switch (whence) { case LFS_SEEK_SET: file->rpos = off; break; case LFS_SEEK_CUR: file->rpos = file->rpos + off; break; case LFS_SEEK_END: file->rpos = file->entry.d.u.file.size + off; break; } if (!(file->flags & LFS_O_APPEND)) { file->wpos = file->rpos; file->wblock = 0; } return prev; } lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file) { return lfs_max(file->wpos, file->entry.d.u.file.size); } lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file) { return file->rpos; } int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file) { lfs_soff_t res = lfs_file_seek(lfs, file, 0, LFS_SEEK_SET); if (res < 0) { return res; } return 0; } /// Generic filesystem operations /// static int lfs_init(lfs_t *lfs, const struct lfs_config *cfg) { lfs->cfg = cfg; lfs->words = lfs->cfg->block_size / sizeof(uint32_t); // setup read cache lfs->rcache.off = -1; if (lfs->cfg->read_buffer) { lfs->rcache.buffer = lfs->cfg->read_buffer; } else { lfs->rcache.buffer = malloc(lfs->cfg->read_size); if (!lfs->rcache.buffer) { return LFS_ERROR_NO_MEM; } } // setup program cache lfs->pcache.off = -1; if (lfs->cfg->prog_buffer) { lfs->pcache.buffer = lfs->cfg->prog_buffer; } else { lfs->pcache.buffer = malloc(lfs->cfg->prog_size); if (!lfs->pcache.buffer) { return LFS_ERROR_NO_MEM; } } // setup lookahead if (lfs->cfg->lookahead_buffer) { lfs->free.lookahead = lfs->cfg->lookahead_buffer; } else { lfs->free.lookahead = malloc(lfs->cfg->lookahead/8); if (!lfs->free.lookahead) { return LFS_ERROR_NO_MEM; } } return 0; } static int lfs_deinit(lfs_t *lfs) { // Free allocated memory if (!lfs->cfg->read_buffer) { free(lfs->rcache.buffer); } if (!lfs->cfg->prog_buffer) { free(lfs->pcache.buffer); } return 0; } int lfs_format(lfs_t *lfs, const struct lfs_config *cfg) { int err = lfs_init(lfs, cfg); if (err) { return err; } // Create free lookahead memset(lfs->free.lookahead, 0, lfs->cfg->lookahead/8); lfs->free.start = 0; lfs->free.off = 0; // Create superblock dir lfs_dir_t superdir; err = lfs_dir_alloc(lfs, &superdir); if (err) { return err; } // Write root directory lfs_dir_t root; err = lfs_dir_alloc(lfs, &root); if (err) { return err; } err = lfs_dir_commit(lfs, &root, NULL, NULL); if (err) { return err; } lfs->root[0] = root.pair[0]; lfs->root[1] = root.pair[1]; // Write superblocks lfs_superblock_t superblock = { .off = sizeof(superdir.d), .d.type = LFS_TYPE_SUPERBLOCK, .d.len = sizeof(superblock.d), .d.version = 0x00000001, .d.magic = {"littlefs"}, .d.block_size = lfs->cfg->block_size, .d.block_count = lfs->cfg->block_count, .d.root = {lfs->root[0], lfs->root[1]}, }; superdir.d.tail[0] = root.pair[0]; superdir.d.tail[1] = root.pair[1]; superdir.d.size += sizeof(superdir.d); for (int i = 0; i < 2; i++) { // Write both pairs for extra safety, do some finagling to pretend // the superblock is an entry int err = lfs_dir_commit(lfs, &superdir, (const lfs_entry_t*)&superblock, (const struct lfs_disk_entry*)&superblock.d + 1); if (err) { LFS_ERROR("Failed to write superblock at %d", superdir.pair[0]); return err; } } // sanity check that fetch works err = lfs_dir_fetch(lfs, &superdir, (const lfs_block_t[2]){0, 1}); if (err) { return err; } return lfs_deinit(lfs); } int lfs_mount(lfs_t *lfs, const struct lfs_config *cfg) { int err = lfs_init(lfs, cfg); if (err) { return err; } // setup free lookahead lfs->free.start = -lfs->cfg->lookahead; lfs->free.off = lfs->cfg->lookahead; // load superblock lfs_dir_t dir; lfs_superblock_t superblock; err = lfs_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1}); if (!err) { err = lfs_bd_read(lfs, dir.pair[0], sizeof(dir.d), sizeof(superblock.d), &superblock.d); } if (err == LFS_ERROR_CORRUPT || memcmp(superblock.d.magic, "littlefs", 8) != 0) { LFS_ERROR("Invalid superblock at %d %d", dir.pair[0], dir.pair[1]); return LFS_ERROR_CORRUPT; } if (superblock.d.version > 0x0000ffff) { LFS_ERROR("Invalid version %d.%d\n", 0xffff & (superblock.d.version >> 16), 0xffff & (superblock.d.version >> 0)); } lfs->root[0] = superblock.d.root[0]; lfs->root[1] = superblock.d.root[1]; return err; } int lfs_unmount(lfs_t *lfs) { return lfs_deinit(lfs); } int lfs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data) { // iterate over metadata pairs lfs_dir_t dir; lfs_file_t file; lfs_block_t cwd[2] = {0, 1}; while (true) { for (int i = 0; i < 2; i++) { int err = cb(data, cwd[i]); if (err) { return err; } } int err = lfs_dir_fetch(lfs, &dir, cwd); if (err) { return err; } // iterate over contents while ((0x7fffffff & dir.d.size) >= dir.off + sizeof(file.entry.d)) { int err = lfs_bd_read(lfs, dir.pair[0], dir.off, sizeof(file.entry.d), &file.entry.d); if (err) { return err; } dir.off += file.entry.d.len; if ((0xf & file.entry.d.type) == LFS_TYPE_REG) { if (file.entry.d.u.file.size < lfs->cfg->block_size) { int err = cb(data, file.entry.d.u.file.head); if (err) { return err; } } else { int err = lfs_index_traverse(lfs, file.entry.d.u.file.head, file.entry.d.u.file.size, cb, data); if (err) { return err; } } } } cwd[0] = dir.d.tail[0]; cwd[1] = dir.d.tail[1]; if (!cwd[0]) { return 0; } } } static int lfs_parent(lfs_t *lfs, const lfs_block_t dir[2]) { // iterate over all directory directory entries lfs_dir_t parent = { .d.tail[0] = lfs->root[0], .d.tail[1] = lfs->root[1], }; while (parent.d.tail[0]) { lfs_entry_t entry; int err = lfs_dir_fetch(lfs, &parent, parent.d.tail); if (err) { return err; } while (true) { int err = lfs_dir_next(lfs, &parent, &entry); if (err && err != LFS_ERROR_NO_ENTRY) { return err; } if (err == LFS_ERROR_NO_ENTRY) { break; } if ((0xf & entry.d.type) == LFS_TYPE_DIR && lfs_paircmp(entry.d.u.dir, dir) == 0) { return true; } } } return false; } int lfs_deorphan(lfs_t *lfs) { // iterate over all directories lfs_dir_t pdir; lfs_dir_t cdir; // skip root int err = lfs_dir_fetch(lfs, &pdir, lfs->root); if (err) { return err; } while (pdir.d.tail[0]) { int err = lfs_dir_fetch(lfs, &cdir, pdir.d.tail); if (err) { return err; } // check if we have a parent int parent = lfs_parent(lfs, pdir.d.tail); if (parent < 0) { return parent; } if (!parent) { // we are an orphan LFS_INFO("Orphan %d %d", pdir.d.tail[0], pdir.d.tail[1]); pdir.d.tail[0] = cdir.d.tail[0]; pdir.d.tail[1] = cdir.d.tail[1]; err = lfs_dir_commit(lfs, &pdir, NULL, NULL); if (err) { return err; } break; } memcpy(&pdir, &cdir, sizeof(pdir)); } return 0; } int lfs_remove(lfs_t *lfs, const char *path) { lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } lfs_entry_t entry; err = lfs_dir_find(lfs, &cwd, &entry, &path); if (err) { return err; } lfs_dir_t dir; if (entry.d.type == LFS_TYPE_DIR) { // must be empty before removal, checking size // without masking top bit checks for any case where // dir is not empty int err = lfs_dir_fetch(lfs, &dir, entry.d.u.dir); if (err) { return err; } else if (dir.d.size != sizeof(dir.d)) { return LFS_ERROR_INVALID; } } // remove the entry err = lfs_dir_remove(lfs, &cwd, &entry); if (err) { return err; } // if we were a directory, just run a deorphan step, this should // collect us, although is expensive if (entry.d.type == LFS_TYPE_DIR) { int err = lfs_deorphan(lfs); if (err) { return err; } } return 0; } int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath) { // find old entry lfs_dir_t oldcwd; int err = lfs_dir_fetch(lfs, &oldcwd, lfs->root); if (err) { return err; } lfs_entry_t oldentry; err = lfs_dir_find(lfs, &oldcwd, &oldentry, &oldpath); if (err) { return err; } // allocate new entry lfs_dir_t newcwd; err = lfs_dir_fetch(lfs, &newcwd, lfs->root); if (err) { return err; } lfs_entry_t preventry; err = lfs_dir_find(lfs, &newcwd, &preventry, &newpath); if (err && err != LFS_ERROR_NO_ENTRY) { return err; } bool prevexists = (err != LFS_ERROR_NO_ENTRY); // must have same type if (prevexists && preventry.d.type != oldentry.d.type) { return LFS_ERROR_INVALID; } lfs_dir_t dir; if (prevexists && preventry.d.type == LFS_TYPE_DIR) { // must be empty before removal, checking size // without masking top bit checks for any case where // dir is not empty int err = lfs_dir_fetch(lfs, &dir, preventry.d.u.dir); if (err) { return err; } else if (dir.d.size != sizeof(dir.d)) { return LFS_ERROR_INVALID; } } // move to new location lfs_entry_t newentry = preventry; newentry.d = oldentry.d; newentry.d.len = sizeof(newentry.d) + strlen(newpath); if (prevexists) { int err = lfs_dir_commit(lfs, &newcwd, &newentry, newpath); if (err) { return err; } } else { int err = lfs_dir_append(lfs, &newcwd, &newentry, newpath); if (err) { return err; } } // fetch again in case newcwd == oldcwd // TODO handle this better? err = lfs_dir_fetch(lfs, &oldcwd, oldcwd.pair); if (err) { return err; } err = lfs_dir_find(lfs, &oldcwd, &oldentry, &oldpath); if (err) { return err; } // remove from old location err = lfs_dir_remove(lfs, &oldcwd, &oldentry); if (err) { return err; } // if we were a directory, just run a deorphan step, this should // collect us, although is expensive if (prevexists && preventry.d.type == LFS_TYPE_DIR) { int err = lfs_deorphan(lfs); if (err) { return err; } } return 0; } int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info) { lfs_dir_t cwd; int err = lfs_dir_fetch(lfs, &cwd, lfs->root); if (err) { return err; } lfs_entry_t entry; err = lfs_dir_find(lfs, &cwd, &entry, &path); if (err) { return err; } // TODO abstract out info assignment memset(info, 0, sizeof(*info)); info->type = entry.d.type & 0xff; if (info->type == LFS_TYPE_REG) { info->size = entry.d.u.file.size; } err = lfs_bd_read(lfs, cwd.pair[0], entry.off + sizeof(entry.d), entry.d.len - sizeof(entry.d), info->name); if (err) { return err; } return 0; }