//===- Block.cpp - MLIR Block Class ---------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/IR/Block.h" #include "mlir/IR/Builders.h" #include "mlir/IR/Operation.h" #include "llvm/ADT/BitVector.h" using namespace mlir; //===----------------------------------------------------------------------===// // Block //===----------------------------------------------------------------------===// Block::~Block() { assert(!verifyOpOrder() && "Expected valid operation ordering."); clear(); for (BlockArgument arg : arguments) arg.destroy(); } Region *Block::getParent() const { return parentValidOpOrderPair.getPointer(); } /// Returns the closest surrounding operation that contains this block or /// nullptr if this block is unlinked. Operation *Block::getParentOp() { return getParent() ? getParent()->getParentOp() : nullptr; } /// Return if this block is the entry block in the parent region. bool Block::isEntryBlock() { return this == &getParent()->front(); } /// Insert this block (which must not already be in a region) right before the /// specified block. void Block::insertBefore(Block *block) { assert(!getParent() && "already inserted into a block!"); assert(block->getParent() && "cannot insert before a block without a parent"); block->getParent()->getBlocks().insert(block->getIterator(), this); } /// Unlink this block from its current region and insert it right before the /// specific block. void Block::moveBefore(Block *block) { assert(block->getParent() && "cannot insert before a block without a parent"); block->getParent()->getBlocks().splice( block->getIterator(), getParent()->getBlocks(), getIterator()); } /// Unlink this Block from its parent Region and delete it. void Block::erase() { assert(getParent() && "Block has no parent"); getParent()->getBlocks().erase(this); } /// Returns 'op' if 'op' lies in this block, or otherwise finds the /// ancestor operation of 'op' that lies in this block. Returns nullptr if /// the latter fails. Operation *Block::findAncestorOpInBlock(Operation &op) { // Traverse up the operation hierarchy starting from the owner of operand to // find the ancestor operation that resides in the block of 'forOp'. auto *currOp = &op; while (currOp->getBlock() != this) { currOp = currOp->getParentOp(); if (!currOp) return nullptr; } return currOp; } /// This drops all operand uses from operations within this block, which is /// an essential step in breaking cyclic dependences between references when /// they are to be deleted. void Block::dropAllReferences() { for (Operation &i : *this) i.dropAllReferences(); } void Block::dropAllDefinedValueUses() { for (auto arg : getArguments()) arg.dropAllUses(); for (auto &op : *this) op.dropAllDefinedValueUses(); dropAllUses(); } /// Returns true if the ordering of the child operations is valid, false /// otherwise. bool Block::isOpOrderValid() { return parentValidOpOrderPair.getInt(); } /// Invalidates the current ordering of operations. void Block::invalidateOpOrder() { // Validate the current ordering. assert(!verifyOpOrder()); parentValidOpOrderPair.setInt(false); } /// Verifies the current ordering of child operations. Returns false if the /// order is valid, true otherwise. bool Block::verifyOpOrder() { // The order is already known to be invalid. if (!isOpOrderValid()) return false; // The order is valid if there are less than 2 operations. if (operations.empty() || std::next(operations.begin()) == operations.end()) return false; Operation *prev = nullptr; for (auto &i : *this) { // The previous operation must have a smaller order index than the next as // it appears earlier in the list. if (prev && prev->orderIndex != Operation::kInvalidOrderIdx && prev->orderIndex >= i.orderIndex) return true; prev = &i; } return false; } /// Recomputes the ordering of child operations within the block. void Block::recomputeOpOrder() { parentValidOpOrderPair.setInt(true); unsigned orderIndex = 0; for (auto &op : *this) op.orderIndex = (orderIndex += Operation::kOrderStride); } //===----------------------------------------------------------------------===// // Argument list management. //===----------------------------------------------------------------------===// /// Return a range containing the types of the arguments for this block. auto Block::getArgumentTypes() -> ValueTypeRange { return ValueTypeRange(getArguments()); } BlockArgument Block::addArgument(Type type, Location loc) { BlockArgument arg = BlockArgument::create(type, this, arguments.size(), loc); arguments.push_back(arg); return arg; } /// Add one argument to the argument list for each type specified in the list. auto Block::addArguments(TypeRange types, ArrayRef locs) -> iterator_range { assert(types.size() == locs.size() && "incorrect number of block argument locations"); size_t initialSize = arguments.size(); arguments.reserve(initialSize + types.size()); for (auto typeAndLoc : llvm::zip(types, locs)) addArgument(std::get<0>(typeAndLoc), std::get<1>(typeAndLoc)); return {arguments.data() + initialSize, arguments.data() + arguments.size()}; } BlockArgument Block::insertArgument(unsigned index, Type type, Location loc) { assert(index <= arguments.size() && "invalid insertion index"); auto arg = BlockArgument::create(type, this, index, loc); arguments.insert(arguments.begin() + index, arg); // Update the cached position for all the arguments after the newly inserted // one. ++index; for (BlockArgument arg : llvm::drop_begin(arguments, index)) arg.setArgNumber(index++); return arg; } /// Insert one value to the given position of the argument list. The existing /// arguments are shifted. The block is expected not to have predecessors. BlockArgument Block::insertArgument(args_iterator it, Type type, Location loc) { assert(getPredecessors().empty() && "cannot insert arguments to blocks with predecessors"); return insertArgument(it->getArgNumber(), type, loc); } void Block::eraseArgument(unsigned index) { assert(index < arguments.size()); arguments[index].destroy(); arguments.erase(arguments.begin() + index); for (BlockArgument arg : llvm::drop_begin(arguments, index)) arg.setArgNumber(index++); } void Block::eraseArguments(unsigned start, unsigned num) { assert(start + num <= arguments.size()); for (unsigned i = 0; i < num; ++i) arguments[start + i].destroy(); arguments.erase(arguments.begin() + start, arguments.begin() + start + num); for (BlockArgument arg : llvm::drop_begin(arguments, start)) arg.setArgNumber(start++); } void Block::eraseArguments(const BitVector &eraseIndices) { eraseArguments( [&](BlockArgument arg) { return eraseIndices.test(arg.getArgNumber()); }); } void Block::eraseArguments(function_ref shouldEraseFn) { auto firstDead = llvm::find_if(arguments, shouldEraseFn); if (firstDead == arguments.end()) return; // Destroy the first dead argument, this avoids reapplying the predicate to // it. unsigned index = firstDead->getArgNumber(); firstDead->destroy(); // Iterate the remaining arguments to remove any that are now dead. for (auto it = std::next(firstDead), e = arguments.end(); it != e; ++it) { // Destroy dead arguments, and shift those that are still live. if (shouldEraseFn(*it)) { it->destroy(); } else { it->setArgNumber(index++); *firstDead++ = *it; } } arguments.erase(firstDead, arguments.end()); } //===----------------------------------------------------------------------===// // Terminator management //===----------------------------------------------------------------------===// /// Get the terminator operation of this block. This function asserts that /// the block has a valid terminator operation. Operation *Block::getTerminator() { assert(!empty() && back().mightHaveTrait()); return &back(); } // Indexed successor access. unsigned Block::getNumSuccessors() { return empty() ? 0 : back().getNumSuccessors(); } Block *Block::getSuccessor(unsigned i) { assert(i < getNumSuccessors()); return getTerminator()->getSuccessor(i); } /// If this block has exactly one predecessor, return it. Otherwise, return /// null. /// /// Note that multiple edges from a single block (e.g. if you have a cond /// branch with the same block as the true/false destinations) is not /// considered to be a single predecessor. Block *Block::getSinglePredecessor() { auto it = pred_begin(); if (it == pred_end()) return nullptr; auto *firstPred = *it; ++it; return it == pred_end() ? firstPred : nullptr; } /// If this block has a unique predecessor, i.e., all incoming edges originate /// from one block, return it. Otherwise, return null. Block *Block::getUniquePredecessor() { auto it = pred_begin(), e = pred_end(); if (it == e) return nullptr; // Check for any conflicting predecessors. auto *firstPred = *it; for (++it; it != e; ++it) if (*it != firstPred) return nullptr; return firstPred; } //===----------------------------------------------------------------------===// // Other //===----------------------------------------------------------------------===// /// Split the block into two blocks before the specified operation or /// iterator. /// /// Note that all operations BEFORE the specified iterator stay as part of /// the original basic block, and the rest of the operations in the original /// block are moved to the new block, including the old terminator. The /// original block is left without a terminator. /// /// The newly formed Block is returned, and the specified iterator is /// invalidated. Block *Block::splitBlock(iterator splitBefore) { // Start by creating a new basic block, and insert it immediate after this // one in the containing region. auto *newBB = new Block(); getParent()->getBlocks().insert(std::next(Region::iterator(this)), newBB); // Move all of the operations from the split point to the end of the region // into the new block. newBB->getOperations().splice(newBB->end(), getOperations(), splitBefore, end()); return newBB; } //===----------------------------------------------------------------------===// // Predecessors //===----------------------------------------------------------------------===// Block *PredecessorIterator::unwrap(BlockOperand &value) { return value.getOwner()->getBlock(); } /// Get the successor number in the predecessor terminator. unsigned PredecessorIterator::getSuccessorIndex() const { return I->getOperandNumber(); } //===----------------------------------------------------------------------===// // SuccessorRange //===----------------------------------------------------------------------===// SuccessorRange::SuccessorRange() : SuccessorRange(nullptr, 0) {} SuccessorRange::SuccessorRange(Block *block) : SuccessorRange() { if (block->empty() || llvm::hasSingleElement(*block->getParent())) return; Operation *term = &block->back(); if ((count = term->getNumSuccessors())) base = term->getBlockOperands().data(); } SuccessorRange::SuccessorRange(Operation *term) : SuccessorRange() { if ((count = term->getNumSuccessors())) base = term->getBlockOperands().data(); } //===----------------------------------------------------------------------===// // BlockRange //===----------------------------------------------------------------------===// BlockRange::BlockRange(ArrayRef blocks) : BlockRange(nullptr, 0) { if ((count = blocks.size())) base = blocks.data(); } BlockRange::BlockRange(SuccessorRange successors) : BlockRange(successors.begin().getBase(), successors.size()) {} /// See `llvm::detail::indexed_accessor_range_base` for details. BlockRange::OwnerT BlockRange::offset_base(OwnerT object, ptrdiff_t index) { if (auto *operand = object.dyn_cast()) return {operand + index}; return {object.dyn_cast() + index}; } /// See `llvm::detail::indexed_accessor_range_base` for details. Block *BlockRange::dereference_iterator(OwnerT object, ptrdiff_t index) { if (const auto *operand = object.dyn_cast()) return operand[index].get(); return object.dyn_cast()[index]; }