//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "fallback_malloc.h" #include <__threading_support> #ifndef _LIBCXXABI_HAS_NO_THREADS #if defined(__ELF__) && defined(_LIBCXXABI_LINK_PTHREAD_LIB) #pragma comment(lib, "pthread") #endif #endif #include #include // for malloc, calloc, free #include // for memset #include // for std::__libcpp_aligned_{alloc,free} // A small, simple heap manager based (loosely) on // the startup heap manager from FreeBSD, optimized for space. // // Manages a fixed-size memory pool, supports malloc and free only. // No support for realloc. // // Allocates chunks in multiples of four bytes, with a four byte header // for each chunk. The overhead of each chunk is kept low by keeping pointers // as two byte offsets within the heap, rather than (4 or 8 byte) pointers. namespace { // When POSIX threads are not available, make the mutex operations a nop #ifndef _LIBCXXABI_HAS_NO_THREADS static _LIBCPP_CONSTINIT std::__libcpp_mutex_t heap_mutex = _LIBCPP_MUTEX_INITIALIZER; #else static _LIBCPP_CONSTINIT void* heap_mutex = 0; #endif class mutexor { public: #ifndef _LIBCXXABI_HAS_NO_THREADS mutexor(std::__libcpp_mutex_t* m) : mtx_(m) { std::__libcpp_mutex_lock(mtx_); } ~mutexor() { std::__libcpp_mutex_unlock(mtx_); } #else mutexor(void*) {} ~mutexor() {} #endif private: mutexor(const mutexor& rhs); mutexor& operator=(const mutexor& rhs); #ifndef _LIBCXXABI_HAS_NO_THREADS std::__libcpp_mutex_t* mtx_; #endif }; static const size_t HEAP_SIZE = 512; char heap[HEAP_SIZE] __attribute__((aligned)); typedef unsigned short heap_offset; typedef unsigned short heap_size; // On both 64 and 32 bit targets heap_node should have the following properties // Size: 4 // Alignment: 2 struct heap_node { heap_offset next_node; // offset into heap heap_size len; // size in units of "sizeof(heap_node)" }; // All pointers returned by fallback_malloc must be at least aligned // as RequiredAligned. Note that RequiredAlignment can be greater than // alignof(std::max_align_t) on 64 bit systems compiling 32 bit code. struct FallbackMaxAlignType { } __attribute__((aligned)); const size_t RequiredAlignment = alignof(FallbackMaxAlignType); static_assert(alignof(FallbackMaxAlignType) % sizeof(heap_node) == 0, "The required alignment must be evenly divisible by the sizeof(heap_node)"); // The number of heap_node's that can fit in a chunk of memory with the size // of the RequiredAlignment. On 64 bit targets NodesPerAlignment should be 4. const size_t NodesPerAlignment = alignof(FallbackMaxAlignType) / sizeof(heap_node); static const heap_node* list_end = (heap_node*)(&heap[HEAP_SIZE]); // one past the end of the heap static heap_node* freelist = NULL; heap_node* node_from_offset(const heap_offset offset) { return (heap_node*)(heap + (offset * sizeof(heap_node))); } heap_offset offset_from_node(const heap_node* ptr) { return static_cast( static_cast(reinterpret_cast(ptr) - heap) / sizeof(heap_node)); } // Return a pointer to the first address, 'A', in `heap` that can actually be // used to represent a heap_node. 'A' must be aligned so that // '(A + sizeof(heap_node)) % RequiredAlignment == 0'. On 64 bit systems this // address should be 12 bytes after the first 16 byte boundary. heap_node* getFirstAlignedNodeInHeap() { heap_node* node = (heap_node*)heap; const size_t alignNBytesAfterBoundary = RequiredAlignment - sizeof(heap_node); size_t boundaryOffset = reinterpret_cast(node) % RequiredAlignment; size_t requiredOffset = alignNBytesAfterBoundary - boundaryOffset; size_t NElemOffset = requiredOffset / sizeof(heap_node); return node + NElemOffset; } void init_heap() { freelist = getFirstAlignedNodeInHeap(); freelist->next_node = offset_from_node(list_end); freelist->len = static_cast(list_end - freelist); } // How big a chunk we allocate size_t alloc_size(size_t len) { return (len + sizeof(heap_node) - 1) / sizeof(heap_node) + 1; } bool is_fallback_ptr(void* ptr) { return ptr >= heap && ptr < (heap + HEAP_SIZE); } void* fallback_malloc(size_t len) { heap_node *p, *prev; const size_t nelems = alloc_size(len); mutexor mtx(&heap_mutex); if (NULL == freelist) init_heap(); // Walk the free list, looking for a "big enough" chunk for (p = freelist, prev = 0; p && p != list_end; prev = p, p = node_from_offset(p->next_node)) { // Check the invariant that all heap_nodes pointers 'p' are aligned // so that 'p + 1' has an alignment of at least RequiredAlignment assert(reinterpret_cast(p + 1) % RequiredAlignment == 0); // Calculate the number of extra padding elements needed in order // to split 'p' and create a properly aligned heap_node from the tail // of 'p'. We calculate aligned_nelems such that 'p->len - aligned_nelems' // will be a multiple of NodesPerAlignment. size_t aligned_nelems = nelems; if (p->len > nelems) { heap_size remaining_len = static_cast(p->len - nelems); aligned_nelems += remaining_len % NodesPerAlignment; } // chunk is larger and we can create a properly aligned heap_node // from the tail. In this case we shorten 'p' and return the tail. if (p->len > aligned_nelems) { heap_node* q; p->len = static_cast(p->len - aligned_nelems); q = p + p->len; q->next_node = 0; q->len = static_cast(aligned_nelems); void* ptr = q + 1; assert(reinterpret_cast(ptr) % RequiredAlignment == 0); return ptr; } // The chunk is the exact size or the chunk is larger but not large // enough to split due to alignment constraints. if (p->len >= nelems) { if (prev == 0) freelist = node_from_offset(p->next_node); else prev->next_node = p->next_node; p->next_node = 0; void* ptr = p + 1; assert(reinterpret_cast(ptr) % RequiredAlignment == 0); return ptr; } } return NULL; // couldn't find a spot big enough } // Return the start of the next block heap_node* after(struct heap_node* p) { return p + p->len; } void fallback_free(void* ptr) { struct heap_node* cp = ((struct heap_node*)ptr) - 1; // retrieve the chunk struct heap_node *p, *prev; mutexor mtx(&heap_mutex); #ifdef DEBUG_FALLBACK_MALLOC std::printf("Freeing item at %d of size %d\n", offset_from_node(cp), cp->len); #endif for (p = freelist, prev = 0; p && p != list_end; prev = p, p = node_from_offset(p->next_node)) { #ifdef DEBUG_FALLBACK_MALLOC std::printf(" p=%d, cp=%d, after(p)=%d, after(cp)=%d\n", offset_from_node(p), offset_from_node(cp), offset_from_node(after(p)), offset_from_node(after(cp))); #endif if (after(p) == cp) { #ifdef DEBUG_FALLBACK_MALLOC std::printf(" Appending onto chunk at %d\n", offset_from_node(p)); #endif p->len = static_cast( p->len + cp->len); // make the free heap_node larger return; } else if (after(cp) == p) { // there's a free heap_node right after #ifdef DEBUG_FALLBACK_MALLOC std::printf(" Appending free chunk at %d\n", offset_from_node(p)); #endif cp->len = static_cast(cp->len + p->len); if (prev == 0) { freelist = cp; cp->next_node = p->next_node; } else prev->next_node = offset_from_node(cp); return; } } // Nothing to merge with, add it to the start of the free list #ifdef DEBUG_FALLBACK_MALLOC std::printf(" Making new free list entry %d\n", offset_from_node(cp)); #endif cp->next_node = offset_from_node(freelist); freelist = cp; } #ifdef INSTRUMENT_FALLBACK_MALLOC size_t print_free_list() { struct heap_node *p, *prev; heap_size total_free = 0; if (NULL == freelist) init_heap(); for (p = freelist, prev = 0; p && p != list_end; prev = p, p = node_from_offset(p->next_node)) { std::printf("%sOffset: %d\tsize: %d Next: %d\n", (prev == 0 ? "" : " "), offset_from_node(p), p->len, p->next_node); total_free += p->len; } std::printf("Total Free space: %d\n", total_free); return total_free; } #endif } // end unnamed namespace namespace __cxxabiv1 { struct __attribute__((aligned)) __aligned_type {}; void* __aligned_malloc_with_fallback(size_t size) { #if defined(_WIN32) if (void* dest = std::__libcpp_aligned_alloc(alignof(__aligned_type), size)) return dest; #elif defined(_LIBCPP_HAS_NO_LIBRARY_ALIGNED_ALLOCATION) if (void* dest = ::malloc(size)) return dest; #else if (size == 0) size = 1; if (void* dest = std::__libcpp_aligned_alloc(__alignof(__aligned_type), size)) return dest; #endif return fallback_malloc(size); } void* __calloc_with_fallback(size_t count, size_t size) { void* ptr = ::calloc(count, size); if (NULL != ptr) return ptr; // if calloc fails, fall back to emergency stash ptr = fallback_malloc(size * count); if (NULL != ptr) ::memset(ptr, 0, size * count); return ptr; } void __aligned_free_with_fallback(void* ptr) { if (is_fallback_ptr(ptr)) fallback_free(ptr); else { #if defined(_LIBCPP_HAS_NO_LIBRARY_ALIGNED_ALLOCATION) ::free(ptr); #else std::__libcpp_aligned_free(ptr); #endif } } void __free_with_fallback(void* ptr) { if (is_fallback_ptr(ptr)) fallback_free(ptr); else ::free(ptr); } } // namespace __cxxabiv1