//===- Operation.cpp - Operation support code -----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/IR/Operation.h" #include "mlir/IR/BlockAndValueMapping.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Dialect.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/Interfaces/FoldInterfaces.h" #include "llvm/ADT/StringExtras.h" #include using namespace mlir; //===----------------------------------------------------------------------===// // Operation //===----------------------------------------------------------------------===// /// Create a new Operation from operation state. Operation *Operation::create(const OperationState &state) { return create(state.location, state.name, state.types, state.operands, state.attributes.getDictionary(state.getContext()), state.successors, state.regions); } /// Create a new Operation with the specific fields. Operation *Operation::create(Location location, OperationName name, TypeRange resultTypes, ValueRange operands, NamedAttrList &&attributes, BlockRange successors, RegionRange regions) { unsigned numRegions = regions.size(); Operation *op = create(location, name, resultTypes, operands, std::move(attributes), successors, numRegions); for (unsigned i = 0; i < numRegions; ++i) if (regions[i]) op->getRegion(i).takeBody(*regions[i]); return op; } /// Overload of create that takes an existing DictionaryAttr to avoid /// unnecessarily uniquing a list of attributes. Operation *Operation::create(Location location, OperationName name, TypeRange resultTypes, ValueRange operands, NamedAttrList &&attributes, BlockRange successors, unsigned numRegions) { assert(llvm::all_of(resultTypes, [](Type t) { return t; }) && "unexpected null result type"); // We only need to allocate additional memory for a subset of results. unsigned numTrailingResults = OpResult::getNumTrailing(resultTypes.size()); unsigned numInlineResults = OpResult::getNumInline(resultTypes.size()); unsigned numSuccessors = successors.size(); unsigned numOperands = operands.size(); unsigned numResults = resultTypes.size(); // If the operation is known to have no operands, don't allocate an operand // storage. bool needsOperandStorage = operands.empty() ? !name.hasTrait() : true; // Compute the byte size for the operation and the operand storage. This takes // into account the size of the operation, its trailing objects, and its // prefixed objects. size_t byteSize = totalSizeToAlloc( needsOperandStorage ? 1 : 0, numSuccessors, numRegions, numOperands); size_t prefixByteSize = llvm::alignTo( Operation::prefixAllocSize(numTrailingResults, numInlineResults), alignof(Operation)); char *mallocMem = reinterpret_cast(malloc(byteSize + prefixByteSize)); void *rawMem = mallocMem + prefixByteSize; // Populate default attributes. if (Optional info = name.getRegisteredInfo()) info->populateDefaultAttrs(attributes); // Create the new Operation. Operation *op = ::new (rawMem) Operation( location, name, numResults, numSuccessors, numRegions, attributes.getDictionary(location.getContext()), needsOperandStorage); assert((numSuccessors == 0 || op->mightHaveTrait()) && "unexpected successors in a non-terminator operation"); // Initialize the results. auto resultTypeIt = resultTypes.begin(); for (unsigned i = 0; i < numInlineResults; ++i, ++resultTypeIt) new (op->getInlineOpResult(i)) detail::InlineOpResult(*resultTypeIt, i); for (unsigned i = 0; i < numTrailingResults; ++i, ++resultTypeIt) { new (op->getOutOfLineOpResult(i)) detail::OutOfLineOpResult(*resultTypeIt, i); } // Initialize the regions. for (unsigned i = 0; i != numRegions; ++i) new (&op->getRegion(i)) Region(op); // Initialize the operands. if (needsOperandStorage) { new (&op->getOperandStorage()) detail::OperandStorage( op, op->getTrailingObjects(), operands); } // Initialize the successors. auto blockOperands = op->getBlockOperands(); for (unsigned i = 0; i != numSuccessors; ++i) new (&blockOperands[i]) BlockOperand(op, successors[i]); return op; } Operation::Operation(Location location, OperationName name, unsigned numResults, unsigned numSuccessors, unsigned numRegions, DictionaryAttr attributes, bool hasOperandStorage) : location(location), numResults(numResults), numSuccs(numSuccessors), numRegions(numRegions), hasOperandStorage(hasOperandStorage), name(name), attrs(attributes) { assert(attributes && "unexpected null attribute dictionary"); #ifndef NDEBUG if (!getDialect() && !getContext()->allowsUnregisteredDialects()) llvm::report_fatal_error( name.getStringRef() + " created with unregistered dialect. If this is intended, please call " "allowUnregisteredDialects() on the MLIRContext, or use " "-allow-unregistered-dialect with the MLIR tool used."); #endif } // Operations are deleted through the destroy() member because they are // allocated via malloc. Operation::~Operation() { assert(block == nullptr && "operation destroyed but still in a block"); #ifndef NDEBUG if (!use_empty()) { { InFlightDiagnostic diag = emitOpError("operation destroyed but still has uses"); for (Operation *user : getUsers()) diag.attachNote(user->getLoc()) << "- use: " << *user << "\n"; } llvm::report_fatal_error("operation destroyed but still has uses"); } #endif // Explicitly run the destructors for the operands. if (hasOperandStorage) getOperandStorage().~OperandStorage(); // Explicitly run the destructors for the successors. for (auto &successor : getBlockOperands()) successor.~BlockOperand(); // Explicitly destroy the regions. for (auto ®ion : getRegions()) region.~Region(); } /// Destroy this operation or one of its subclasses. void Operation::destroy() { // Operations may have additional prefixed allocation, which needs to be // accounted for here when computing the address to free. char *rawMem = reinterpret_cast(this) - llvm::alignTo(prefixAllocSize(), alignof(Operation)); this->~Operation(); free(rawMem); } /// Return true if this operation is a proper ancestor of the `other` /// operation. bool Operation::isProperAncestor(Operation *other) { while ((other = other->getParentOp())) if (this == other) return true; return false; } /// Replace any uses of 'from' with 'to' within this operation. void Operation::replaceUsesOfWith(Value from, Value to) { if (from == to) return; for (auto &operand : getOpOperands()) if (operand.get() == from) operand.set(to); } /// Replace the current operands of this operation with the ones provided in /// 'operands'. void Operation::setOperands(ValueRange operands) { if (LLVM_LIKELY(hasOperandStorage)) return getOperandStorage().setOperands(this, operands); assert(operands.empty() && "setting operands without an operand storage"); } /// Replace the operands beginning at 'start' and ending at 'start' + 'length' /// with the ones provided in 'operands'. 'operands' may be smaller or larger /// than the range pointed to by 'start'+'length'. void Operation::setOperands(unsigned start, unsigned length, ValueRange operands) { assert((start + length) <= getNumOperands() && "invalid operand range specified"); if (LLVM_LIKELY(hasOperandStorage)) return getOperandStorage().setOperands(this, start, length, operands); assert(operands.empty() && "setting operands without an operand storage"); } /// Insert the given operands into the operand list at the given 'index'. void Operation::insertOperands(unsigned index, ValueRange operands) { if (LLVM_LIKELY(hasOperandStorage)) return setOperands(index, /*length=*/0, operands); assert(operands.empty() && "inserting operands without an operand storage"); } //===----------------------------------------------------------------------===// // Diagnostics //===----------------------------------------------------------------------===// /// Emit an error about fatal conditions with this operation, reporting up to /// any diagnostic handlers that may be listening. InFlightDiagnostic Operation::emitError(const Twine &message) { InFlightDiagnostic diag = mlir::emitError(getLoc(), message); if (getContext()->shouldPrintOpOnDiagnostic()) { diag.attachNote(getLoc()) .append("see current operation: ") .appendOp(*this, OpPrintingFlags().printGenericOpForm()); } return diag; } /// Emit a warning about this operation, reporting up to any diagnostic /// handlers that may be listening. InFlightDiagnostic Operation::emitWarning(const Twine &message) { InFlightDiagnostic diag = mlir::emitWarning(getLoc(), message); if (getContext()->shouldPrintOpOnDiagnostic()) diag.attachNote(getLoc()) << "see current operation: " << *this; return diag; } /// Emit a remark about this operation, reporting up to any diagnostic /// handlers that may be listening. InFlightDiagnostic Operation::emitRemark(const Twine &message) { InFlightDiagnostic diag = mlir::emitRemark(getLoc(), message); if (getContext()->shouldPrintOpOnDiagnostic()) diag.attachNote(getLoc()) << "see current operation: " << *this; return diag; } //===----------------------------------------------------------------------===// // Operation Ordering //===----------------------------------------------------------------------===// constexpr unsigned Operation::kInvalidOrderIdx; constexpr unsigned Operation::kOrderStride; /// Given an operation 'other' that is within the same parent block, return /// whether the current operation is before 'other' in the operation list /// of the parent block. /// Note: This function has an average complexity of O(1), but worst case may /// take O(N) where N is the number of operations within the parent block. bool Operation::isBeforeInBlock(Operation *other) { assert(block && "Operations without parent blocks have no order."); assert(other && other->block == block && "Expected other operation to have the same parent block."); // If the order of the block is already invalid, directly recompute the // parent. if (!block->isOpOrderValid()) { block->recomputeOpOrder(); } else { // Update the order either operation if necessary. updateOrderIfNecessary(); other->updateOrderIfNecessary(); } return orderIndex < other->orderIndex; } /// Update the order index of this operation of this operation if necessary, /// potentially recomputing the order of the parent block. void Operation::updateOrderIfNecessary() { assert(block && "expected valid parent"); // If the order is valid for this operation there is nothing to do. if (hasValidOrder()) return; Operation *blockFront = &block->front(); Operation *blockBack = &block->back(); // This method is expected to only be invoked on blocks with more than one // operation. assert(blockFront != blockBack && "expected more than one operation"); // If the operation is at the end of the block. if (this == blockBack) { Operation *prevNode = getPrevNode(); if (!prevNode->hasValidOrder()) return block->recomputeOpOrder(); // Add the stride to the previous operation. orderIndex = prevNode->orderIndex + kOrderStride; return; } // If this is the first operation try to use the next operation to compute the // ordering. if (this == blockFront) { Operation *nextNode = getNextNode(); if (!nextNode->hasValidOrder()) return block->recomputeOpOrder(); // There is no order to give this operation. if (nextNode->orderIndex == 0) return block->recomputeOpOrder(); // If we can't use the stride, just take the middle value left. This is safe // because we know there is at least one valid index to assign to. if (nextNode->orderIndex <= kOrderStride) orderIndex = (nextNode->orderIndex / 2); else orderIndex = kOrderStride; return; } // Otherwise, this operation is between two others. Place this operation in // the middle of the previous and next if possible. Operation *prevNode = getPrevNode(), *nextNode = getNextNode(); if (!prevNode->hasValidOrder() || !nextNode->hasValidOrder()) return block->recomputeOpOrder(); unsigned prevOrder = prevNode->orderIndex, nextOrder = nextNode->orderIndex; // Check to see if there is a valid order between the two. if (prevOrder + 1 == nextOrder) return block->recomputeOpOrder(); orderIndex = prevOrder + ((nextOrder - prevOrder) / 2); } //===----------------------------------------------------------------------===// // ilist_traits for Operation //===----------------------------------------------------------------------===// auto llvm::ilist_detail::SpecificNodeAccess< typename llvm::ilist_detail::compute_node_options< ::mlir::Operation>::type>::getNodePtr(pointer n) -> node_type * { return NodeAccess::getNodePtr(n); } auto llvm::ilist_detail::SpecificNodeAccess< typename llvm::ilist_detail::compute_node_options< ::mlir::Operation>::type>::getNodePtr(const_pointer n) -> const node_type * { return NodeAccess::getNodePtr(n); } auto llvm::ilist_detail::SpecificNodeAccess< typename llvm::ilist_detail::compute_node_options< ::mlir::Operation>::type>::getValuePtr(node_type *n) -> pointer { return NodeAccess::getValuePtr(n); } auto llvm::ilist_detail::SpecificNodeAccess< typename llvm::ilist_detail::compute_node_options< ::mlir::Operation>::type>::getValuePtr(const node_type *n) -> const_pointer { return NodeAccess::getValuePtr(n); } void llvm::ilist_traits<::mlir::Operation>::deleteNode(Operation *op) { op->destroy(); } Block *llvm::ilist_traits<::mlir::Operation>::getContainingBlock() { size_t offset(size_t(&((Block *)nullptr->*Block::getSublistAccess(nullptr)))); iplist *anchor(static_cast *>(this)); return reinterpret_cast(reinterpret_cast(anchor) - offset); } /// This is a trait method invoked when an operation is added to a block. We /// keep the block pointer up to date. void llvm::ilist_traits<::mlir::Operation>::addNodeToList(Operation *op) { assert(!op->getBlock() && "already in an operation block!"); op->block = getContainingBlock(); // Invalidate the order on the operation. op->orderIndex = Operation::kInvalidOrderIdx; } /// This is a trait method invoked when an operation is removed from a block. /// We keep the block pointer up to date. void llvm::ilist_traits<::mlir::Operation>::removeNodeFromList(Operation *op) { assert(op->block && "not already in an operation block!"); op->block = nullptr; } /// This is a trait method invoked when an operation is moved from one block /// to another. We keep the block pointer up to date. void llvm::ilist_traits<::mlir::Operation>::transferNodesFromList( ilist_traits &otherList, op_iterator first, op_iterator last) { Block *curParent = getContainingBlock(); // Invalidate the ordering of the parent block. curParent->invalidateOpOrder(); // If we are transferring operations within the same block, the block // pointer doesn't need to be updated. if (curParent == otherList.getContainingBlock()) return; // Update the 'block' member of each operation. for (; first != last; ++first) first->block = curParent; } /// Remove this operation (and its descendants) from its Block and delete /// all of them. void Operation::erase() { if (auto *parent = getBlock()) parent->getOperations().erase(this); else destroy(); } /// Remove the operation from its parent block, but don't delete it. void Operation::remove() { if (Block *parent = getBlock()) parent->getOperations().remove(this); } /// Unlink this operation from its current block and insert it right before /// `existingOp` which may be in the same or another block in the same /// function. void Operation::moveBefore(Operation *existingOp) { moveBefore(existingOp->getBlock(), existingOp->getIterator()); } /// Unlink this operation from its current basic block and insert it right /// before `iterator` in the specified basic block. void Operation::moveBefore(Block *block, llvm::iplist::iterator iterator) { block->getOperations().splice(iterator, getBlock()->getOperations(), getIterator()); } /// Unlink this operation from its current block and insert it right after /// `existingOp` which may be in the same or another block in the same function. void Operation::moveAfter(Operation *existingOp) { moveAfter(existingOp->getBlock(), existingOp->getIterator()); } /// Unlink this operation from its current block and insert it right after /// `iterator` in the specified block. void Operation::moveAfter(Block *block, llvm::iplist::iterator iterator) { assert(iterator != block->end() && "cannot move after end of block"); moveBefore(block, std::next(iterator)); } /// This drops all operand uses from this operation, which is an essential /// step in breaking cyclic dependences between references when they are to /// be deleted. void Operation::dropAllReferences() { for (auto &op : getOpOperands()) op.drop(); for (auto ®ion : getRegions()) region.dropAllReferences(); for (auto &dest : getBlockOperands()) dest.drop(); } /// This drops all uses of any values defined by this operation or its nested /// regions, wherever they are located. void Operation::dropAllDefinedValueUses() { dropAllUses(); for (auto ®ion : getRegions()) for (auto &block : region) block.dropAllDefinedValueUses(); } void Operation::setSuccessor(Block *block, unsigned index) { assert(index < getNumSuccessors()); getBlockOperands()[index].set(block); } /// Attempt to fold this operation using the Op's registered foldHook. LogicalResult Operation::fold(ArrayRef operands, SmallVectorImpl &results) { // If we have a registered operation definition matching this one, use it to // try to constant fold the operation. Optional info = getRegisteredInfo(); if (info && succeeded(info->foldHook(this, operands, results))) return success(); // Otherwise, fall back on the dialect hook to handle it. Dialect *dialect = getDialect(); if (!dialect) return failure(); auto *interface = dyn_cast(dialect); if (!interface) return failure(); return interface->fold(this, operands, results); } /// Emit an error with the op name prefixed, like "'dim' op " which is /// convenient for verifiers. InFlightDiagnostic Operation::emitOpError(const Twine &message) { return emitError() << "'" << getName() << "' op " << message; } //===----------------------------------------------------------------------===// // Operation Cloning //===----------------------------------------------------------------------===// Operation::CloneOptions::CloneOptions() : cloneRegionsFlag(false), cloneOperandsFlag(false) {} Operation::CloneOptions::CloneOptions(bool cloneRegions, bool cloneOperands) : cloneRegionsFlag(cloneRegions), cloneOperandsFlag(cloneOperands) {} Operation::CloneOptions Operation::CloneOptions::all() { return CloneOptions().cloneRegions().cloneOperands(); } Operation::CloneOptions &Operation::CloneOptions::cloneRegions(bool enable) { cloneRegionsFlag = enable; return *this; } Operation::CloneOptions &Operation::CloneOptions::cloneOperands(bool enable) { cloneOperandsFlag = enable; return *this; } /// Create a deep copy of this operation but keep the operation regions empty. /// Operands are remapped using `mapper` (if present), and `mapper` is updated /// to contain the results. The `mapResults` flag specifies whether the results /// of the cloned operation should be added to the map. Operation *Operation::cloneWithoutRegions(BlockAndValueMapping &mapper) { return clone(mapper, CloneOptions::all().cloneRegions(false)); } Operation *Operation::cloneWithoutRegions() { BlockAndValueMapping mapper; return cloneWithoutRegions(mapper); } /// Create a deep copy of this operation, remapping any operands that use /// values outside of the operation using the map that is provided (leaving /// them alone if no entry is present). Replaces references to cloned /// sub-operations to the corresponding operation that is copied, and adds /// those mappings to the map. Operation *Operation::clone(BlockAndValueMapping &mapper, CloneOptions options) { SmallVector operands; SmallVector successors; // Remap the operands. if (options.shouldCloneOperands()) { operands.reserve(getNumOperands()); for (auto opValue : getOperands()) operands.push_back(mapper.lookupOrDefault(opValue)); } // Remap the successors. successors.reserve(getNumSuccessors()); for (Block *successor : getSuccessors()) successors.push_back(mapper.lookupOrDefault(successor)); // Create the new operation. auto *newOp = create(getLoc(), getName(), getResultTypes(), operands, attrs, successors, getNumRegions()); // Clone the regions. if (options.shouldCloneRegions()) { for (unsigned i = 0; i != numRegions; ++i) getRegion(i).cloneInto(&newOp->getRegion(i), mapper); } // Remember the mapping of any results. for (unsigned i = 0, e = getNumResults(); i != e; ++i) mapper.map(getResult(i), newOp->getResult(i)); return newOp; } Operation *Operation::clone(CloneOptions options) { BlockAndValueMapping mapper; return clone(mapper, options); } //===----------------------------------------------------------------------===// // OpState trait class. //===----------------------------------------------------------------------===// // The fallback for the parser is to try for a dialect operation parser. // Otherwise, reject the custom assembly form. ParseResult OpState::parse(OpAsmParser &parser, OperationState &result) { if (auto parseFn = result.name.getDialect()->getParseOperationHook( result.name.getStringRef())) return (*parseFn)(parser, result); return parser.emitError(parser.getNameLoc(), "has no custom assembly form"); } // The fallback for the printer is to try for a dialect operation printer. // Otherwise, it prints the generic form. void OpState::print(Operation *op, OpAsmPrinter &p, StringRef defaultDialect) { if (auto printFn = op->getDialect()->getOperationPrinter(op)) { printOpName(op, p, defaultDialect); printFn(op, p); } else { p.printGenericOp(op); } } /// Print an operation name, eliding the dialect prefix if necessary and doesn't /// lead to ambiguities. void OpState::printOpName(Operation *op, OpAsmPrinter &p, StringRef defaultDialect) { StringRef name = op->getName().getStringRef(); if (name.startswith((defaultDialect + ".").str()) && name.count('.') == 1) name = name.drop_front(defaultDialect.size() + 1); p.getStream() << name; } /// Emit an error about fatal conditions with this operation, reporting up to /// any diagnostic handlers that may be listening. InFlightDiagnostic OpState::emitError(const Twine &message) { return getOperation()->emitError(message); } /// Emit an error with the op name prefixed, like "'dim' op " which is /// convenient for verifiers. InFlightDiagnostic OpState::emitOpError(const Twine &message) { return getOperation()->emitOpError(message); } /// Emit a warning about this operation, reporting up to any diagnostic /// handlers that may be listening. InFlightDiagnostic OpState::emitWarning(const Twine &message) { return getOperation()->emitWarning(message); } /// Emit a remark about this operation, reporting up to any diagnostic /// handlers that may be listening. InFlightDiagnostic OpState::emitRemark(const Twine &message) { return getOperation()->emitRemark(message); } //===----------------------------------------------------------------------===// // Op Trait implementations //===----------------------------------------------------------------------===// OpFoldResult OpTrait::impl::foldIdempotent(Operation *op) { if (op->getNumOperands() == 1) { auto *argumentOp = op->getOperand(0).getDefiningOp(); if (argumentOp && op->getName() == argumentOp->getName()) { // Replace the outer operation output with the inner operation. return op->getOperand(0); } } else if (op->getOperand(0) == op->getOperand(1)) { return op->getOperand(0); } return {}; } OpFoldResult OpTrait::impl::foldInvolution(Operation *op) { auto *argumentOp = op->getOperand(0).getDefiningOp(); if (argumentOp && op->getName() == argumentOp->getName()) { // Replace the outer involutions output with inner's input. return argumentOp->getOperand(0); } return {}; } LogicalResult OpTrait::impl::verifyZeroOperands(Operation *op) { if (op->getNumOperands() != 0) return op->emitOpError() << "requires zero operands"; return success(); } LogicalResult OpTrait::impl::verifyOneOperand(Operation *op) { if (op->getNumOperands() != 1) return op->emitOpError() << "requires a single operand"; return success(); } LogicalResult OpTrait::impl::verifyNOperands(Operation *op, unsigned numOperands) { if (op->getNumOperands() != numOperands) { return op->emitOpError() << "expected " << numOperands << " operands, but found " << op->getNumOperands(); } return success(); } LogicalResult OpTrait::impl::verifyAtLeastNOperands(Operation *op, unsigned numOperands) { if (op->getNumOperands() < numOperands) return op->emitOpError() << "expected " << numOperands << " or more operands, but found " << op->getNumOperands(); return success(); } /// If this is a vector type, or a tensor type, return the scalar element type /// that it is built around, otherwise return the type unmodified. static Type getTensorOrVectorElementType(Type type) { if (auto vec = type.dyn_cast()) return vec.getElementType(); // Look through tensor> to find the underlying element type. if (auto tensor = type.dyn_cast()) return getTensorOrVectorElementType(tensor.getElementType()); return type; } LogicalResult OpTrait::impl::verifyIsIdempotent(Operation *op) { // FIXME: Add back check for no side effects on operation. // Currently adding it would cause the shared library build // to fail since there would be a dependency of IR on SideEffectInterfaces // which is cyclical. return success(); } LogicalResult OpTrait::impl::verifyIsInvolution(Operation *op) { // FIXME: Add back check for no side effects on operation. // Currently adding it would cause the shared library build // to fail since there would be a dependency of IR on SideEffectInterfaces // which is cyclical. return success(); } LogicalResult OpTrait::impl::verifyOperandsAreSignlessIntegerLike(Operation *op) { for (auto opType : op->getOperandTypes()) { auto type = getTensorOrVectorElementType(opType); if (!type.isSignlessIntOrIndex()) return op->emitOpError() << "requires an integer or index type"; } return success(); } LogicalResult OpTrait::impl::verifyOperandsAreFloatLike(Operation *op) { for (auto opType : op->getOperandTypes()) { auto type = getTensorOrVectorElementType(opType); if (!type.isa()) return op->emitOpError("requires a float type"); } return success(); } LogicalResult OpTrait::impl::verifySameTypeOperands(Operation *op) { // Zero or one operand always have the "same" type. unsigned nOperands = op->getNumOperands(); if (nOperands < 2) return success(); auto type = op->getOperand(0).getType(); for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) if (opType != type) return op->emitOpError() << "requires all operands to have the same type"; return success(); } LogicalResult OpTrait::impl::verifyZeroRegions(Operation *op) { if (op->getNumRegions() != 0) return op->emitOpError() << "requires zero regions"; return success(); } LogicalResult OpTrait::impl::verifyOneRegion(Operation *op) { if (op->getNumRegions() != 1) return op->emitOpError() << "requires one region"; return success(); } LogicalResult OpTrait::impl::verifyNRegions(Operation *op, unsigned numRegions) { if (op->getNumRegions() != numRegions) return op->emitOpError() << "expected " << numRegions << " regions"; return success(); } LogicalResult OpTrait::impl::verifyAtLeastNRegions(Operation *op, unsigned numRegions) { if (op->getNumRegions() < numRegions) return op->emitOpError() << "expected " << numRegions << " or more regions"; return success(); } LogicalResult OpTrait::impl::verifyZeroResults(Operation *op) { if (op->getNumResults() != 0) return op->emitOpError() << "requires zero results"; return success(); } LogicalResult OpTrait::impl::verifyOneResult(Operation *op) { if (op->getNumResults() != 1) return op->emitOpError() << "requires one result"; return success(); } LogicalResult OpTrait::impl::verifyNResults(Operation *op, unsigned numOperands) { if (op->getNumResults() != numOperands) return op->emitOpError() << "expected " << numOperands << " results"; return success(); } LogicalResult OpTrait::impl::verifyAtLeastNResults(Operation *op, unsigned numOperands) { if (op->getNumResults() < numOperands) return op->emitOpError() << "expected " << numOperands << " or more results"; return success(); } LogicalResult OpTrait::impl::verifySameOperandsShape(Operation *op) { if (failed(verifyAtLeastNOperands(op, 1))) return failure(); if (failed(verifyCompatibleShapes(op->getOperandTypes()))) return op->emitOpError() << "requires the same shape for all operands"; return success(); } LogicalResult OpTrait::impl::verifySameOperandsAndResultShape(Operation *op) { if (failed(verifyAtLeastNOperands(op, 1)) || failed(verifyAtLeastNResults(op, 1))) return failure(); SmallVector types(op->getOperandTypes()); types.append(llvm::to_vector<4>(op->getResultTypes())); if (failed(verifyCompatibleShapes(types))) return op->emitOpError() << "requires the same shape for all operands and results"; return success(); } LogicalResult OpTrait::impl::verifySameOperandsElementType(Operation *op) { if (failed(verifyAtLeastNOperands(op, 1))) return failure(); auto elementType = getElementTypeOrSelf(op->getOperand(0)); for (auto operand : llvm::drop_begin(op->getOperands(), 1)) { if (getElementTypeOrSelf(operand) != elementType) return op->emitOpError("requires the same element type for all operands"); } return success(); } LogicalResult OpTrait::impl::verifySameOperandsAndResultElementType(Operation *op) { if (failed(verifyAtLeastNOperands(op, 1)) || failed(verifyAtLeastNResults(op, 1))) return failure(); auto elementType = getElementTypeOrSelf(op->getResult(0)); // Verify result element type matches first result's element type. for (auto result : llvm::drop_begin(op->getResults(), 1)) { if (getElementTypeOrSelf(result) != elementType) return op->emitOpError( "requires the same element type for all operands and results"); } // Verify operand's element type matches first result's element type. for (auto operand : op->getOperands()) { if (getElementTypeOrSelf(operand) != elementType) return op->emitOpError( "requires the same element type for all operands and results"); } return success(); } LogicalResult OpTrait::impl::verifySameOperandsAndResultType(Operation *op) { if (failed(verifyAtLeastNOperands(op, 1)) || failed(verifyAtLeastNResults(op, 1))) return failure(); auto type = op->getResult(0).getType(); auto elementType = getElementTypeOrSelf(type); for (auto resultType : llvm::drop_begin(op->getResultTypes())) { if (getElementTypeOrSelf(resultType) != elementType || failed(verifyCompatibleShape(resultType, type))) return op->emitOpError() << "requires the same type for all operands and results"; } for (auto opType : op->getOperandTypes()) { if (getElementTypeOrSelf(opType) != elementType || failed(verifyCompatibleShape(opType, type))) return op->emitOpError() << "requires the same type for all operands and results"; } return success(); } LogicalResult OpTrait::impl::verifyIsTerminator(Operation *op) { Block *block = op->getBlock(); // Verify that the operation is at the end of the respective parent block. if (!block || &block->back() != op) return op->emitOpError("must be the last operation in the parent block"); return success(); } static LogicalResult verifyTerminatorSuccessors(Operation *op) { auto *parent = op->getParentRegion(); // Verify that the operands lines up with the BB arguments in the successor. for (Block *succ : op->getSuccessors()) if (succ->getParent() != parent) return op->emitError("reference to block defined in another region"); return success(); } LogicalResult OpTrait::impl::verifyZeroSuccessors(Operation *op) { if (op->getNumSuccessors() != 0) { return op->emitOpError("requires 0 successors but found ") << op->getNumSuccessors(); } return success(); } LogicalResult OpTrait::impl::verifyOneSuccessor(Operation *op) { if (op->getNumSuccessors() != 1) { return op->emitOpError("requires 1 successor but found ") << op->getNumSuccessors(); } return verifyTerminatorSuccessors(op); } LogicalResult OpTrait::impl::verifyNSuccessors(Operation *op, unsigned numSuccessors) { if (op->getNumSuccessors() != numSuccessors) { return op->emitOpError("requires ") << numSuccessors << " successors but found " << op->getNumSuccessors(); } return verifyTerminatorSuccessors(op); } LogicalResult OpTrait::impl::verifyAtLeastNSuccessors(Operation *op, unsigned numSuccessors) { if (op->getNumSuccessors() < numSuccessors) { return op->emitOpError("requires at least ") << numSuccessors << " successors but found " << op->getNumSuccessors(); } return verifyTerminatorSuccessors(op); } LogicalResult OpTrait::impl::verifyResultsAreBoolLike(Operation *op) { for (auto resultType : op->getResultTypes()) { auto elementType = getTensorOrVectorElementType(resultType); bool isBoolType = elementType.isInteger(1); if (!isBoolType) return op->emitOpError() << "requires a bool result type"; } return success(); } LogicalResult OpTrait::impl::verifyResultsAreFloatLike(Operation *op) { for (auto resultType : op->getResultTypes()) if (!getTensorOrVectorElementType(resultType).isa()) return op->emitOpError() << "requires a floating point type"; return success(); } LogicalResult OpTrait::impl::verifyResultsAreSignlessIntegerLike(Operation *op) { for (auto resultType : op->getResultTypes()) if (!getTensorOrVectorElementType(resultType).isSignlessIntOrIndex()) return op->emitOpError() << "requires an integer or index type"; return success(); } LogicalResult OpTrait::impl::verifyValueSizeAttr(Operation *op, StringRef attrName, StringRef valueGroupName, size_t expectedCount) { auto sizeAttr = op->getAttrOfType(attrName); if (!sizeAttr) return op->emitOpError("requires dense i32 array attribute '") << attrName << "'"; ArrayRef sizes = sizeAttr.asArrayRef(); if (llvm::any_of(sizes, [](int32_t element) { return element < 0; })) return op->emitOpError("'") << attrName << "' attribute cannot have negative elements"; size_t totalCount = std::accumulate(sizes.begin(), sizes.end(), 0, [](unsigned all, int32_t one) { return all + one; }); if (totalCount != expectedCount) return op->emitOpError() << valueGroupName << " count (" << expectedCount << ") does not match with the total size (" << totalCount << ") specified in attribute '" << attrName << "'"; return success(); } LogicalResult OpTrait::impl::verifyOperandSizeAttr(Operation *op, StringRef attrName) { return verifyValueSizeAttr(op, attrName, "operand", op->getNumOperands()); } LogicalResult OpTrait::impl::verifyResultSizeAttr(Operation *op, StringRef attrName) { return verifyValueSizeAttr(op, attrName, "result", op->getNumResults()); } LogicalResult OpTrait::impl::verifyNoRegionArguments(Operation *op) { for (Region ®ion : op->getRegions()) { if (region.empty()) continue; if (region.getNumArguments() != 0) { if (op->getNumRegions() > 1) return op->emitOpError("region #") << region.getRegionNumber() << " should have no arguments"; return op->emitOpError("region should have no arguments"); } } return success(); } LogicalResult OpTrait::impl::verifyElementwise(Operation *op) { auto isMappableType = [](Type type) { return type.isa(); }; auto resultMappableTypes = llvm::to_vector<1>( llvm::make_filter_range(op->getResultTypes(), isMappableType)); auto operandMappableTypes = llvm::to_vector<2>( llvm::make_filter_range(op->getOperandTypes(), isMappableType)); // If the op only has scalar operand/result types, then we have nothing to // check. if (resultMappableTypes.empty() && operandMappableTypes.empty()) return success(); if (!resultMappableTypes.empty() && operandMappableTypes.empty()) return op->emitOpError("if a result is non-scalar, then at least one " "operand must be non-scalar"); assert(!operandMappableTypes.empty()); if (resultMappableTypes.empty()) return op->emitOpError("if an operand is non-scalar, then there must be at " "least one non-scalar result"); if (resultMappableTypes.size() != op->getNumResults()) return op->emitOpError( "if an operand is non-scalar, then all results must be non-scalar"); SmallVector types = llvm::to_vector<2>( llvm::concat(operandMappableTypes, resultMappableTypes)); TypeID expectedBaseTy = types.front().getTypeID(); if (!llvm::all_of(types, [&](Type t) { return t.getTypeID() == expectedBaseTy; }) || failed(verifyCompatibleShapes(types))) { return op->emitOpError() << "all non-scalar operands/results must have the " "same shape and base type"; } return success(); } /// Check for any values used by operations regions attached to the /// specified "IsIsolatedFromAbove" operation defined outside of it. LogicalResult OpTrait::impl::verifyIsIsolatedFromAbove(Operation *isolatedOp) { assert(isolatedOp->hasTrait() && "Intended to check IsolatedFromAbove ops"); // List of regions to analyze. Each region is processed independently, with // respect to the common `limit` region, so we can look at them in any order. // Therefore, use a simple vector and push/pop back the current region. SmallVector pendingRegions; for (auto ®ion : isolatedOp->getRegions()) { pendingRegions.push_back(®ion); // Traverse all operations in the region. while (!pendingRegions.empty()) { for (Operation &op : pendingRegions.pop_back_val()->getOps()) { for (Value operand : op.getOperands()) { // Check that any value that is used by an operation is defined in the // same region as either an operation result. auto *operandRegion = operand.getParentRegion(); if (!operandRegion) return op.emitError("operation's operand is unlinked"); if (!region.isAncestor(operandRegion)) { return op.emitOpError("using value defined outside the region") .attachNote(isolatedOp->getLoc()) << "required by region isolation constraints"; } } // Schedule any regions in the operation for further checking. Don't // recurse into other IsolatedFromAbove ops, because they will check // themselves. if (op.getNumRegions() && !op.hasTrait()) { for (Region &subRegion : op.getRegions()) pendingRegions.push_back(&subRegion); } } } } return success(); } bool OpTrait::hasElementwiseMappableTraits(Operation *op) { return op->hasTrait() && op->hasTrait() && op->hasTrait() && op->hasTrait(); } //===----------------------------------------------------------------------===// // CastOpInterface //===----------------------------------------------------------------------===// /// Attempt to fold the given cast operation. LogicalResult impl::foldCastInterfaceOp(Operation *op, ArrayRef attrOperands, SmallVectorImpl &foldResults) { OperandRange operands = op->getOperands(); if (operands.empty()) return failure(); ResultRange results = op->getResults(); // Check for the case where the input and output types match 1-1. if (operands.getTypes() == results.getTypes()) { foldResults.append(operands.begin(), operands.end()); return success(); } return failure(); } /// Attempt to verify the given cast operation. LogicalResult impl::verifyCastInterfaceOp( Operation *op, function_ref areCastCompatible) { auto resultTypes = op->getResultTypes(); if (resultTypes.empty()) return op->emitOpError() << "expected at least one result for cast operation"; auto operandTypes = op->getOperandTypes(); if (!areCastCompatible(operandTypes, resultTypes)) { InFlightDiagnostic diag = op->emitOpError("operand type"); if (operandTypes.empty()) diag << "s []"; else if (llvm::size(operandTypes) == 1) diag << " " << *operandTypes.begin(); else diag << "s " << operandTypes; return diag << " and result type" << (resultTypes.size() == 1 ? " " : "s ") << resultTypes << " are cast incompatible"; } return success(); } //===----------------------------------------------------------------------===// // Misc. utils //===----------------------------------------------------------------------===// /// Insert an operation, generated by `buildTerminatorOp`, at the end of the /// region's only block if it does not have a terminator already. If the region /// is empty, insert a new block first. `buildTerminatorOp` should return the /// terminator operation to insert. void impl::ensureRegionTerminator( Region ®ion, OpBuilder &builder, Location loc, function_ref buildTerminatorOp) { OpBuilder::InsertionGuard guard(builder); if (region.empty()) builder.createBlock(®ion); Block &block = region.back(); if (!block.empty() && block.back().hasTrait()) return; builder.setInsertionPointToEnd(&block); builder.insert(buildTerminatorOp(builder, loc)); } /// Create a simple OpBuilder and forward to the OpBuilder version of this /// function. void impl::ensureRegionTerminator( Region ®ion, Builder &builder, Location loc, function_ref buildTerminatorOp) { OpBuilder opBuilder(builder.getContext()); ensureRegionTerminator(region, opBuilder, loc, buildTerminatorOp); }