# specific corner cases worth explicitly testing for [cases.test_relocations_dangling_split_dir] defines.ITERATIONS = 20 defines.COUNT = 10 defines.BLOCK_CYCLES = [8, 1] code = ''' lfs_t lfs; lfs_format(&lfs, cfg) => 0; // fill up filesystem so only ~16 blocks are left lfs_mount(&lfs, cfg) => 0; lfs_file_t file; lfs_file_open(&lfs, &file, "padding", LFS_O_CREAT | LFS_O_WRONLY) => 0; uint8_t buffer[512]; memset(buffer, 0, 512); while (BLOCK_COUNT - lfs_fs_size(&lfs) > 16) { lfs_file_write(&lfs, &file, buffer, 512) => 512; } lfs_file_close(&lfs, &file) => 0; // make a child dir to use in bounded space lfs_mkdir(&lfs, "child") => 0; lfs_unmount(&lfs) => 0; lfs_mount(&lfs, cfg) => 0; for (unsigned j = 0; j < ITERATIONS; j++) { for (unsigned i = 0; i < COUNT; i++) { char path[1024]; sprintf(path, "child/test%03d_loooooooooooooooooong_name", i); lfs_file_open(&lfs, &file, path, LFS_O_CREAT | LFS_O_WRONLY) => 0; lfs_file_close(&lfs, &file) => 0; } lfs_dir_t dir; struct lfs_info info; lfs_dir_open(&lfs, &dir, "child") => 0; lfs_dir_read(&lfs, &dir, &info) => 1; lfs_dir_read(&lfs, &dir, &info) => 1; for (unsigned i = 0; i < COUNT; i++) { char path[1024]; sprintf(path, "test%03d_loooooooooooooooooong_name", i); lfs_dir_read(&lfs, &dir, &info) => 1; strcmp(info.name, path) => 0; } lfs_dir_read(&lfs, &dir, &info) => 0; lfs_dir_close(&lfs, &dir) => 0; if (j == (unsigned)ITERATIONS-1) { break; } for (unsigned i = 0; i < COUNT; i++) { char path[1024]; sprintf(path, "child/test%03d_loooooooooooooooooong_name", i); lfs_remove(&lfs, path) => 0; } } lfs_unmount(&lfs) => 0; lfs_mount(&lfs, cfg) => 0; lfs_dir_t dir; struct lfs_info info; lfs_dir_open(&lfs, &dir, "child") => 0; lfs_dir_read(&lfs, &dir, &info) => 1; lfs_dir_read(&lfs, &dir, &info) => 1; for (unsigned i = 0; i < COUNT; i++) { char path[1024]; sprintf(path, "test%03d_loooooooooooooooooong_name", i); lfs_dir_read(&lfs, &dir, &info) => 1; strcmp(info.name, path) => 0; } lfs_dir_read(&lfs, &dir, &info) => 0; lfs_dir_close(&lfs, &dir) => 0; for (unsigned i = 0; i < COUNT; i++) { char path[1024]; sprintf(path, "child/test%03d_loooooooooooooooooong_name", i); lfs_remove(&lfs, path) => 0; } lfs_unmount(&lfs) => 0; ''' [cases.test_relocations_outdated_head] defines.ITERATIONS = 20 defines.COUNT = 10 defines.BLOCK_CYCLES = [8, 1] code = ''' lfs_t lfs; lfs_format(&lfs, cfg) => 0; // fill up filesystem so only ~16 blocks are left lfs_mount(&lfs, cfg) => 0; lfs_file_t file; lfs_file_open(&lfs, &file, "padding", LFS_O_CREAT | LFS_O_WRONLY) => 0; uint8_t buffer[512]; memset(buffer, 0, 512); while (BLOCK_COUNT - lfs_fs_size(&lfs) > 16) { lfs_file_write(&lfs, &file, buffer, 512) => 512; } lfs_file_close(&lfs, &file) => 0; // make a child dir to use in bounded space lfs_mkdir(&lfs, "child") => 0; lfs_unmount(&lfs) => 0; lfs_mount(&lfs, cfg) => 0; for (unsigned j = 0; j < ITERATIONS; j++) { for (unsigned i = 0; i < COUNT; i++) { char path[1024]; sprintf(path, "child/test%03d_loooooooooooooooooong_name", i); lfs_file_open(&lfs, &file, path, LFS_O_CREAT | LFS_O_WRONLY) => 0; lfs_file_close(&lfs, &file) => 0; } lfs_dir_t dir; struct lfs_info info; lfs_dir_open(&lfs, &dir, "child") => 0; lfs_dir_read(&lfs, &dir, &info) => 1; lfs_dir_read(&lfs, &dir, &info) => 1; for (unsigned i = 0; i < COUNT; i++) { char path[1024]; sprintf(path, "test%03d_loooooooooooooooooong_name", i); lfs_dir_read(&lfs, &dir, &info) => 1; strcmp(info.name, path) => 0; info.size => 0; sprintf(path, "child/test%03d_loooooooooooooooooong_name", i); lfs_file_open(&lfs, &file, path, LFS_O_WRONLY) => 0; lfs_file_write(&lfs, &file, "hi", 2) => 2; lfs_file_close(&lfs, &file) => 0; } lfs_dir_read(&lfs, &dir, &info) => 0; lfs_dir_rewind(&lfs, &dir) => 0; lfs_dir_read(&lfs, &dir, &info) => 1; lfs_dir_read(&lfs, &dir, &info) => 1; for (unsigned i = 0; i < COUNT; i++) { char path[1024]; sprintf(path, "test%03d_loooooooooooooooooong_name", i); lfs_dir_read(&lfs, &dir, &info) => 1; strcmp(info.name, path) => 0; info.size => 2; sprintf(path, "child/test%03d_loooooooooooooooooong_name", i); lfs_file_open(&lfs, &file, path, LFS_O_WRONLY) => 0; lfs_file_write(&lfs, &file, "hi", 2) => 2; lfs_file_close(&lfs, &file) => 0; } lfs_dir_read(&lfs, &dir, &info) => 0; lfs_dir_rewind(&lfs, &dir) => 0; lfs_dir_read(&lfs, &dir, &info) => 1; lfs_dir_read(&lfs, &dir, &info) => 1; for (unsigned i = 0; i < COUNT; i++) { char path[1024]; sprintf(path, "test%03d_loooooooooooooooooong_name", i); lfs_dir_read(&lfs, &dir, &info) => 1; strcmp(info.name, path) => 0; info.size => 2; } lfs_dir_read(&lfs, &dir, &info) => 0; lfs_dir_close(&lfs, &dir) => 0; for (unsigned i = 0; i < COUNT; i++) { char path[1024]; sprintf(path, "child/test%03d_loooooooooooooooooong_name", i); lfs_remove(&lfs, path) => 0; } } lfs_unmount(&lfs) => 0; ''' # reentrant testing for relocations, this is the same as the # orphan testing, except here we also set block_cycles so that # almost every tree operation needs a relocation [cases.test_relocations_reentrant] reentrant = true # TODO fix this case, caused by non-DAG trees # NOTE the second condition is required if = '!(DEPTH == 3 && CACHE_SIZE != 64) && 2*FILES < BLOCK_COUNT' defines = [ {FILES=6, DEPTH=1, CYCLES=20, BLOCK_CYCLES=1}, {FILES=26, DEPTH=1, CYCLES=20, BLOCK_CYCLES=1}, {FILES=3, DEPTH=3, CYCLES=20, BLOCK_CYCLES=1}, ] code = ''' lfs_t lfs; int err = lfs_mount(&lfs, cfg); if (err) { lfs_format(&lfs, cfg) => 0; lfs_mount(&lfs, cfg) => 0; } uint32_t prng = 1; const char alpha[] = "abcdefghijklmnopqrstuvwxyz"; for (unsigned i = 0; i < CYCLES; i++) { // create random path char full_path[256]; for (unsigned d = 0; d < DEPTH; d++) { sprintf(&full_path[2*d], "/%c", alpha[TEST_PRNG(&prng) % FILES]); } // if it does not exist, we create it, else we destroy struct lfs_info info; int res = lfs_stat(&lfs, full_path, &info); if (res == LFS_ERR_NOENT) { // create each directory in turn, ignore if dir already exists for (unsigned d = 0; d < DEPTH; d++) { char path[1024]; strcpy(path, full_path); path[2*d+2] = '\0'; err = lfs_mkdir(&lfs, path); assert(!err || err == LFS_ERR_EXIST); } for (unsigned d = 0; d < DEPTH; d++) { char path[1024]; strcpy(path, full_path); path[2*d+2] = '\0'; lfs_stat(&lfs, path, &info) => 0; assert(strcmp(info.name, &path[2*d+1]) == 0); assert(info.type == LFS_TYPE_DIR); } } else { // is valid dir? assert(strcmp(info.name, &full_path[2*(DEPTH-1)+1]) == 0); assert(info.type == LFS_TYPE_DIR); // try to delete path in reverse order, ignore if dir is not empty for (unsigned d = DEPTH-1; d+1 > 0; d--) { char path[1024]; strcpy(path, full_path); path[2*d+2] = '\0'; err = lfs_remove(&lfs, path); assert(!err || err == LFS_ERR_NOTEMPTY); } lfs_stat(&lfs, full_path, &info) => LFS_ERR_NOENT; } } lfs_unmount(&lfs) => 0; ''' # reentrant testing for relocations, but now with random renames! [cases.test_relocations_reentrant_renames] reentrant = true # TODO fix this case, caused by non-DAG trees # NOTE the second condition is required if = '!(DEPTH == 3 && CACHE_SIZE != 64) && 2*FILES < BLOCK_COUNT' defines = [ {FILES=6, DEPTH=1, CYCLES=20, BLOCK_CYCLES=1}, {FILES=26, DEPTH=1, CYCLES=20, BLOCK_CYCLES=1}, {FILES=3, DEPTH=3, CYCLES=20, BLOCK_CYCLES=1}, ] code = ''' lfs_t lfs; int err = lfs_mount(&lfs, cfg); if (err) { lfs_format(&lfs, cfg) => 0; lfs_mount(&lfs, cfg) => 0; } uint32_t prng = 1; const char alpha[] = "abcdefghijklmnopqrstuvwxyz"; for (unsigned i = 0; i < CYCLES; i++) { // create random path char full_path[256]; for (unsigned d = 0; d < DEPTH; d++) { sprintf(&full_path[2*d], "/%c", alpha[TEST_PRNG(&prng) % FILES]); } // if it does not exist, we create it, else we destroy struct lfs_info info; int res = lfs_stat(&lfs, full_path, &info); assert(!res || res == LFS_ERR_NOENT); if (res == LFS_ERR_NOENT) { // create each directory in turn, ignore if dir already exists for (unsigned d = 0; d < DEPTH; d++) { char path[1024]; strcpy(path, full_path); path[2*d+2] = '\0'; err = lfs_mkdir(&lfs, path); assert(!err || err == LFS_ERR_EXIST); } for (unsigned d = 0; d < DEPTH; d++) { char path[1024]; strcpy(path, full_path); path[2*d+2] = '\0'; lfs_stat(&lfs, path, &info) => 0; assert(strcmp(info.name, &path[2*d+1]) == 0); assert(info.type == LFS_TYPE_DIR); } } else { assert(strcmp(info.name, &full_path[2*(DEPTH-1)+1]) == 0); assert(info.type == LFS_TYPE_DIR); // create new random path char new_path[256]; for (unsigned d = 0; d < DEPTH; d++) { sprintf(&new_path[2*d], "/%c", alpha[TEST_PRNG(&prng) % FILES]); } // if new path does not exist, rename, otherwise destroy res = lfs_stat(&lfs, new_path, &info); assert(!res || res == LFS_ERR_NOENT); if (res == LFS_ERR_NOENT) { // stop once some dir is renamed for (unsigned d = 0; d < DEPTH; d++) { char path[1024]; strcpy(&path[2*d], &full_path[2*d]); path[2*d+2] = '\0'; strcpy(&path[128+2*d], &new_path[2*d]); path[128+2*d+2] = '\0'; err = lfs_rename(&lfs, path, path+128); assert(!err || err == LFS_ERR_NOTEMPTY); if (!err) { strcpy(path, path+128); } } for (unsigned d = 0; d < DEPTH; d++) { char path[1024]; strcpy(path, new_path); path[2*d+2] = '\0'; lfs_stat(&lfs, path, &info) => 0; assert(strcmp(info.name, &path[2*d+1]) == 0); assert(info.type == LFS_TYPE_DIR); } lfs_stat(&lfs, full_path, &info) => LFS_ERR_NOENT; } else { // try to delete path in reverse order, // ignore if dir is not empty for (unsigned d = DEPTH-1; d+1 > 0; d--) { char path[1024]; strcpy(path, full_path); path[2*d+2] = '\0'; err = lfs_remove(&lfs, path); assert(!err || err == LFS_ERR_NOTEMPTY); } lfs_stat(&lfs, full_path, &info) => LFS_ERR_NOENT; } } } lfs_unmount(&lfs) => 0; '''